III. Inferential Tools

Size: px
Start display at page:

Download "III. Inferential Tools"

Transcription

1 III. Inferential Tools A. Introduction to Bat Echolocation Data (10.1.1) 1. Q: Do echolocating bats expend more enery than non-echolocating bats and birds, after accounting for mass? 2. Strategy: (i) Explore (resolve need for transformation) (ii) Is 3 parallel lines model ok? Log of energy expenditure non echolocating bats birds echolocating bats Log of mass (iii) If so, answer question by comparing ne-bats line to the two others. St 412/512 page 45

2 3. A note about different parameterizations for a factor a. Example: the factor TYPE has 3 levels (e-bats, birds, ne-bats) b. Consider the model µ(y x,type)= x + TYPE. We have some choices about which of the 3 indicator variables to include c. If we include two indicator variables, the level whose indicator isn t included is the reference level ; i.e. if µ(y x,type) = β 0 + β 1 x + (β 2 I type2 + β 3 I type3 ) where I type2 and I type3 are indicator variables for levels 2 and 3 of type, then β 0 is the intercept for level 1; β 2 is the amount by which the mean of y is greater for level 2 than for level 1 (after accounting for x) and β 3 is the amount by which the mean of y is greater for level 3 than for level 1 (Display 10.5) d. Another parameterization is (β 1 I type2 + β 2 I type2 + β 3 I type3 ) + β 4 x (without a β 0 ). In this, β 1, β 2, β 3 are the 3 intercepts St 412/512 page 46

3 If necessary, change data type to factor To include a factor so that the first level is the reference level ( treatment contrast in S-PLUS), include this term in the formula St 412/512 page 47

4 Note: R 2 and the F-statistic do not make sense when the intercept is dropped. To include a factor so that each level gets its own intercept, drop the overall intercept by using the model formula term - 1 St 412/512 page 48

5 B. Least Squares Estimation 1. µ(y x 1,x 2 ) = β 0 + β 1 x 1 + β 2 x 2 ; var(y x 1,x 2 ) = σ 2 Unknown parameters: Regression coefficients Variance (about regression) 2. Fitted (or predicted) values, yˆi : y = βˆ + βˆ x + βˆ x for i = 1,2,...,n ˆi 0 1 i 1 2 i 2 3. Residuals, res i = y i - yˆi 4. Least squares estimators, ( βˆ 0, βˆ 1, βˆ 2), are chosen to minimize the sum of squared residuals (matrix algebra formula) 2 5. σˆ =(sum of squared residuals)/(n-p) [p=number of β s] St 412/512 page 49

6 C. t-tests and CI s for individual β s 1. Note: a matrix algebra formula for SE( βˆ j ) is also available 2. If distribution of Y given X s is normal, then βˆ j βj t ratio= SE( βˆ ) has a t-distribution on n-p degrees of freedom 3. For testing the hypothesis H 0 : β 2 = 7; compare t stat = βˆ 2 7 SE( βˆ ) to a t-distribution on n-p degrees of freedom. 4. The p-value for the test of H 0 : β j = 0 is standard output j 2 St 412/512 page 50

7 5. It s often useful to think of H 0 : β 2 = 0 (for example) as Full model: µ(y x 1,x 2,x 3 ) = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 Reduced model: β 0 + β 1 x 1 + β 3 x 3 (Is the β 2 x 2 term needed in a model with the other x s?) 6. 95% confidence interval for β j : βˆ ± t (.975) SE( βˆ ) j n p j 7. The meaning of a coefficient (and its significance) depends on what other X s are in the model (Section ) 8. The t-based inference works well even without normality D. t-tests and CIs for Bat Data 1. From Display 10.6 results: The data are consistent with the hypothesis of no energy differences between echolocating and St 412/512 page 51

8 non-echolocating bats, after accounting for body size (2- sided p-value =.7) 2. But that doesn t prove that there is no difference. A large p-value means either: (i) there is no difference (H 0 is true) or (ii) there is a difference and this study is not powerful enough to detect it. 3. So: report a confidence interval in addition to the p-value. 95% CI for β 3 :.0787 ± = (.35,.51). Interpretation (back-transform, e.0787 =1.08, e -.35 =.70 and e.51 =1.67): It is estimated that the median energy expenditure for echolocating bats is 1.08 times the median for non-echolocating bats of the same body weight (95% confidence interval:.70 to 1.67 times). St 412/512 page 52

9 E. Review of variance, SD, SE 1. var(y) = Mean{(y-µ) 2 } (population variance) 2. SD(y) = {var(y)} 1/2 3. var(y x) = Mean{[y-µ( µ(y x)] 2 } in subpopulation of y s at x ˆβ β 4. var( βˆ ) = Mean{( - ) 2 } (sampling variance) 5. SD( βˆ ) = {var( β ˆ )} 1/2 6. SE( βˆ ) = Estimate of SD( β ˆ ), usually obtained by using in place of the unknown σ (with associated d.f.) ˆσ St 412/512 page 53

10 F. Reminder about interpolation and extrapolation? 2 Extrapolation involves Y additional speculation? 1 X We can safely make statements about the distribution of y given x-values within the sampled range St 412/512 page 54

11 G. Extra SS F-tests 1. Full model: β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 Reduced model: β 0 + β 1 x 1 i.e. in full model, H 0 : β 2 = β 3 = 0 2. Extra sum of squares = (Sum of squared residuals from reduced model) - (Sum of squared residuals from full model) 3. F-statistic = [Extra SS/Extra # of β s]/ 2 σˆ full 4. Display example: Full: log.energy ~ lmass + TYPE Reduced: log.energy ~ lmass One can fit both models and get the SS Residual from the ANOVA table (as in Display 10.10), or... St 412/512 page 55

12 5. Valuable short-cut in S-PLUS: Save model objects, then use Compare Models (continued, next page) St 412/512 page 56

13 1 Compare with Display Write names of model objects, separated by, St 412/512 page 57

14 H. Special Cases of Extra SS F-test 1. F-test for overall significance of regression Full model: β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 Reduced model: β 0 Asks: are any of the x s useful predictors of y? The calculations are laid out in the ANOVA table 2. F-test for a single coefficient If full model has one more term than the reduced model, the F- test is equivalent to the (2-sided) t-test 3. For µ(y CAT) = CAT (i.e. a single categorical factor), the F-test for overall significance is the one-way ANOVA F-test St 412/512 page 58

15 I. Prediction and prediction intervals 1. Suppose µ ( y x, x ) = β + β x + β x The estimated mean of y at x 1 = 15 and x 2 = 7 (say) is µ ˆ( y x = 15, x = 7) = βˆ + βˆ (15) + βˆ (7) The SE of the estimated mean at x 1 = 15 and x 2 = 7 is SE[ µ ˆ( y x1 = 15, x2 = 7)] = (matrix algebra formula; S-plus knows it and does the calculations in the Predict tab) 4. The predicted value of y at x 1 = 15 and x 2 = 7 is Pred( y x = 15, x = 7) = µ ˆ( y x = 15, x = 7) i.e. predict y to be its mean value St 412/512 page 59

16 5. SE[Pred( y x = 15, x = 7)] = { SE[ µ ˆ( y x = 15, x = 7)] + σˆ } /2 sampling variance in estimating mean of y at those x s variance of an individual y about its (subpopulation) mean 6. 95% Prediction interval: Pred( y x = 15, x = 7) ± t (.975) SE[Pred( y x = 15, x = 7)] 1 2 n p S-PLUS: Create a new data set with columns named x 1 and x 2, with values x 1 *, x 2 * µ ˆ( y x = x, x = x ) * * SE[ µ ˆ( y x = 15, x = 7)] 1 2 SE[Pred] must be calculated from these, σˆ 2 and the formula in 5 above St 412/512 page 60

Simple Linear Regression: A Model for the Mean. Chap 7

Simple Linear Regression: A Model for the Mean. Chap 7 Simple Linear Regression: A Model for the Mean Chap 7 An Intermediate Model (if the groups are defined by values of a numeric variable) Separate Means Model Means fall on a straight line function of the

More information

10. Alternative case influence statistics

10. Alternative case influence statistics 10. Alternative case influence statistics a. Alternative to D i : dffits i (and others) b. Alternative to studres i : externally-studentized residual c. Suggestion: use whatever is convenient with the

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Lecture 2 Linear Regression: A Model for the Mean. Sharyn O Halloran

Lecture 2 Linear Regression: A Model for the Mean. Sharyn O Halloran Lecture 2 Linear Regression: A Model for the Mean Sharyn O Halloran Closer Look at: Linear Regression Model Least squares procedure Inferential tools Confidence and Prediction Intervals Assumptions Robustness

More information

Stat 411/511 ESTIMATING THE SLOPE AND INTERCEPT. Charlotte Wickham. stat511.cwick.co.nz. Nov

Stat 411/511 ESTIMATING THE SLOPE AND INTERCEPT. Charlotte Wickham. stat511.cwick.co.nz. Nov Stat 411/511 ESTIMATING THE SLOPE AND INTERCEPT Nov 20 2015 Charlotte Wickham stat511.cwick.co.nz Quiz #4 This weekend, don t forget. Usual format Assumptions Display 7.5 p. 180 The ideal normal, simple

More information

8. Example: Predicting University of New Mexico Enrollment

8. Example: Predicting University of New Mexico Enrollment 8. Example: Predicting University of New Mexico Enrollment year (1=1961) 6 7 8 9 10 6000 10000 14000 0 5 10 15 20 25 30 6 7 8 9 10 unem (unemployment rate) hgrad (highschool graduates) 10000 14000 18000

More information

Stat 412/512 REVIEW OF SIMPLE LINEAR REGRESSION. Jan Charlotte Wickham. stat512.cwick.co.nz

Stat 412/512 REVIEW OF SIMPLE LINEAR REGRESSION. Jan Charlotte Wickham. stat512.cwick.co.nz Stat 412/512 REVIEW OF SIMPLE LINEAR REGRESSION Jan 7 2015 Charlotte Wickham stat512.cwick.co.nz Announcements TA's Katie 2pm lab Ben 5pm lab Joe noon & 1pm lab TA office hours Kidder M111 Katie Tues 2-3pm

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species Lecture notes 2/22/2000 Dummy variables and extra SS F-test Page 1 Crab claw size and closing force. Problem 7.25, 10.9, and 10.10 Regression for all species at once, i.e., include dummy variables for

More information

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters Objectives 10.1 Simple linear regression Statistical model for linear regression Estimating the regression parameters Confidence interval for regression parameters Significance test for the slope Confidence

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College An example ANOVA situation Example (Treating Blisters) Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Business Statistics. Lecture 9: Simple Regression

Business Statistics. Lecture 9: Simple Regression Business Statistics Lecture 9: Simple Regression 1 On to Model Building! Up to now, class was about descriptive and inferential statistics Numerical and graphical summaries of data Confidence intervals

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

STA 4210 Practise set 2a

STA 4210 Practise set 2a STA 410 Practise set a For all significance tests, use = 0.05 significance level. S.1. A multiple linear regression model is fit, relating household weekly food expenditures (Y, in $100s) to weekly income

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION

LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION In this lab you will learn how to use Excel to display the relationship between two quantitative variables, measure the strength and direction of the

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

From last time... The equations

From last time... The equations This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1 Review - Interpreting the Regression If we estimate: It can be shown that: where ˆ1 r i coefficients β ˆ+ βˆ x+ βˆ ˆ= 0 1 1 2x2 y ˆβ n n 2 1 = rˆ i1yi rˆ i1 i= 1 i= 1 xˆ are the residuals obtained when

More information

Topic 14: Inference in Multiple Regression

Topic 14: Inference in Multiple Regression Topic 14: Inference in Multiple Regression Outline Review multiple linear regression Inference of regression coefficients Application to book example Inference of mean Application to book example Inference

More information

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression Chapter 12 12-1 North Seattle Community College BUS21 Business Statistics Chapter 12 Learning Objectives In this chapter, you learn:! How to use regression analysis to predict the value of a dependent

More information

Simple Linear Regression: One Qualitative IV

Simple Linear Regression: One Qualitative IV Simple Linear Regression: One Qualitative IV 1. Purpose As noted before regression is used both to explain and predict variation in DVs, and adding to the equation categorical variables extends regression

More information

Topic 10 - Linear Regression

Topic 10 - Linear Regression Topic 10 - Linear Regression Least squares principle Hypothesis tests/confidence intervals/prediction intervals for regression 1 Linear Regression How much should you pay for a house? Would you consider

More information

Lecture 1 Linear Regression with One Predictor Variable.p2

Lecture 1 Linear Regression with One Predictor Variable.p2 Lecture Linear Regression with One Predictor Variablep - Basics - Meaning of regression parameters p - β - the slope of the regression line -it indicates the change in mean of the probability distn of

More information

Lecture 8. Using the CLR Model

Lecture 8. Using the CLR Model Lecture 8. Using the CLR Model Example of regression analysis. Relation between patent applications and R&D spending Variables PATENTS = No. of patents (in 1000) filed RDEXP = Expenditure on research&development

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

STAT 215 Confidence and Prediction Intervals in Regression

STAT 215 Confidence and Prediction Intervals in Regression STAT 215 Confidence and Prediction Intervals in Regression Colin Reimer Dawson Oberlin College 24 October 2016 Outline Regression Slope Inference Partitioning Variability Prediction Intervals Reminder:

More information

Inference. ME104: Linear Regression Analysis Kenneth Benoit. August 15, August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58

Inference. ME104: Linear Regression Analysis Kenneth Benoit. August 15, August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58 Inference ME104: Linear Regression Analysis Kenneth Benoit August 15, 2012 August 15, 2012 Lecture 3 Multiple linear regression 1 1 / 58 Stata output resvisited. reg votes1st spend_total incumb minister

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Inference with Simple Regression

Inference with Simple Regression 1 Introduction Inference with Simple Regression Alan B. Gelder 06E:071, The University of Iowa 1 Moving to infinite means: In this course we have seen one-mean problems, twomean problems, and problems

More information

sociology 362 regression

sociology 362 regression sociology 36 regression Regression is a means of studying how the conditional distribution of a response variable (say, Y) varies for different values of one or more independent explanatory variables (say,

More information

Correlation and Linear Regression

Correlation and Linear Regression Correlation and Linear Regression Correlation: Relationships between Variables So far, nearly all of our discussion of inferential statistics has focused on testing for differences between group means

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

Simple Linear Regression for the Climate Data

Simple Linear Regression for the Climate Data Prediction Prediction Interval Temperature 0.2 0.0 0.2 0.4 0.6 0.8 320 340 360 380 CO 2 Simple Linear Regression for the Climate Data What do we do with the data? y i = Temperature of i th Year x i =CO

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 28. SIMPLE LINEAR REGRESSION III Fitted Values and Residuals To each observed x i, there corresponds a y-value on the fitted line, y = βˆ + βˆ x. The are called fitted values. ŷ i They are the values of

More information

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Spring 2010 The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative

More information

Linear Regression. Chapter 3

Linear Regression. Chapter 3 Chapter 3 Linear Regression Once we ve acquired data with multiple variables, one very important question is how the variables are related. For example, we could ask for the relationship between people

More information

Statistics for Engineers Lecture 9 Linear Regression

Statistics for Engineers Lecture 9 Linear Regression Statistics for Engineers Lecture 9 Linear Regression Chong Ma Department of Statistics University of South Carolina chongm@email.sc.edu April 17, 2017 Chong Ma (Statistics, USC) STAT 509 Spring 2017 April

More information

R 2 and F -Tests and ANOVA

R 2 and F -Tests and ANOVA R 2 and F -Tests and ANOVA December 6, 2018 1 Partition of Sums of Squares The distance from any point y i in a collection of data, to the mean of the data ȳ, is the deviation, written as y i ȳ. Definition.

More information

Lecture 12 Inference in MLR

Lecture 12 Inference in MLR Lecture 12 Inference in MLR STAT 512 Spring 2011 Background Reading KNNL: 6.6-6.7 12-1 Topic Overview Review MLR Model Inference about Regression Parameters Estimation of Mean Response Prediction 12-2

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

ES-2 Lecture: More Least-squares Fitting. Spring 2017

ES-2 Lecture: More Least-squares Fitting. Spring 2017 ES-2 Lecture: More Least-squares Fitting Spring 2017 Outline Quick review of least-squares line fitting (also called `linear regression ) How can we find the best-fit line? (Brute-force method is not efficient)

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

1 Independent Practice: Hypothesis tests for one parameter:

1 Independent Practice: Hypothesis tests for one parameter: 1 Independent Practice: Hypothesis tests for one parameter: Data from the Indian DHS survey from 2006 includes a measure of autonomy of the women surveyed (a scale from 0-10, 10 being the most autonomous)

More information

Statistical Inference with Regression Analysis

Statistical Inference with Regression Analysis Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Steven Buck Lecture #13 Statistical Inference with Regression Analysis Next we turn to calculating confidence intervals and hypothesis testing

More information

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression AMS 315/576 Lecture Notes Chapter 11. Simple Linear Regression 11.1 Motivation A restaurant opening on a reservations-only basis would like to use the number of advance reservations x to predict the number

More information

Introduction to Regression

Introduction to Regression Regression Introduction to Regression If two variables covary, we should be able to predict the value of one variable from another. Correlation only tells us how much two variables covary. In regression,

More information

ST505/S697R: Fall Homework 2 Solution.

ST505/S697R: Fall Homework 2 Solution. ST505/S69R: Fall 2012. Homework 2 Solution. 1. 1a; problem 1.22 Below is the summary information (edited) from the regression (using R output); code at end of solution as is code and output for SAS. a)

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t =

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t = 2. The distribution of t values that would be obtained if a value of t were calculated for each sample mean for all possible random of a given size from a population _ t ratio: (X - µ hyp ) t s x The result

More information

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or.

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or. Chapter Simple Linear Regression : comparing means across groups : presenting relationships among numeric variables. Probabilistic Model : The model hypothesizes an relationship between the variables.

More information

CRP 272 Introduction To Regression Analysis

CRP 272 Introduction To Regression Analysis CRP 272 Introduction To Regression Analysis 30 Relationships Among Two Variables: Interpretations One variable is used to explain another variable X Variable Independent Variable Explaining Variable Exogenous

More information

Overview Scatter Plot Example

Overview Scatter Plot Example Overview Topic 22 - Linear Regression and Correlation STAT 5 Professor Bruce Craig Consider one population but two variables For each sampling unit observe X and Y Assume linear relationship between variables

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

Stat 412/512 TWO WAY ANOVA. Charlotte Wickham. stat512.cwick.co.nz. Feb

Stat 412/512 TWO WAY ANOVA. Charlotte Wickham. stat512.cwick.co.nz. Feb Stat 42/52 TWO WAY ANOVA Feb 6 25 Charlotte Wickham stat52.cwick.co.nz Roadmap DONE: Understand what a multiple regression model is. Know how to do inference on single and multiple parameters. Some extra

More information

13 Simple Linear Regression

13 Simple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 3 Simple Linear Regression 3. An industrial example A study was undertaken to determine the effect of stirring rate on the amount of impurity

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Introduction to the Analysis of Hierarchical and Longitudinal Data

Introduction to the Analysis of Hierarchical and Longitudinal Data Introduction to the Analysis of Hierarchical and Longitudinal Data Georges Monette, York University with Ye Sun SPIDA June 7, 2004 1 Graphical overview of selected concepts Nature of hierarchical models

More information

L6: Regression II. JJ Chen. July 2, 2015

L6: Regression II. JJ Chen. July 2, 2015 L6: Regression II JJ Chen July 2, 2015 Today s Plan Review basic inference based on Sample average Difference in sample average Extrapolate the knowledge to sample regression coefficients Standard error,

More information