STA 4210 Practise set 2a

Size: px
Start display at page:

Download "STA 4210 Practise set 2a"

Transcription

1 STA 410 Practise set a For all significance tests, use = 0.05 significance level. S.1. A multiple linear regression model is fit, relating household weekly food expenditures (Y, in $100s) to weekly income (X 1, in $100s) and the number of people living in the household (X ). Assuming the model has an intercept, and is based on a sample of n=40 households. Give the appropriate degrees of freedom. df Total = df Regression = df Error = S.. In a multiple linear regression model with predictors (X 1 and X ), if X 1 and X are uncorrelated, SSR(X 1 ) = SSR(X 1 X ). TRUE or FALSE S.3. In simple linear regression, the hat-matrix is x. TRUE or FALSE S.4. In a multiple linear regression model with predictors (X 1 and X ), SSR(X 1 ) + SSR(X X 1 ) = SSR(X ) + SSR(X 1 X ). TRUE or FALSE S.5. In a multiple linear regression model with 3 predictors (X 1, X, and X 3 (where each has 3 levels)), a researcher wishes to include all -variable interactions, and all squared terms. Give the appropriate degrees of freedom, assuming there is 1 observation at all combinations of the levels of each predictor, and 3 extra points when each factor is at its mid-level. df Total = df Regression = df Error = S.6. A researcher reports that for a linear regression model, the regression sum of squares is twice as large as the error sum of squares. Compute R for this model R = S.7. A simple linear regression model is fit, based on a sample of n=10 observations. You obtain the following estimates: b 0 = 1.0 s{b 0 } = 3.0 b 1 = 5.0 s{b 1 } =.0. Use Bonferroni s method to obtain simultaneous 90% Confidence Intervals for 0 and 0 : 1 :

2 Q.1. A simple linear regression model is to be fit: Y i = X i + I. The data are as follows: Complete the following parts in matrix form (Note: SSTO=70): X Y p.1.a. X= Y = p.1.b. X X = X Y = p.1.c. (X X) -1 = b = ^ p.1.d. Y = e = p.1.e. MSE = s {b} = p.1.f. Complete the following tables: ANOVA Regression Residual Total df SS MS F Coefficientsandard Err t Stat Intercept X

3 Q.. A regression model is fit, relating a response (Y) to 3 predictors (X 1, X, X 3 ) based on n=30 individuals. Two models are fit: Model1: E(Y) = X 1 + X + 3 X 3 SSE 1 = 1800 Model: E(Y)= X 1 + X + 3 X X 1 + X + 33 X X 1 X + 13 X 1 X X X 3 SSE =1400 Test whether none of the quadratic terms or interaction terms contributes above and beyond the effects of X 1, X, and X 3. p..a. H 0 : p..b. Test Statistic: p..c. Reject H 0 if the test statistic falls above / below p..d. Compute R Y, X 1, X, X 3, X 1 X, X 1 X 3, X X 3 X 1, X, X 3

4 Q.3. Regression models are fit, relating total revenues (Y, in millions of dollars) for n=155 films released in the 1930s to production costs (X 1, in millions of dollars) and distribution costs (X, in millions of dollars). { } = b0 + b1 1 { } = b0 + b1 1 + b { } = b + b + b + b { } = b + b ( + ) Model 1: E Y X Model : E Y X X Model 3: E Y X X X X Model 4: E Y X X ANOVA Model 1 ANOVA Model 3 df SS MS F df SS MS F Regression Regression Residual Residual Total Total Coefficientsandard Erro t Stat Coefficientsandard Erro t Stat Intercept Intercept prodcostc prodcostc distcostc ANOVA Model prodxdist df SS MS F Regression ANOVA Model 4 Residual df SS MS F Total Regression Residual Coefficientsandard Erro t Stat Total Intercept prodcostc Coefficientsandard Erro t Stat distcostc Intercept totcostc Complete the following parts. p.3.a. Based on model 3, test whether there is an interaction between production (X 1 ) and distribution (X ) costs. H 0 : H A : Test Statistic: Rejection Region: p.3.b. Compute ( ) ( ) SSR X1 = SSR X X1 = R Y 1 = p.3.c. Based on models and 4, test whether the effects of increasing production and distribution costs by 1 unit are equal. H 0 : H A : Test Statistic: Rejection Region: p.3.d. Based on model, give the predicted total revenues (in dollars) for a movie that had production costs of $500,000 and distribution costs of $50,000

5 p.3.e. Conduct the Brown-Forsyth test, to determine whether the variances for the low predicted values (group=1) and ~ ~ the high predicted values (group ) are equal. dij = eij - ei i = 1, j = 1,..., ni ei = median ( ei1,..., ein ) i Group Mean(D) Var(D) n p.3.e.i. Test Statistic: p.3.e.ii. Rejection Region Q.4. You obtain the following spreadsheet from a regression model. The fitted equation is Y ^ Conduct the F-test for Lack-of-Fit. n = c = = X X Y Ybar Y-hat Pure Error Lack of Fit Source df SS MS F F(0.05) Lack-of-Fit Pure Error

6 Critical Values for t,, and F Distributions F Distributions Indexed by Numerator Degrees of Freedom CDF - Lower tail probabilities df t.95 t F.95,1 F.95, F.95,3 F.95,4 F.95,5 F.95,6 F.95,7 F.95,

STA 4210 Practise set 2b

STA 4210 Practise set 2b STA 410 Practise set b For all significance tests, use = 0.05 significance level. S.1. A linear regression model is fit, relating fish catch (Y, in tons) to the number of vessels (X 1 ) and fishing pressure

More information

STA 6167 Exam 1 Spring 2016 PRINT Name

STA 6167 Exam 1 Spring 2016 PRINT Name STA 6167 Exam 1 Spring 2016 PRINT Name Unless stated otherwise, for all significance tests, use = 0.05 significance level. Q.1. A regression model was fit, relating estimated cost of de-commissioning oil

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6 STA 8 Applied Linear Models: Regression Analysis Spring 011 Solution for Homework #6 6. a) = 11 1 31 41 51 1 3 4 5 11 1 31 41 51 β = β1 β β 3 b) = 1 1 1 1 1 11 1 31 41 51 1 3 4 5 β = β 0 β1 β 6.15 a) Stem-and-leaf

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression Chapter 14 Student Lecture Notes 14-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Multiple Regression QMIS 0 Dr. Mohammad Zainal Chapter Goals After completing

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

[4+3+3] Q 1. (a) Describe the normal regression model through origin. Show that the least square estimator of the regression parameter is given by

[4+3+3] Q 1. (a) Describe the normal regression model through origin. Show that the least square estimator of the regression parameter is given by Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/1 40 Examination Date Time Pages Final June 2004 3 hours 7 Instructors Course Examiner Marks Y.P. Chaubey

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

The simple linear regression model discussed in Chapter 13 was written as

The simple linear regression model discussed in Chapter 13 was written as 1519T_c14 03/27/2006 07:28 AM Page 614 Chapter Jose Luis Pelaez Inc/Blend Images/Getty Images, Inc./Getty Images, Inc. 14 Multiple Regression 14.1 Multiple Regression Analysis 14.2 Assumptions of the Multiple

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Sections 7.1, 7.2, 7.4, & 7.6

Sections 7.1, 7.2, 7.4, & 7.6 Sections 7.1, 7.2, 7.4, & 7.6 Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1 / 25 Chapter 7 example: Body fat n = 20 healthy females 25 34

More information

STA 4211 Exam 1 Spring 2015 PRINT Name

STA 4211 Exam 1 Spring 2015 PRINT Name STA 4211 Exam 1 Spring 2015 PRINT Name For all significance tests, use = 0.05 significance level. Show work for any partial credit! Q.1. In the broiler chicken study, with factor A (base diet: Sorghum,

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal yuppal@ysu.edu Sampling Distribution of b 1 Expected value of b 1 : Variance of b 1 : E(b 1 ) = 1 Var(b 1 ) = σ 2 /SS x Estimate of

More information

The Multiple Regression Model

The Multiple Regression Model Multiple Regression The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & or more independent variables (X i ) Multiple Regression Model with k Independent Variables:

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Lecture 13 Extra Sums of Squares

Lecture 13 Extra Sums of Squares Lecture 13 Extra Sums of Squares STAT 512 Spring 2011 Background Reading KNNL: 7.1-7.4 13-1 Topic Overview Extra Sums of Squares (Defined) Using and Interpreting R 2 and Partial-R 2 Getting ESS and Partial-R

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

F-tests and Nested Models

F-tests and Nested Models F-tests and Nested Models Nested Models: A core concept in statistics is comparing nested s. Consider the Y = β 0 + β 1 x 1 + β 2 x 2 + ǫ. (1) The following reduced s are special cases (nested within)

More information

Lecture 1 Linear Regression with One Predictor Variable.p2

Lecture 1 Linear Regression with One Predictor Variable.p2 Lecture Linear Regression with One Predictor Variablep - Basics - Meaning of regression parameters p - β - the slope of the regression line -it indicates the change in mean of the probability distn of

More information

Regression Models. Chapter 4. Introduction. Introduction. Introduction

Regression Models. Chapter 4. Introduction. Introduction. Introduction Chapter 4 Regression Models Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 008 Prentice-Hall, Inc. Introduction Regression analysis is a very valuable tool for a manager

More information

Ch 13 & 14 - Regression Analysis

Ch 13 & 14 - Regression Analysis Ch 3 & 4 - Regression Analysis Simple Regression Model I. Multiple Choice:. A simple regression is a regression model that contains a. only one independent variable b. only one dependent variable c. more

More information

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. 1. A study was carried out to examine the relationship between the number

More information

STAT 360-Linear Models

STAT 360-Linear Models STAT 360-Linear Models Instructor: Yogendra P. Chaubey Sample Test Questions Fall 004 Note: The following questions are from previous tests and exams. The final exam will be for three hours and will contain

More information

5.1 Model Specification and Data 5.2 Estimating the Parameters of the Multiple Regression Model 5.3 Sampling Properties of the Least Squares

5.1 Model Specification and Data 5.2 Estimating the Parameters of the Multiple Regression Model 5.3 Sampling Properties of the Least Squares 5.1 Model Specification and Data 5. Estimating the Parameters of the Multiple Regression Model 5.3 Sampling Properties of the Least Squares Estimator 5.4 Interval Estimation 5.5 Hypothesis Testing for

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I PubH 7405: REGRESSION ANALYSIS MLR: INFERENCES, Part I TESTING HYPOTHESES Once we have fitted a multiple linear regression model and obtained estimates for the various parameters of interest, we want to

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Eplained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 LAST NAME: SOLUTIONS FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 302 STA 1001 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator.

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

STA 6207 Practice Problems Nonlinear Regression

STA 6207 Practice Problems Nonlinear Regression STA 6207 Practice Problems Nonlinear Regression Q.1. A study was conducted to measure the effects of pea density (X 1, in plants/m 2 ) and volunteer barley density (X 2, in plants/m 2 ) on pea seed yield

More information

ST430 Exam 2 Solutions

ST430 Exam 2 Solutions ST430 Exam 2 Solutions Date: November 9, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textbook are permitted but you may use a calculator. Giving

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

Concordia University (5+5)Q 1.

Concordia University (5+5)Q 1. (5+5)Q 1. Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/1 40 Examination Date Time Pages Mid Term Test May 26, 2004 Two Hours 3 Instructor Course Examiner

More information

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression

Chapter Learning Objectives. Regression Analysis. Correlation. Simple Linear Regression. Chapter 12. Simple Linear Regression Chapter 12 12-1 North Seattle Community College BUS21 Business Statistics Chapter 12 Learning Objectives In this chapter, you learn:! How to use regression analysis to predict the value of a dependent

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 4 4- Basic Business Statistics th Edition Chapter 4 Introduction to Multiple Regression Basic Business Statistics, e 9 Prentice-Hall, Inc. Chap 4- Learning Objectives In this chapter, you learn:

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

6. Multiple Linear Regression

6. Multiple Linear Regression 6. Multiple Linear Regression SLR: 1 predictor X, MLR: more than 1 predictor Example data set: Y i = #points scored by UF football team in game i X i1 = #games won by opponent in their last 10 games X

More information

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1 Multiple Regression Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 12, Slide 1 Review: Matrix Regression Estimation We can solve this equation (if the inverse of X

More information

Chapter 2 Multiple Regression (Part 4)

Chapter 2 Multiple Regression (Part 4) Chapter 2 Multiple Regression (Part 4) 1 The effect of multi-collinearity Now, we know to find the estimator (X X) 1 must exist! Therefore, n must be great or at least equal to p + 1 (WHY?) However, even

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

Multiple Regression Methods

Multiple Regression Methods Chapter 1: Multiple Regression Methods Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 1 The Multiple Linear Regression Model How to interpret

More information

Chapter 4. Regression Models. Learning Objectives

Chapter 4. Regression Models. Learning Objectives Chapter 4 Regression Models To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian Peterson Learning Objectives After completing

More information

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables.

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables. One-Way Analysis of Variance With regression, we related two quantitative, typically continuous variables. Often we wish to relate a quantitative response variable with a qualitative (or simply discrete)

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X 1.04) =.8508. For z < 0 subtract the value from

More information

Class time (Please Circle): 11:10am-12:25pm. or 12:45pm-2:00pm

Class time (Please Circle): 11:10am-12:25pm. or 12:45pm-2:00pm Name: UIN: Class time (Please Circle): 11:10am-12:25pm. or 12:45pm-2:00pm Instructions: 1. Please provide your name and UIN. 2. Circle the correct class time. 3. To get full credit on answers to this exam,

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Econometrics Midterm Examination Answers

Econometrics Midterm Examination Answers Econometrics Midterm Examination Answers March 4, 204. Question (35 points) Answer the following short questions. (i) De ne what is an unbiased estimator. Show that X is an unbiased estimator for E(X i

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

III. Inferential Tools

III. Inferential Tools III. Inferential Tools A. Introduction to Bat Echolocation Data (10.1.1) 1. Q: Do echolocating bats expend more enery than non-echolocating bats and birds, after accounting for mass? 2. Strategy: (i) Explore

More information

Table 1: Fish Biomass data set on 26 streams

Table 1: Fish Biomass data set on 26 streams Math 221: Multiple Regression S. K. Hyde Chapter 27 (Moore, 5th Ed.) The following data set contains observations on the fish biomass of 26 streams. The potential regressors from which we wish to explain

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Inference in Normal Regression Model. Dr. Frank Wood

Inference in Normal Regression Model. Dr. Frank Wood Inference in Normal Regression Model Dr. Frank Wood Remember We know that the point estimator of b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 Last class we derived the sampling distribution of b 1, it being

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

STAT 705 Chapter 16: One-way ANOVA

STAT 705 Chapter 16: One-way ANOVA STAT 705 Chapter 16: One-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 21 What is ANOVA? Analysis of variance (ANOVA) models are regression

More information

Statistics and Quantitative Analysis U4320

Statistics and Quantitative Analysis U4320 Statistics and Quantitative Analysis U3 Lecture 13: Explaining Variation Prof. Sharyn O Halloran Explaining Variation: Adjusted R (cont) Definition of Adjusted R So we'd like a measure like R, but one

More information

Nonparametric Regression and Bonferroni joint confidence intervals. Yang Feng

Nonparametric Regression and Bonferroni joint confidence intervals. Yang Feng Nonparametric Regression and Bonferroni joint confidence intervals Yang Feng Simultaneous Inferences In chapter 2, we know how to construct confidence interval for β 0 and β 1. If we want a confidence

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Chapter 6 Multiple Regression

Chapter 6 Multiple Regression STAT 525 FALL 2018 Chapter 6 Multiple Regression Professor Min Zhang The Data and Model Still have single response variable Y Now have multiple explanatory variables Examples: Blood Pressure vs Age, Weight,

More information

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants.

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants. The idea of ANOVA Reminders: A factor is a variable that can take one of several levels used to differentiate one group from another. An experiment has a one-way, or completely randomized, design if several

More information

STATS DOESN T SUCK! ~ CHAPTER 16

STATS DOESN T SUCK! ~ CHAPTER 16 SIMPLE LINEAR REGRESSION: STATS DOESN T SUCK! ~ CHAPTER 6 The HR manager at ACME food services wants to examine the relationship between a workers income and their years of experience on the job. He randomly

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 25 Outline 1 Multiple Linear Regression 2 / 25 Basic Idea An extra sum of squares: the marginal reduction in the error sum of squares when one or several

More information

Simple Linear Regression: One Qualitative IV

Simple Linear Regression: One Qualitative IV Simple Linear Regression: One Qualitative IV 1. Purpose As noted before regression is used both to explain and predict variation in DVs, and adding to the equation categorical variables extends regression

More information

STATISTICS 110/201 PRACTICE FINAL EXAM

STATISTICS 110/201 PRACTICE FINAL EXAM STATISTICS 110/201 PRACTICE FINAL EXAM Questions 1 to 5: There is a downloadable Stata package that produces sequential sums of squares for regression. In other words, the SS is built up as each variable

More information

Unbalanced Data in Factorials Types I, II, III SS Part 1

Unbalanced Data in Factorials Types I, II, III SS Part 1 Unbalanced Data in Factorials Types I, II, III SS Part 1 Chapter 10 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 14 When we perform an ANOVA, we try to quantify the amount of variability in the data accounted

More information

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable,

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable, Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/2 01 Examination Date Time Pages Final December 2002 3 hours 6 Instructors Course Examiner Marks Y.P.

More information

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing

More information

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model. Statistical Methods in Business Lecture 5. Linear Regression We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

More information

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference.

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference. Understanding regression output from software Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals In 1966 Cyril Burt published a paper called The genetic determination of differences

More information

Chapter 4: Regression Models

Chapter 4: Regression Models Sales volume of company 1 Textbook: pp. 129-164 Chapter 4: Regression Models Money spent on advertising 2 Learning Objectives After completing this chapter, students will be able to: Identify variables,

More information

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression BSTT523: Kutner et al., Chapter 1 1 Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression Introduction: Functional relation between

More information

Chapter 14 Student Lecture Notes 14-1

Chapter 14 Student Lecture Notes 14-1 Chapter 14 Student Lecture Notes 14-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 14 Multiple Regression Analysis and Model Building Chap 14-1 Chapter Goals After completing this

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Semester 2, 2015/2016

Semester 2, 2015/2016 ECN 3202 APPLIED ECONOMETRICS 2. Simple linear regression B Mr. Sydney Armstrong Lecturer 1 The University of Guyana 1 Semester 2, 2015/2016 PREDICTION The true value of y when x takes some particular

More information

Regression - Modeling a response

Regression - Modeling a response Regression - Modeling a response We often wish to construct a model to Explain the association between two or more variables Predict the outcome of a variable given values of other variables. Regression

More information