Econometrics. 4) Statistical inference

Size: px
Start display at page:

Download "Econometrics. 4) Statistical inference"

Transcription

1 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D.

2 Today s topics Confidence intervals of parameter estimates Student s t-distribution Hypothesis testing t-test of significance of coefficients p-value One-sided vs. two-sided tests Type I and II errors in hypothesis testing Power of a test

3 Types of statistical inference Estimation Point estimation Interval estimation Hypothesis testing

4 SUMMARY OUTPUT Excel output of the hedonic model - Multiple regression Regression Statistics Multiple R 0, R Square 0, Adjusted R Square 0,81225 Standard Error 80593,26 Observations 67 ANOVA df SS MS F Significance F Regression 3 1,87E+12 6,25E+11 96, ,76E-23 Residual 63 4,09E+11 6,5E+09 Total 66 2,28E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept , ,58 3, , , ,5 size m2 6972, ,5745 8, ,11E , ,13 nr. bedrooms , ,6-3, , ,3 age -2820,1 495,0578-5,6965 3,46E , ,8

5 Interval estimation Definition: Let X be a random sample from a probability distribution with parameter μ. The 100 (1-α)% confidence interval for parameter μ is an interval with random endpoints [a(x), b(x)] determined by random sample X, such that Pr( a( X ) b( X )) 1 Interpretation in terms of repeated samples: suppose we draw a large number of random samples X from the population, and calculate the confidence interval for each sample. The calculated confidence interval (which would differ for each sample) would encompass the true population parameter μ in 100 (1-α)% of samples. 5

6 Interval estimation Definition: Let X be a random sample from a probability distribution with parameter μ. The 100 (1-α)% confidence interval for parameter μ is an interval with random endpoints [a(x), b(x)] determined by random sample X, such that Pr( a( X ) b( X )) 1 Significance α is usually specified as 5% or 1% For a given sample X and significance α, our objective is to calculate the lower limit a the upper limit b. 6

7 Asymptotic normality By the central limit theorem, if the assumptions Exogeneity, Homoscedasticity, and Serial independence hold, then b 2 converges in distribution to the normal distribution b 2 ~ N, ( n 1) Var ( x ) 2 2 a Denoting 2 b2 2 ( n 1) Var( x) We have a shorter expression: b ~ N, b 2 2 a 2 2

8 Standardization The result b ~ N, b 2 2 a 2 2 implies that ( b )~ N 0, b a 2 and further ( b2 2) ~ N 0,1 a b2

9 Standard normal distribution Ф is the cumulative density function of N(0,1) Ф(-1.96)=0.025 Ф(1.96)=0.975 Ф(-2.56)=0.005 Ф(2.56)=0.995

10 95% confidence interval for slope β 2 Using ( b2 2) ~ N 0,1 a b2 and Ф(-1.96)=0.025, Ф(1.96)=0.975 when n is sufficiently large ( b ) b2 2 2 Pr ( b ) b2 2 2 Pr Thus, ( b ) 2 2 Pr b2

11 95% confidence interval for slope β 2 Modifying ( b ) 2 2 Pr b2 Pr 1.96 b b2 2 2 b2 Pr b 1.96 b b2 2 2 b2 Thus, the 95% confidence interval takes the form b 1.96 b 2 2

12 Confidence interval for slope β 2 Recall the 95% confidence interval b 1.96 b 2 2 If n is very large, we can substitute the true but unknown standard deviation σ b2 by the estimated standard error However, in small samples the estimation of σ b2 causes an additional source of variation that should be taken into account in the confidence interval -> we need to take the critical value from the Student s t distribution rather than from N(0,1) (i.e., 1.96 used above) b t s. e.( b ) 12 2 crit 2

13 Student s t distribution t distribution depends on the degrees of freedom (df): it converges to N(0,1) as df increases For OLS estimator, df = n - K where K = number of unknown model parameters (β s) 13

14 Student s t distribution Confidence interval b t s. e.( b ) 2 crit 2 Example of critical t values at 5% significance level with different sample sizes (df= n-2) Excel function =TINV(prob; df) n t crit , , ,

15 Classic approach: Hypothesis testing 1) State the null hypothesis (H 0 ) and the alternative hypothesis (H 1 ). 2) Specify the probability model under H 0 and the necessary assumptions. 3) Compute the test statistic (S) with a known probability distribution under H 0. 4) Identify the acceptance and rejection regions, given the known probability distribution of S and the pre-assigned significance level. 5) Accept H 0 if S falls within the acceptance region; Reject H 0 if S falls within the rejection region. 15

16 Testing hypotheses concerning β s Three alternative approaches: 1) Confidence intervals 2) t-test 3) p-value 16

17 Tests of β s using confidence intervals We can use confidence intervals for testing hypotheses Applies to all two-sided tests Significance test: H 0 : β 2 = 0 (x has no effect on y) H 1 : β 2 0 Tests of theoretical restrictions: H 0 : β 2 = β* (based on theory) H 1 : β 2 β* 17

18 Tests of β s using confidence intervals At the given significance level α: Estimate the 100%(1- α) confidence interval and state the hypotheses to be tested. H 0 : β 2 = β*, H 1 : β 2 β* Accept H 0 if β* is contained within the 100%(1- α) confidence interval Reject H 0 if β* falls outside the 100%(1- α) confidence interval 18

19 SUMMARY OUTPUT Excel output of the hedonic model - Multiple regression Regression Statistics Multiple R 0, R Square 0, Adjusted R Square 0,81225 Standard Error 80593,26 Observations 67 ANOVA df SS MS F Significance F Regression 3 1,87E+12 6,25E+11 96, ,76E-23 Residual 63 4,09E+11 6,5E+09 Total 66 2,28E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept , ,58 3, , , ,5 size m2 6972, ,5745 8, ,11E , ,13 nr. bedrooms , ,6-3, , ,3 age -2820,1 495,0578-5,6965 3,46E , ,8

20 t-test To derive the test statistic, recall that b 2 2 b2 ~ N 0,1 a Further, using the standard error estimated from data, we have b2 2 ~ tn ( 2) s. e.( b ) 2 20

21 t-test H 0 : β 2 = β* H 1 : β 2 β* If H 0 is true, then we can use the test statistic (t stat): t b 2 * s. e.( b ) 2 If H 0 is true, then our test statistic follows Student s t distribution with (n-2) degrees of freedom. 21

22 t-test H 0 : β 2 = β* H 1 : β 2 β* Acceptance region: If -t crit < t < t crit, then maintain H 0 Rejection region: t < -t crit or t > t crit, then reject H 0 22

23 Significance test In the case of the significance test: H 0 : β 2 = 0, H 1 : β 2 0 Test statistic: t b 2 s. e.( b ) 2 The value of this test statistic reported as a part of the Stata output. The reported value should be compared with t crit obtained from statistical tables (or e.g. Excel) 23

24 SUMMARY OUTPUT Excel output of the hedonic model - Multiple regression Regression Statistics Multiple R 0, R Square 0, Adjusted R Square 0,81225 Standard Error 80593,26 Observations 67 ANOVA df SS MS F Significance F Regression 3 1,87E+12 6,25E+11 96, ,76E-23 Residual 63 4,09E+11 6,5E+09 Total 66 2,28E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept , ,58 3, , , ,5 size m2 6972, ,5745 8, ,11E , ,13 nr. bedrooms , ,6-3, , ,3 age -2820,1 495,0578-5,6965 3,46E , ,8

25 p-value From reported t-statistics, it is not always directly obvious whether coefficient is statistically significant at 5%, 1%, or perhaps 10% significance levels. Need to compare with t crit that depend on n and α The p- value indicates directly the probability of obtaining the observed t or higher when H 0 is true. The probability of Type I error when H 0 is true. The p- value indicates directly the smallest significance level α at which H 0 can be rejected. 25

26 One-sided vs. two-sided test Two-sided test H 0 : β 2 = β* H 1 : β 2 β* One-sided tests H 0 : β 2 = β* H 1 : β 2 < β* [or H 1 : β 2 > β*] The sign or direction of the deviation from the null hypothesis is known from theory or experience. 26

27 One-sided vs. two-sided test Two-sided test H 0 : β 2 = β* H 1 : β 2 β* One-sided tests H 0 : β 2 = β* H 1 : β 2 < β* 27

28 One-sided vs. two-sided test Example: critical t values at 5% significance levels, df = n-2 one-sided two-sided 20 1,734 2, ,677 2, ,661 1, ,653 1, ,648 1, ,646 1, ,646 1, ,645 1,960 28

29 One-sided vs. two-sided test Impacts of one-sided testing: Decrease in the critical t value Easier to reject H 0 Increases both the size and the power of the test 29

30 Comparison of the 3 approaches Confidence intervals + applies to both significance tests and theoretical restrictions - two-sided tests only - fixed significance level (= 1 confidence level) p-value - significance test - two-sided tests only + any significance level can be used t-statistic - significance test (but t-stats for theoretical restrictions can be computed) + applies to both one-sided and two-sided tests + any significance level can be used - need to find critical value of the t-stat from statistical tables (or Excel) 30

31 Interpretation of the test Important: if H 0 is accepted, it does not mean that H 0 has been proved to be true. The null hypothesis is assumed to be true from the start of the test; if there is not enough evidence to reject the null, it simply continues to be assumed true. Statistical test can fail to reject H 0 even when H 0 is false Statistical power of the test! 31

32 Two possible types of error Accept H 0 Reject H 0 H 0 is true Correct Type I error H 0 is false Type II error Correct 32

33 Size of a test The probability of a type I error is called the size of the test. This is directly controlled for by setting the significance level α. Setting α = 5% means that we tolerate 5% risk of rejecting H 0 when it is in fact true. 33

34 Power of a test The power of the test is the probability that it will correctly lead to rejection of a false null hypothesis: power = 1 Prob(type II error) = 1 - β For a given α, we would like β to be as small as possible Most powerful test Tradeoff: decreasing the probability of type I error, probability of type II error increases, and vice versa. 34

35 Topic: Next time Mon 21 Sept Dummy variables 35

Econometrics. 5) Dummy variables

Econometrics. 5) Dummy variables 30C00200 Econometrics 5) Dummy variables Timo Kuosmanen Professor, Ph.D. Today s topics Qualitative factors as explanatory variables Binary qualitative factors Dummy variables and their interpretation

More information

Econometrics. 7) Endogeneity

Econometrics. 7) Endogeneity 30C00200 Econometrics 7) Endogeneity Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Common types of endogeneity Simultaneity Omitted variables Measurement errors

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression Chapter 14 Student Lecture Notes 14-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Multiple Regression QMIS 0 Dr. Mohammad Zainal Chapter Goals After completing

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

STA 101 Final Review

STA 101 Final Review STA 101 Final Review Statistics 101 Thomas Leininger June 24, 2013 Announcements All work (besides projects) should be returned to you and should be entered on Sakai. Office Hour: 2 3pm today (Old Chem

More information

regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist

regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist sales $ (y - dependent variable) advertising $ (x - independent variable)

More information

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species

1.) Fit the full model, i.e., allow for separate regression lines (different slopes and intercepts) for each species Lecture notes 2/22/2000 Dummy variables and extra SS F-test Page 1 Crab claw size and closing force. Problem 7.25, 10.9, and 10.10 Regression for all species at once, i.e., include dummy variables for

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Can you tell the relationship between students SAT scores and their college grades?

Can you tell the relationship between students SAT scores and their college grades? Correlation One Challenge Can you tell the relationship between students SAT scores and their college grades? A: The higher SAT scores are, the better GPA may be. B: The higher SAT scores are, the lower

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables.

One-Way Analysis of Variance. With regression, we related two quantitative, typically continuous variables. One-Way Analysis of Variance With regression, we related two quantitative, typically continuous variables. Often we wish to relate a quantitative response variable with a qualitative (or simply discrete)

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Econometrics. 8) Instrumental variables

Econometrics. 8) Instrumental variables 30C00200 Econometrics 8) Instrumental variables Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Thery of IV regression Overidentification Two-stage least squates

More information

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters Objectives 10.1 Simple linear regression Statistical model for linear regression Estimating the regression parameters Confidence interval for regression parameters Significance test for the slope Confidence

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Econometrics - 30C00200

Econometrics - 30C00200 Econometrics - 30C00200 Lecture 11: Heteroskedasticity Antti Saastamoinen VATT Institute for Economic Research Fall 2015 30C00200 Lecture 11: Heteroskedasticity 12.10.2015 Aalto University School of Business

More information

Correlation. A statistics method to measure the relationship between two variables. Three characteristics

Correlation. A statistics method to measure the relationship between two variables. Three characteristics Correlation Correlation A statistics method to measure the relationship between two variables Three characteristics Direction of the relationship Form of the relationship Strength/Consistency Direction

More information

The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing

The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing 1 The Finite Sample Properties of the Least Squares Estimator / Basic Hypothesis Testing Greene Ch 4, Kennedy Ch. R script mod1s3 To assess the quality and appropriateness of econometric estimators, we

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

SIMPLE REGRESSION ANALYSIS. Business Statistics

SIMPLE REGRESSION ANALYSIS. Business Statistics SIMPLE REGRESSION ANALYSIS Business Statistics CONTENTS Ordinary least squares (recap for some) Statistical formulation of the regression model Assessing the regression model Testing the regression coefficients

More information

Lecture 13 Extra Sums of Squares

Lecture 13 Extra Sums of Squares Lecture 13 Extra Sums of Squares STAT 512 Spring 2011 Background Reading KNNL: 7.1-7.4 13-1 Topic Overview Extra Sums of Squares (Defined) Using and Interpreting R 2 and Partial-R 2 Getting ESS and Partial-R

More information

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as:

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as: 1 Joint hypotheses The null and alternative hypotheses can usually be interpreted as a restricted model ( ) and an model ( ). In our example: Note that if the model fits significantly better than the restricted

More information

Simple Linear Regression: One Qualitative IV

Simple Linear Regression: One Qualitative IV Simple Linear Regression: One Qualitative IV 1. Purpose As noted before regression is used both to explain and predict variation in DVs, and adding to the equation categorical variables extends regression

More information

ECON 4230 Intermediate Econometric Theory Exam

ECON 4230 Intermediate Econometric Theory Exam ECON 4230 Intermediate Econometric Theory Exam Multiple Choice (20 pts). Circle the best answer. 1. The Classical assumption of mean zero errors is satisfied if the regression model a) is linear in the

More information

Econometrics Review questions for exam

Econometrics Review questions for exam Econometrics Review questions for exam Nathaniel Higgins nhiggins@jhu.edu, 1. Suppose you have a model: y = β 0 x 1 + u You propose the model above and then estimate the model using OLS to obtain: ŷ =

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear relationship between: - one independent variable X and -

More information

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered)

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered) Test 3 Practice Test A NOTE: Ignore Q10 (not covered) MA 180/418 Midterm Test 3, Version A Fall 2010 Student Name (PRINT):............................................. Student Signature:...................................................

More information

Introduction to Statistical Data Analysis III

Introduction to Statistical Data Analysis III Introduction to Statistical Data Analysis III JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics: - Descriptive Statistics - Inferential Statistics Preface What is Inferential Statistics? The

More information

s e, which is large when errors are large and small Linear regression model

s e, which is large when errors are large and small Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the the entire population of (x, y) pairs are related by an ideal population regression line y

More information

The Multiple Regression Model

The Multiple Regression Model Multiple Regression The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & or more independent variables (X i ) Multiple Regression Model with k Independent Variables:

More information

CHAPTER 4 & 5 Linear Regression with One Regressor. Kazu Matsuda IBEC PHBU 430 Econometrics

CHAPTER 4 & 5 Linear Regression with One Regressor. Kazu Matsuda IBEC PHBU 430 Econometrics CHAPTER 4 & 5 Linear Regression with One Regressor Kazu Matsuda IBEC PHBU 430 Econometrics Introduction Simple linear regression model = Linear model with one independent variable. y = dependent variable

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Hypothesis Testing. We normally talk about two types of hypothesis: the null hypothesis and the research or alternative hypothesis.

Hypothesis Testing. We normally talk about two types of hypothesis: the null hypothesis and the research or alternative hypothesis. Hypothesis Testing Today, we are going to begin talking about the idea of hypothesis testing how we can use statistics to show that our causal models are valid or invalid. We normally talk about two types

More information

One-way ANOVA. Experimental Design. One-way ANOVA

One-way ANOVA. Experimental Design. One-way ANOVA Method to compare more than two samples simultaneously without inflating Type I Error rate (α) Simplicity Few assumptions Adequate for highly complex hypothesis testing 09/30/12 1 Outline of this class

More information

Econometrics. Week 8. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 8. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 8 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 25 Recommended Reading For the today Instrumental Variables Estimation and Two Stage

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Six Sigma Black Belt Study Guides

Six Sigma Black Belt Study Guides Six Sigma Black Belt Study Guides 1 www.pmtutor.org Powered by POeT Solvers Limited. Analyze Correlation and Regression Analysis 2 www.pmtutor.org Powered by POeT Solvers Limited. Variables and relationships

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

Tests about a population mean

Tests about a population mean October 2 nd, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

Multiple Regression Analysis

Multiple Regression Analysis Chapter 4 Multiple Regression Analysis The simple linear regression covered in Chapter 2 can be generalized to include more than one variable. Multiple regression analysis is an extension of the simple

More information

2 Regression Analysis

2 Regression Analysis FORK 1002 Preparatory Course in Statistics: 2 Regression Analysis Genaro Sucarrat (BI) http://www.sucarrat.net/ Contents: 1 Bivariate Correlation Analysis 2 Simple Regression 3 Estimation and Fit 4 T -Test:

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests ECON4150 - Introductory Econometrics Lecture 5: OLS with One Regressor: Hypothesis Tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 5 Lecture outline 2 Testing Hypotheses about one

More information

This document contains 3 sets of practice problems.

This document contains 3 sets of practice problems. P RACTICE PROBLEMS This document contains 3 sets of practice problems. Correlation: 3 problems Regression: 4 problems ANOVA: 8 problems You should print a copy of these practice problems and bring them

More information

Answer Key: Problem Set 6

Answer Key: Problem Set 6 : Problem Set 6 1. Consider a linear model to explain monthly beer consumption: beer = + inc + price + educ + female + u 0 1 3 4 E ( u inc, price, educ, female ) = 0 ( u inc price educ female) σ inc var,,,

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Module 8: Linear Regression. The Applied Research Center

Module 8: Linear Regression. The Applied Research Center Module 8: Linear Regression The Applied Research Center Module 8 Overview } Purpose of Linear Regression } Scatter Diagrams } Regression Equation } Regression Results } Example Purpose } To predict scores

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inference 0 Assumptions of the Classical Linear Model (CLM)! So far, we know: 1. The mean and variance of the OLS estimators

More information

Class 19. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 19. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 19 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 8.3-8.4 Lecture Chapter 8.5 Go over Exam. Problem Solving

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Taguchi Method and Robust Design: Tutorial and Guideline

Taguchi Method and Robust Design: Tutorial and Guideline Taguchi Method and Robust Design: Tutorial and Guideline CONTENT 1. Introduction 2. Microsoft Excel: graphing 3. Microsoft Excel: Regression 4. Microsoft Excel: Variance analysis 5. Robust Design: An Example

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Statistics and Quantitative Analysis U4320

Statistics and Quantitative Analysis U4320 Statistics and Quantitative Analysis U3 Lecture 13: Explaining Variation Prof. Sharyn O Halloran Explaining Variation: Adjusted R (cont) Definition of Adjusted R So we'd like a measure like R, but one

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition).

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition). IE 330 Seat # Open book and notes 10 minutes Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition) Cover page and eight pages of exam No calculator ( points) I have, or will, complete

More information

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS THE ROYAL STATISTICAL SOCIETY 008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

Chapter 10. Regression. Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania

Chapter 10. Regression. Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania Chapter 10 Regression Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania Scatter Diagrams A graph in which pairs of points, (x, y), are

More information

Econometrics Midterm Examination Answers

Econometrics Midterm Examination Answers Econometrics Midterm Examination Answers March 4, 204. Question (35 points) Answer the following short questions. (i) De ne what is an unbiased estimator. Show that X is an unbiased estimator for E(X i

More information

Logistic Regression Analysis

Logistic Regression Analysis Logistic Regression Analysis Predicting whether an event will or will not occur, as well as identifying the variables useful in making the prediction, is important in most academic disciplines as well

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

Stats Review Chapter 14. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 14. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter 14 Revised 8/16 Note: This review is meant to highlight basic concepts from the course. It does not cover all concepts presented by your instructor. Refer back to your notes, unit

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

Chapter 8 Handout: Interval Estimates and Hypothesis Testing

Chapter 8 Handout: Interval Estimates and Hypothesis Testing Chapter 8 Handout: Interval Estimates and Hypothesis esting Preview Clint s Assignment: aking Stock General Properties of the Ordinary Least Squares (OLS) Estimation Procedure Estimate Reliability: Interval

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

STAT Chapter 8: Hypothesis Tests

STAT Chapter 8: Hypothesis Tests STAT 515 -- Chapter 8: Hypothesis Tests CIs are possibly the most useful forms of inference because they give a range of reasonable values for a parameter. But sometimes we want to know whether one particular

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 17 Simple Linear Regression and Correlation 17.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

10) Time series econometrics

10) Time series econometrics 30C00200 Econometrics 10) Time series econometrics Timo Kuosmanen Professor, Ph.D. 1 Topics today Static vs. dynamic time series model Suprious regression Stationary and nonstationary time series Unit

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information