Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message

Size: px
Start display at page:

Download "Contents. Data. Introduction & recap Variance components Hierarchical model RFX and summary statistics Variance/covariance matrix «Take home» message"

Transcription

1 SPM course, CRC, Liege,, Septembre 2009 Contents Group analysis (RF) Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides from: T. ichols, S. Kiebel, JB. Poline Data Reminder: : voxel by voxel analysis fmri, single subject Time EEG/MEG, single subject Time model specification parameter estimation hypothesis statistic fmri, multi-subject ERP/ERF, multi-subject Hierarchical model for all imaging data! Time single voxel time series Intensity SPM

2 1 General Linear Model p 1 1 Contents y = p + ε y = Error Covariance C ε = λ Q Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message : number of scans p: number of regressors Model is specified by 1. Design matrix 2. Assumptions about ε Random effects & variance components x Subject1 Subject2 Subject3 Subject1 Subject2 Subject3 residuals Fixed effects Are you confident that a new observation from any of of subjects will be around their mean? Yes! using within-subjects variance infer for these subjects case study Random effects Are you confident that a new observation from a new subject will be around the mean of of first 3? o! using between-subjects variance infer for any subject population Fixed vs. Random effects Fixed Effects Intra-subject variation suggests all these subjects different from zero Random Effects Intersubject variation suggests population not very different from zero Distribution of each subject s effect Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 0 σ 2 FF σ 2 RF

3 Fixed vs. Random Contents Fixed isn t wrong, just usually isn t t of interest as limited to case study. Fixed Effects Inference I I can see this effect in this cohort Random Effects Inference If I were to sample a new cohort from the population I would get the same result Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message Hierarchical model y = = ( n 1) = (2) (2) (2) M Hierarchical model Multiple variance components at each level C At each level, distribution of parameters is given by level above. = λ Q ( i ) ( i ) ( i ) ε y y = = () 1 ( 1) ( 1) ( 1) ( 2) ( 2) ( 2) = 1 Example: two level model 2 ( 1) ( 1 ) ( 1) = ( 2) ( 2 ) ( 2) What we don t now: distribution of parameters and variance parameters. 3 First level Second level

4 Estimation Group analysis in in practice Hierarchical model y = ( n 1) = = (2) M (2) (2) Many 2-level models are just too big to compute. And even if, it taes a long time! Single-level model y (2) = ε + ε K ( n 1) K = + e ε + Is there a fast approximation? Contents Multi-subject analysis? Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message α 1 α 2 α 3 α 4 α 5 estimated mean activation image α c.f. / nw c.f. p < (uncorrected) SPM{t} p < 0.05 (corrected) α 6 SPM{t}

5 Two-stage analysis of random effect level-one (within-subject) α 1 α 2 α 3 α 4 α 5 α 6 timecourses at [ 03, -78, 00 ] contrast images level-two (between-subject) variance σ 2 an estimate of the mixed-effects model variance σ 2 α + σ2 ε / w (no voxels significant at p < 0.05 (corrected)) α c.f. σ 2 /n = σ 2 α /n + σ2 ε / nw c.f. p < (uncorrected) SPM{t} vs. Two stage random effects group comparison level-one (within-subject) 12 subjects two-sample t-test contrast images level-two (between-subject) Summary Auditory Data Analyse subjects individually Build within-subject models Calculate contrast(s) of interest Use contrast images in a 2 level (Random Effect,, RF) analysis Build between-subject model Calculates SPMs of interest Draw conclusions for the population Summary statistics Hierarchical Model Friston Fristonet et al. al. (2004) (2004) Mixed Mixed effects effects and and fmri fmri studies, studies, euroimage euroimage

6 Contents Variance-Covariance matrix Height of Swedish men Weight of Swedish men Variance components Hierarchical model RF and summary statistics Variance/covariance matrix «Tae home» message μ=180cm, σ=14cm (σ 2 =200) μ=80g, σ=14g (σ 2 =200) Each completely characterised by μ (mean) and σ 2 (variance), i.e. we can calculate p(l μ,σ 2 ) for any l Source: J. Andersson Variance-Covariance matrix non-sphericity 4 Cov(ε ) = ow let us view height and weight as a 2-2 dimensional stochastic variable (p(l,w)). non-sphericity means that that the theerrorcovariancedoesn t error loo loolie liethis: 2 Cov( ε ) = σ I μ = Σ = p(l,w μ,σ) Source: J. Andersson 1 Cov(ε ) = Cov(ε ) = 1 1 2

7 Variance quiz Variance quiz Height Height Weight Weight # hours watching telly per day # hours watching telly per day Variance quiz Variance quiz Height Weight # hours watching telly per day Shoe size Height Weight # hours watching telly per day Shoe size

8 Example I Population differences Stimuli: Auditory Presentation (SOA = 4 secs) of of (i) (i) words and and (ii) (ii) words spoen bacwards 1 st st level: Controls Blinds Subjects: e.g. e.g. Boo and and Koob (i) (i) control subjects (ii) (ii) blind subjects 2 nd nd level: V T c = [ 1 1] Scanning: fmri, scans per per subject, bloc design U. U. oppeney et et al. al. Example II SPM2 otation: iid case Stimuli: Subjects: Scanning: Question: Auditory Presentation (SOA = 4 secs) of of words Motion jump Sound clic (i) (i) control subjects fmri, scans per per subject, bloc design What regions are are affected by by the the semantic content of of the the words? Visual pin Action turn U. U. oppeney et et al. al. y = 1 p p subjects, 4 conditions Use F-test F to find differences btw conditions Standard Assumptions Identical distribution Independence Sphericity... but here not realistic! Cor( ε ) = λi Error covariance

9 Multiple Variance Components y = 1 p p subjects, 4 conditions Measurements btw subjects uncorrelated Measurements w/in subjects correlated Errors can now have different variances and there can be correlations Allows for nonsphericity Cor(ε) = λ Q Error covariance 1 st st level: 2 nd nd level: Repeated measures Anova Motion? = Sound V? = Visual? = T c Action 1 1 = Contents Summary Design efficiency Experimental design Random effect analysis «Tae home» message Linear hierarchical models are general enough for typical multi-subject imaging data (PET, fmri, EEG/MEG). Summary statistics are robust approximation for group analysis. Also accomodates multiple contrasts per subject.

10 Regression example Regression example = β 1 + β 2 + = β + β β 1 = 1 β 2 = 100 Fit the GLM β 1 = 5 β 2 = 100 Fit the GLM voxel time series box-car reference functionmean value voxel time series box-car reference functionmean value otes! Coefficients (= parameters) are estimated using the Ordinary Least Squares (OLS) by minimizing the fluctuations, - variability variance of the noise the residuals Because the parameters depend on the scaling of the regressors included in the model, one should be careful in comparing manually entered regressors The residuals, their sum of squares s and the resulting tests (t,f), do not depend on the scaling of the regressors. Top Ten Things Sex and Brain Imaging Have in Common 10. It's not how big the region is, it's what you do with it. 9. Both involve heavy PETting or powerful magnetism. 8. It's important to select regions of interest. 7. Experts agree that timing is critical. 6. Both require correction for motion. 5. Experimentation is everything. 4. You often can't get access when you need it. 3. You always hope for multiple activations. 2. Both mae a lot of noise. 1. Both are better when the assumptions are met.

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message

Contents. Introduction The General Linear Model. General Linear Linear Model Model. The General Linear Model, Part I. «Take home» message DISCOS SPM course, CRC, Liège, 2009 Contents The General Linear Model, Part I Introduction The General Linear Model Data & model Design matrix Parameter estimates & interpretation Simple contrast «Take

More information

Mixed effects and Group Modeling for fmri data

Mixed effects and Group Modeling for fmri data Mixed effects and Group Modeling for fmri data Thomas Nichols, Ph.D. Department of Statistics Warwick Manufacturing Group University of Warwick Warwick fmri Reading Group May 19, 2010 1 Outline Mixed effects

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009

Contents. design. Experimental design Introduction & recap Experimental design «Take home» message. N εˆ. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Experimental design Introduction & recap Experimental design «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium Based on slides

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012

An Introduction to Multilevel Models. PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 An Introduction to Multilevel Models PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 25: December 7, 2012 Today s Class Concepts in Longitudinal Modeling Between-Person vs. +Within-Person

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

What is NIRS? First-Level Statistical Models 5/18/18

What is NIRS? First-Level Statistical Models 5/18/18 First-Level Statistical Models Theodore Huppert, PhD (huppertt@upmc.edu) University of Pittsburgh Departments of Radiology and Bioengineering What is NIRS? Light Intensity SO 2 and Heart Rate 2 1 5/18/18

More information

The General Linear Model Ivo Dinov

The General Linear Model Ivo Dinov Stats 33 Statistical Methods for Biomedical Data The General Linear Model Ivo Dinov dinov@stat.ucla.edu http://www.stat.ucla.edu/~dinov Slide 1 Problems with t-tests and correlations 1) How do we evaluate

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

1. The OLS Estimator. 1.1 Population model and notation

1. The OLS Estimator. 1.1 Population model and notation 1. The OLS Estimator OLS stands for Ordinary Least Squares. There are 6 assumptions ordinarily made, and the method of fitting a line through data is by least-squares. OLS is a common estimation methodology

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

Checking model assumptions with regression diagnostics

Checking model assumptions with regression diagnostics @graemeleehickey www.glhickey.com graeme.hickey@liverpool.ac.uk Checking model assumptions with regression diagnostics Graeme L. Hickey University of Liverpool Conflicts of interest None Assistant Editor

More information

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Signal Processing for Functional Brain Imaging: General Linear Model (2) Signal Processing for Functional Brain Imaging: General Linear Model (2) Maria Giulia Preti, Dimitri Van De Ville Medical Image Processing Lab, EPFL/UniGE http://miplab.epfl.ch/teaching/micro-513/ March

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

LECTURE 11. Introduction to Econometrics. Autocorrelation

LECTURE 11. Introduction to Econometrics. Autocorrelation LECTURE 11 Introduction to Econometrics Autocorrelation November 29, 2016 1 / 24 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists of choosing: 1. correct

More information

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1

Multiple Regression. Dr. Frank Wood. Frank Wood, Linear Regression Models Lecture 12, Slide 1 Multiple Regression Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 12, Slide 1 Review: Matrix Regression Estimation We can solve this equation (if the inverse of X

More information

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc.

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc. Chapter 24 Comparing Means Copyright 2010 Pearson Education, Inc. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side. For example:

More information

Ref.: Spring SOS3003 Applied data analysis for social science Lecture note

Ref.:   Spring SOS3003 Applied data analysis for social science Lecture note SOS3003 Applied data analysis for social science Lecture note 05-2010 Erling Berge Department of sociology and political science NTNU Spring 2010 Erling Berge 2010 1 Literature Regression criticism I Hamilton

More information

Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance

Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance Analysis of longitudinal neuroimaging data with OLS & Sandwich Estimator of variance Bryan Guillaume Reading workshop lifespan neurobiology 27 June 2014 Supervisors: Thomas Nichols (Warwick University)

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

2 Prediction and Analysis of Variance

2 Prediction and Analysis of Variance 2 Prediction and Analysis of Variance Reading: Chapters and 2 of Kennedy A Guide to Econometrics Achen, Christopher H. Interpreting and Using Regression (London: Sage, 982). Chapter 4 of Andy Field, Discovering

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

An overview of applied econometrics

An overview of applied econometrics An overview of applied econometrics Jo Thori Lind September 4, 2011 1 Introduction This note is intended as a brief overview of what is necessary to read and understand journal articles with empirical

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 47 Outline 1 Regression 2 Simple Linear regression 3 Basic concepts in regression 4 How to estimate unknown parameters 5 Properties of Least Squares Estimators:

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Panel data can be defined as data that are collected as a cross section but then they are observed periodically.

Panel data can be defined as data that are collected as a cross section but then they are observed periodically. Panel Data Model Panel data can be defined as data that are collected as a cross section but then they are observed periodically. For example, the economic growths of each province in Indonesia from 1971-2009;

More information

Contrasts and Classical Inference

Contrasts and Classical Inference Elsevier UK Chapter: Ch9-P3756 8-7-6 7:p.m. Page:6 Trim:7.5in 9.5in C H A P T E R 9 Contrasts and Classical Inference J. Poline, F. Kherif, C. Pallier and W. Penny INTRODUCTION The general linear model

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Alternative Statistical Models

Alternative Statistical Models Alternative Statistical Models. Surajit Ray Ray SAMSI, June 3 2005 - slide #1 Generalized least-squares Generalized least-squares () Ray SAMSI, June 3 2005 - slide #2 Model for data (t j,y j ), j = 1,...,n:

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Lecture 4: Linear panel models

Lecture 4: Linear panel models Lecture 4: Linear panel models Luc Behaghel PSE February 2009 Luc Behaghel (PSE) Lecture 4 February 2009 1 / 47 Introduction Panel = repeated observations of the same individuals (e.g., rms, workers, countries)

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Introduction to Design of Experiments

Introduction to Design of Experiments Introduction to Design of Experiments Jean-Marc Vincent and Arnaud Legrand Laboratory ID-IMAG MESCAL Project Universities of Grenoble {Jean-Marc.Vincent,Arnaud.Legrand}@imag.fr November 20, 2011 J.-M.

More information

STA 431s17 Assignment Eight 1

STA 431s17 Assignment Eight 1 STA 43s7 Assignment Eight The first three questions of this assignment are about how instrumental variables can help with measurement error and omitted variables at the same time; see Lecture slide set

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Simple Linear Regression Model & Introduction to. OLS Estimation

Simple Linear Regression Model & Introduction to. OLS Estimation Inside ECOOMICS Introduction to Econometrics Simple Linear Regression Model & Introduction to Introduction OLS Estimation We are interested in a model that explains a variable y in terms of other variables

More information

Hierarchical Models. W.D. Penny and K.J. Friston. Wellcome Department of Imaging Neuroscience, University College London.

Hierarchical Models. W.D. Penny and K.J. Friston. Wellcome Department of Imaging Neuroscience, University College London. Hierarchical Models W.D. Penny and K.J. Friston Wellcome Department of Imaging Neuroscience, University College London. February 28, 2003 1 Introduction Hierarchical models are central to many current

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design

心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心. fmri 教育講習課程 I. Hands-on (2 nd level) Group Analysis to Factorial Design 心智科學大型研究設備共同使用服務計畫身體 心靈與文化整合影像研究中心 fmri 教育講習課程 I Hands-on (2 nd level) Group Analysis to Factorial Design 黃從仁助理教授臺灣大學心理學系 trhuang@ntu.edu.tw Analysis So+ware h"ps://goo.gl/ctvqce Where are we? Where are

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Warm-up Using the given data Create a scatterplot Find the regression line

Warm-up Using the given data Create a scatterplot Find the regression line Time at the lunch table Caloric intake 21.4 472 30.8 498 37.7 335 32.8 423 39.5 437 22.8 508 34.1 431 33.9 479 43.8 454 42.4 450 43.1 410 29.2 504 31.3 437 28.6 489 32.9 436 30.6 480 35.1 439 33.0 444

More information

Unbalanced Designs & Quasi F-Ratios

Unbalanced Designs & Quasi F-Ratios Unbalanced Designs & Quasi F-Ratios ANOVA for unequal n s, pooled variances, & other useful tools Unequal nʼs Focus (so far) on Balanced Designs Equal n s in groups (CR-p and CRF-pq) Observation in every

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

2.4.3 Estimatingσ Coefficient of Determination 2.4. ASSESSING THE MODEL 23

2.4.3 Estimatingσ Coefficient of Determination 2.4. ASSESSING THE MODEL 23 2.4. ASSESSING THE MODEL 23 2.4.3 Estimatingσ 2 Note that the sums of squares are functions of the conditional random variables Y i = (Y X = x i ). Hence, the sums of squares are random variables as well.

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information

Research Design: Topic 18 Hierarchical Linear Modeling (Measures within Persons) 2010 R.C. Gardner, Ph.d.

Research Design: Topic 18 Hierarchical Linear Modeling (Measures within Persons) 2010 R.C. Gardner, Ph.d. Research Design: Topic 8 Hierarchical Linear Modeling (Measures within Persons) R.C. Gardner, Ph.d. General Rationale, Purpose, and Applications Linear Growth Models HLM can also be used with repeated

More information

Introductory Econometrics

Introductory Econometrics Introductory Econometrics Violation of basic assumptions Heteroskedasticity Barbara Pertold-Gebicka CERGE-EI 16 November 010 OLS assumptions 1. Disturbances are random variables drawn from a normal distribution.

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data July 2012 Bangkok, Thailand Cosimo Beverelli (World Trade Organization) 1 Content a) Classical regression model b)

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-3.2 STATS 202: Data mining and analysis October 4, 2017 1 / 22 .0.0 5 5 1.0 7 5 X2 X2 7 1.5 1.0 0.5 3 1 2 Hierarchical clustering

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

A Brief and Friendly Introduction to Mixed-Effects Models in Linguistics

A Brief and Friendly Introduction to Mixed-Effects Models in Linguistics A Brief and Friendly Introduction to Mixed-Effects Models in Linguistics Cluster-specific parameters ( random effects ) Σb Parameters governing inter-cluster variability b1 b2 bm x11 x1n1 x21 x2n2 xm1

More information

In order to carry out a study on employees wages, a company collects information from its 500 employees 1 as follows:

In order to carry out a study on employees wages, a company collects information from its 500 employees 1 as follows: INTRODUCTORY ECONOMETRICS Dpt of Econometrics & Statistics (EA3) University of the Basque Country UPV/EHU OCW Self Evaluation answers Time: 21/2 hours SURNAME: NAME: ID#: Specific competences to be evaluated

More information

Solving Regression. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 12. Slides adapted from Matt Nedrich and Trevor Hastie

Solving Regression. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 12. Slides adapted from Matt Nedrich and Trevor Hastie Solving Regression Jordan Boyd-Graber University of Colorado Boulder LECTURE 12 Slides adapted from Matt Nedrich and Trevor Hastie Jordan Boyd-Graber Boulder Solving Regression 1 of 17 Roadmap We talked

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information

Lab 07 Introduction to Econometrics

Lab 07 Introduction to Econometrics Lab 07 Introduction to Econometrics Learning outcomes for this lab: Introduce the different typologies of data and the econometric models that can be used Understand the rationale behind econometrics Understand

More information

L7: Multicollinearity

L7: Multicollinearity L7: Multicollinearity Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Introduction ï Example Whats wrong with it? Assume we have this data Y

More information

Confidence Intervals and Hypothesis Tests

Confidence Intervals and Hypothesis Tests Confidence Intervals and Hypothesis Tests STA 281 Fall 2011 1 Background The central limit theorem provides a very powerful tool for determining the distribution of sample means for large sample sizes.

More information

Linear Regression with one Regressor

Linear Regression with one Regressor 1 Linear Regression with one Regressor Covering Chapters 4.1 and 4.2. We ve seen the California test score data before. Now we will try to estimate the marginal effect of STR on SCORE. To motivate these

More information

Lecture 30. DATA 8 Summer Regression Inference

Lecture 30. DATA 8 Summer Regression Inference DATA 8 Summer 2018 Lecture 30 Regression Inference Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Contributions by Fahad Kamran (fhdkmrn@berkeley.edu) and

More information

General Principles Within-Cases Factors Only Within and Between. Within Cases ANOVA. Part One

General Principles Within-Cases Factors Only Within and Between. Within Cases ANOVA. Part One Within Cases ANOVA Part One 1 / 25 Within Cases A case contributes a DV value for every value of a categorical IV It is natural to expect data from the same case to be correlated - NOT independent For

More information

MULTIPLE REGRESSION ANALYSIS AND OTHER ISSUES. Business Statistics

MULTIPLE REGRESSION ANALYSIS AND OTHER ISSUES. Business Statistics MULTIPLE REGRESSION ANALYSIS AND OTHER ISSUES Business Statistics CONTENTS Multiple regression Dummy regressors Assumptions of regression analysis Predicting with regression analysis Old exam question

More information

High-dimensional data analysis, fall

High-dimensional data analysis, fall High-dimensional data analysis, fall 2013 10 Yeast understanding basic life functions 11,904 p-values Blomberg et al. 2003, 2010 Arabidopsis Thaliana association mapping 3,745 p-values Zhao et al. 2007

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-3.2 STATS 202: Data mining and analysis October 4, 2017 1 / 22 Hierarchical clustering Most algorithms for hierarchical clustering

More information

Regression and correlation. Correlation & Regression, I. Regression & correlation. Regression vs. correlation. Involve bivariate, paired data, X & Y

Regression and correlation. Correlation & Regression, I. Regression & correlation. Regression vs. correlation. Involve bivariate, paired data, X & Y Regression and correlation Correlation & Regression, I 9.07 4/1/004 Involve bivariate, paired data, X & Y Height & weight measured for the same individual IQ & exam scores for each individual Height of

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

ECON Introductory Econometrics. Lecture 16: Instrumental variables

ECON Introductory Econometrics. Lecture 16: Instrumental variables ECON4150 - Introductory Econometrics Lecture 16: Instrumental variables Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 12 Lecture outline 2 OLS assumptions and when they are violated Instrumental

More information

STA Module 11 Inferences for Two Population Means

STA Module 11 Inferences for Two Population Means STA 2023 Module 11 Inferences for Two Population Means Learning Objectives Upon completing this module, you should be able to: 1. Perform inferences based on independent simple random samples to compare

More information

STA Rev. F Learning Objectives. Two Population Means. Module 11 Inferences for Two Population Means

STA Rev. F Learning Objectives. Two Population Means. Module 11 Inferences for Two Population Means STA 2023 Module 11 Inferences for Two Population Means Learning Objectives Upon completing this module, you should be able to: 1. Perform inferences based on independent simple random samples to compare

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer LIMO EEG Citation for published version: Pernet, CR, Chauveau, N, Gaspar, C & Rousselet, GA 211, 'LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic

More information

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Jurusan Teknik Industri Universitas Brawijaya Outline Introduction The Analysis of Variance Models for the Data Post-ANOVA Comparison of Means Sample

More information

Chapter 11. Regression with a Binary Dependent Variable

Chapter 11. Regression with a Binary Dependent Variable Chapter 11 Regression with a Binary Dependent Variable 2 Regression with a Binary Dependent Variable (SW Chapter 11) So far the dependent variable (Y) has been continuous: district-wide average test score

More information

The Random Effects Model Introduction

The Random Effects Model Introduction The Random Effects Model Introduction Sometimes, treatments included in experiment are randomly chosen from set of all possible treatments. Conclusions from such experiment can then be generalized to other

More information

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs

FIL. Event-related. fmri. Rik Henson. With thanks to: Karl Friston, Oliver Josephs Event-related fmri Rik Henson With thanks to: Karl Friston, Oliver Josephs Overview 1. BOLD impulse response 2. General Linear Model 3. Temporal Basis Functions 4. Timing Issues 5. Design Optimisation

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

A Re-Introduction to General Linear Models

A Re-Introduction to General Linear Models A Re-Introduction to General Linear Models Today s Class: Big picture overview Why we are using restricted maximum likelihood within MIXED instead of least squares within GLM Linear model interpretation

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information