8/04/2011. last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression)

Size: px
Start display at page:

Download "8/04/2011. last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression)"

Transcription

1 psyc3010 lecture 7 analysis of covariance (ANCOVA) last lecture: correlation and regression next lecture: standard MR & hierarchical MR (MR = multiple regression) 1 announcements quiz 2 correlation and regression to be completed online May 15 and 16 assesses material taught in Lectures 6, 7, 8, and 9 Lecture 10 will be a review of regression topics plus fun material on mediation and indirect effects practice questions and quiz will be posted on Blackboard assignment 2 Multiple Regression due on May 23 (Week 12) will learn all skills and concepts by Week 9 all files on Blackboard next week (Week 8) 2 1

2 Pros Feedback Repetition, revision, elaboration helpful Clear, Made it easy Funny, Fun Interactive, Engaging,? breaks good Slides great, prepared Good pace Thorough, detailed Enthusiasm Detailed summaries helpful ; Flow charts great ; Great examples ; Lectopia great Lecture slides up early ; Caring Lecture ended early Improve Go slower More review, repetition needed Make week 1 lecture slides available early Trouble printing Explanations unclear More entertainment Jargon frustrating, boring More practice questions Changing terms/notation frustrating Assumed knowledge More real life examples Key concepts slide at start End early Spread slides out Use harder questions Simple simple comparisons / 3 effects exasperating last lectures this lecture 2 lectures ago: importance of maximising power in research (maximising likelihood of correctly detecting effects that exist in the population, and rejecting H 0 ) how blocking designs can increase power last lecture: correlation (association between two variables) and regression (association + prediction) this lecture: an additional strategy to maximise power: Analysis of Covariance (ANCOVA) 4 2

3 topics covered in this lecture review of blocking designs and introduction to analysis of covariance (ANCOVA) 1 st use of ANCOVA: reduce error variance 2 nd use of ANCOVA: adjust treatment means structural model & assumptions of ANCOVA why ANCOVA is controversial 5 review of blocking designs and introduction to ANCOVA 6 3

4 how blocking designs can help problem = there is a lot of unexplained variance ( error variance ) in your 1-way experiment, and so the effect of your focal IV is not statistically significant solution = add a 2 nd IV that you know will explain additional variance (based on previous research) adding this control or concomitant variable changes the design of your study (now a 2-way factorial) 2 nd IV explains additional systematic variance, and so now there is less unexplained / residual / error variance increased chance that your focal IV has a significant effect: MS F = MS treat error ideally the same as in your 1-way design ideally smaller than in your 1-way design 7 ancova analysis of covariance has the same goal as blocking but works differently: blocking works at the level of design the reduction in the size of the error term is a consequence of including a factor that explains a good proportion of variance in the DV With ancova the error term is adjusted statistically 8 4

5 remind me what is covariance? variance is the tendency for scores to vary around some mean value co-variance is the tendency for two scores to vary together If a participant s score on one variable deviates from the mean, the score on the other (covarying) variable also deviates positive covariance = both deviate in the same direction [ Review pp (Howell 6 th ed.) if nec] a covariate is like the control variable used for blocking, with a couple of differences: 2 ( X ij X ) / 1 ( X X )( Z Z ) 1 the covariate is a continuous variable and treated as such (i.e., participants are not matched at discrete levels) in ancova, the covariate is used to remove error from both the error term and treatment effect 9 Analysis of Covariance ANCOVA Originally a technique for analysing experiments and removing nuisance variation Attempt to reduce error term by measuring another variable and estimating its parameters if the variable affects the DV and it is not part of the statistical model for the ANCOVA, the variable is in the unmeasured error 10 5

6 H o H 1 power β μ o μ 1 α 11 Use ANCOVA to reduce error (just like with blocking) H o H 1 power β μ o μ 1 α 12 6

7 ANCOVA All forms of ANOVA can be performed with a covariate (or several) A covariate is another IV/predictor in the model but continuous (ordered scores, not discrete groups) Can reduce error term if it is related to the DV if unrelated you lose DF (lose power) without compensatory reduction in error (i.e., bad trade- off) 13 Uses of ANCOVA 1. To control unwanted variation that would otherwise inflate the error with which we test our models (classical usage) 2. To control for group differences, esp. in the analysis of clinical trials or other pre/post designs (controversial, see Howell 16.5) 14 7

8 Oneway ANCOVA structural model X (the DV) for participant I in Jth group Grand mean 1 st IV factor A group j X ij = μ + α j + βζ βζ ij ij + ε ij 2 nd IV score on variable Z multiplied by a fixed weight (beta) Error Covariate is just another source of variance Use the term βζ ij because of continuous nature; Score on DV goes up or down depending on score on Z Implicitly, we have specified no interaction between covariate and the IV the presence of such an interaction is a violation of ANCOVA assumptions stats software normally provides output to check as a default Howell includes interaction in the model 15 X ij the structural models ij = μ + τ j + e ij One-way ANOVA model β s are not the same!! X ijk ijk = μ + α j + β k + αβ jk + e ijk Factorial ANOVA model X ij = μ + α j + βz ij + e ijk One-way ANCOVA model 16 8

9 how ANCOVA reduces error variance covariate = another IV or predictor in the model but continuous (ordered scores, not discrete groups) if the covariate is associated with the DV: this relationship accounts for some systematic variance unexplained by the focal IV accounting for this systematic variance reduces the amount of unexplained variance in the design A smaller error term because we ve partioned out the variance due to the covariate means an increase in statistical power in testing the effect of the focal IV (just as when using blocking designs) 17 an example research study comparison of driving performance with three different car sizes: are smaller cars easier to handle? easily addressed using 1-way ANOVA: DV: rating after 10 laps on set course 3 performance cars are compared: BMW Z3 (small) Subaru WRX (medium) Ford GTP (large) different groups of drivers used for each condition 18 9

10 results show lots of overlapping variance this indicates a large error term this results in low power to reduce the variance, we could identify a a covariate which past research tells us is related to the DV in this case: driving experience μ o μ 1 μ

11 21 mean scores for each car 22 11

12 mean scores for each car juxtaposed with actual scores on and 23 SS 2 = (X X ) error ij j in a regular ANOVA, SS error = the sum of the squared deviations of scores around their group means 24 12

13 a lot of the variance is due to the relationship between experience and we can remove this from the error term first 25 slope of regression line describes avg. covariance between the two variables reduce error by computing pooled error term based on deviations around each group s regression slope 26 13

14 the DV scores are not clustered around the mean based on random chance alone they vary systematically (based on relationship with covariate) Unadjusted _ SS ( X X error = ij j ) 2 unadjusted error includes the chance variance + covariance 27 Estimate covariate s effects with a regression line Calculate error as deviation from the Yhat instead of the mean Y If the covariate is related to the DV, the regression line is a better anchor around which scores cluster (smaller error) adjusted error 28 14

15 As an adolescent I aspired to lasting fame, I craved factual certainty, and I thirsted for a meaningful vision of human life - so I became a scientist. This is like becoming an archbishop so you can meet girls. -- Matt Cartmill, anthropology professor and author (1943- ) 29 how does that do anything different from blocking? at this stage it does not the effects of the covariate are subtracted from the error term, making it smaller The covariate is a more powerful way to do this if the control variable is continuous, but it s conceptually the same the next thing ancova does is quite different treatment means are adjusted to account for differences on the covariate random assignment to IV conditions normally prevent differences in covariate means (confounds should be designed out) But in case covariate does differ across groups, ANCOVA effectively partials out the effects of the covariate from the focal IV as well as the error term 30 15

16 ANCOVA adjusts treatment means (DV) why we would do this if focal IV affects DV scores there is a significant difference among treatment means between the levels of the IV if covariate also differs between levels of focal IV which variable explains difference in DV treatment means? confound! we care about the effect of the focal IV, not the effect of the covariate ANCOVA teases apart the effects of the covariate and the IV by asking the question: would the focal IV have an effect on the DV if all participants were equivalent on the covariate? 31 How ANCOVA adjusts treatment means on the DV problem: participants in each level of focal IV also differ in their scores on the covariate variable solution: Calculate the overall covariate mean. We assume this is the population mean. In an unconfounded population, all groups of the focal IV are assumed have this covariate mean. For your sample, if a group s mean is different on the covariate than the overall covariate mean, that is a confound. Adjust the group s mean on the DV to be what it would be if the group s covariate mean were the overall covariate mean, by using the regression line 32 16

17 33 in this case, there are no differences between the groups on the covariate, as you would expect, given random assignment 34 17

18 mean scores meet on regression line in this case, the 3 conditions have different covariate means confound: what s causing the difference in DV scores? 35 shift DV scores to new point on regression line 1. calculate overall covariate mean 2. adjust DV scores according to regression line 3. test group main effect using adjusted means 36 18

19 here, observe a larger effect for car if adjust means so each group has average driving experience 37 logic of ANCOVA adjusted treatment means assume that covariate means are the same at each level of the focal IV thus, any differences in the adjusted treatment means can be attributed to the focal IV only would groups differ on the DV if they were equivalent on the covariate? refines error term by subtracting variation that is predictable from covariate larger adjustment when covariate-dv relationship is strong refines treatment effect to adjust for any systematic group differences on covariate that existed before experimental treatment 38 19

20 comparison of results using 1-way ANOVA, blocking, & 1-way ANCOVA DV Dependent = Variable: ATTRACT Source Car Error Total Tests of Between-Subjects Effects Type III Sum of Squares df Mean Square F Sig way ANOVA effect is not significant 39 comparison of results using 1-way ANOVA, blocking, & 1-way ANCOVA Tests of Between-Subjects Effects DV Dependent = Variable: (block ATTRACT on experience e.g., no training, some training, professional) Source Car Experience Car x Experience Error Total Type III Sum of Squares df Mean Square F Sig blocking, using factorial ANOVA reduction of error term from to effect is marginally significant 40 20

21 comparison of results using 1-way ANOVA, blocking, & 1-way ANCOVA Tests of Between-Subjects Effects DV Dependent = Variable: (experience ATTRACT as a continuous scale, included as a covariate) Source Car Regression Error Total Type III Sum of Squares df Mean Square F Sig increase in treatment effect from to way ANCOVA reduction of error term from to effect is now significant! 41 structural model and assumptions of ANCOVA 42 21

22 blocking ANCOVA vs blocking conceptually simpler requires fewer assumptions ANCOVA easier to administer can use continuous covariate removes effect from error term and DV useful in two situations: covariate related to IV and DV (confound) covariate related to DV only does require specific assumptions 43 assumptions of ANCOVA all the regular ANOVA assumptions: homogeneous variance normal distribution independence of errors plus: see Lecture 2 and 2 nd year stats notes relationship between covariate and DV is linear relationship between covariate and DV is linear within each group relationship between DV and covariate is equal across treatment groups - homogeneity of regression slopes 44 22

23 re: assumption 1 DV DV covariate Linear relationships covariate Non-linear relationships Non-linear relationships generally cannot be detected with ANCOVA degrades power. 45 re: assumption 3 DV DV covariate homogeneity of regression slopes covariate heterogeneity of regression slopes homogeneity of regression slopes is important because adjustments to treatment means are based upon an average within-cell regression coefficient 46 23

24 47 adjusting treatment effects: the fine print the process is still considered questionable some people object to the idea of comparing adjusted treatment means at all real observed means are not compared comparison means are estimated using regression slope, which may not be reliable if treatment group does affect the covariate as well as the DV, what does the adjusted DV mean really tell you? some people don t mind adjusted means when the adjustment makes the treatment effect larger but it doesn t always make the treatment effect larger, so it doesn t always work in your favor! 48 24

25 adjustment has no effect on mean differences example A 49 example B 50 25

26 example B adjustment increases mean differences 51 example C 52 26

27 adjustment decreases mean differences example C 53 A final comparison The strength of ANCOVA is the ability to handle continuous data most psychological variables are continuously distributed, splitting people into groups is inefficient (lose info) and error prone (mis-categorisation at group boundaries magnifies error) if your data is continuous, it is best to analyse it using a method which can deal with such data (ANCOVA is more powerful than Blocking) If adjusted and observed means are very different, concerns re interpretation arise 54 27

28 readings analysis of covariance (this lecture) Field (3 rd ed): Chapter 11 Field (2 nd ed): Chapter 9 Howell (all eds): Chapter 16 standard & hierarchical multiple regression (next lecture) Field (3 rd ed): Chapter 7 Field (2 nd ed): Chapter 5 Howell (all eds): Chapter

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

ANCOVA. Lecture 9 Andrew Ainsworth

ANCOVA. Lecture 9 Andrew Ainsworth ANCOVA Lecture 9 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

Stat 705: Completely randomized and complete block designs

Stat 705: Completely randomized and complete block designs Stat 705: Completely randomized and complete block designs Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 16 Experimental design Our department offers

More information

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 1: August 22, 2012

More information

ANCOVA. ANCOVA allows the inclusion of a 3rd source of variation into the F-formula (called the covariate) and changes the F-formula

ANCOVA. ANCOVA allows the inclusion of a 3rd source of variation into the F-formula (called the covariate) and changes the F-formula ANCOVA Workings of ANOVA & ANCOVA ANCOVA, Semi-Partial correlations, statistical control Using model plotting to think about ANCOVA & Statistical control You know how ANOVA works the total variation among

More information

STA441: Spring Multiple Regression. More than one explanatory variable at the same time

STA441: Spring Multiple Regression. More than one explanatory variable at the same time STA441: Spring 2016 Multiple Regression More than one explanatory variable at the same time This slide show is a free open source document. See the last slide for copyright information. One Explanatory

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

Analysis of Covariance

Analysis of Covariance B. Weaver (15-Feb-2002) ANCOVA... 1 Analysis of Covariance 2.1 Conceptual overview of ANCOVA Howell (1997) introduces analysis of covariance (ANCOVA) in the context of a simple 3-group experiment. The

More information

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model

Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model EPSY 905: Multivariate Analysis Lecture 1 20 January 2016 EPSY 905: Lecture 1 -

More information

Lecture 10: F -Tests, ANOVA and R 2

Lecture 10: F -Tests, ANOVA and R 2 Lecture 10: F -Tests, ANOVA and R 2 1 ANOVA We saw that we could test the null hypothesis that β 1 0 using the statistic ( β 1 0)/ŝe. (Although I also mentioned that confidence intervals are generally

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Interactions and Factorial ANOVA

Interactions and Factorial ANOVA Interactions and Factorial ANOVA STA442/2101 F 2017 See last slide for copyright information 1 Interactions Interaction between explanatory variables means It depends. Relationship between one explanatory

More information

ANCOVA. Psy 420 Andrew Ainsworth

ANCOVA. Psy 420 Andrew Ainsworth ANCOVA Psy 420 Andrew Ainsworth What is ANCOVA? Analysis of covariance an extension of ANOVA in which main effects and interactions are assessed on DV scores after the DV has been adjusted for by the DV

More information

Interactions and Factorial ANOVA

Interactions and Factorial ANOVA Interactions and Factorial ANOVA STA442/2101 F 2018 See last slide for copyright information 1 Interactions Interaction between explanatory variables means It depends. Relationship between one explanatory

More information

Factorial ANOVA. More than one categorical explanatory variable. See last slide for copyright information 1

Factorial ANOVA. More than one categorical explanatory variable. See last slide for copyright information 1 Factorial ANOVA More than one categorical explanatory variable See last slide for copyright information 1 Factorial ANOVA Categorical explanatory variables are called factors More than one at a time Primarily

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance Using categorical and continuous predictor variables Example An experiment is set up to look at the effects of watering on Oak Seedling establishment Three levels of watering: (no

More information

Estimation and Centering

Estimation and Centering Estimation and Centering PSYED 3486 Feifei Ye University of Pittsburgh Main Topics Estimating the level-1 coefficients for a particular unit Reading: R&B, Chapter 3 (p85-94) Centering-Location of X Reading

More information

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each participant, with the repeated measures entered as separate

More information

Course Review. Kin 304W Week 14: April 9, 2013

Course Review. Kin 304W Week 14: April 9, 2013 Course Review Kin 304W Week 14: April 9, 2013 1 Today s Outline Format of Kin 304W Final Exam Course Review Hand back marked Project Part II 2 Kin 304W Final Exam Saturday, Thursday, April 18, 3:30-6:30

More information

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data

A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data A (Brief) Introduction to Crossed Random Effects Models for Repeated Measures Data Today s Class: Review of concepts in multivariate data Introduction to random intercepts Crossed random effects models

More information

Unbalanced Designs & Quasi F-Ratios

Unbalanced Designs & Quasi F-Ratios Unbalanced Designs & Quasi F-Ratios ANOVA for unequal n s, pooled variances, & other useful tools Unequal nʼs Focus (so far) on Balanced Designs Equal n s in groups (CR-p and CRF-pq) Observation in every

More information

Lecture Week 1 Basic Principles of Scientific Research

Lecture Week 1 Basic Principles of Scientific Research Lecture Week 1 Basic Principles of Scientific Research Intoduction to Research Methods & Statistics 013 014 Hemmo Smit Overview of this lecture Introduction Course information What is science? The empirical

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

Introduction to Within-Person Analysis and RM ANOVA

Introduction to Within-Person Analysis and RM ANOVA Introduction to Within-Person Analysis and RM ANOVA Today s Class: From between-person to within-person ANOVAs for longitudinal data Variance model comparisons using 2 LL CLP 944: Lecture 3 1 The Two Sides

More information

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means

One-Way ANOVA Source Table J - 1 SS B / J - 1 MS B /MS W. Pairwise Post-Hoc Comparisons of Means One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ 1 = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F Between Groups n j ( j - * ) J - 1 SS B / J - 1 MS B /MS

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu Feb, 2018, week 7 1 / 17 Some commonly used experimental designs related to mixed models Two way or three way random/mixed effects

More information

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01 An Analysis of College Algebra Exam s December, 000 James D Jones Math - Section 0 An Analysis of College Algebra Exam s Introduction Students often complain about a test being too difficult. Are there

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions Introduction to Analysis of Variance 1 Experiments with More than 2 Conditions Often the research that psychologists perform has more conditions than just the control and experimental conditions You might

More information

Extensions of One-Way ANOVA.

Extensions of One-Way ANOVA. Extensions of One-Way ANOVA http://www.pelagicos.net/classes_biometry_fa18.htm What do I want You to Know What are two main limitations of ANOVA? What two approaches can follow a significant ANOVA? How

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Hypothesis testing, part 2. With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal

Hypothesis testing, part 2. With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal Hypothesis testing, part 2 With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal 1 CATEGORICAL IV, NUMERIC DV 2 Independent samples, one IV # Conditions Normal/Parametric Non-parametric

More information

Mixed- Model Analysis of Variance. Sohad Murrar & Markus Brauer. University of Wisconsin- Madison. Target Word Count: Actual Word Count: 2755

Mixed- Model Analysis of Variance. Sohad Murrar & Markus Brauer. University of Wisconsin- Madison. Target Word Count: Actual Word Count: 2755 Mixed- Model Analysis of Variance Sohad Murrar & Markus Brauer University of Wisconsin- Madison The SAGE Encyclopedia of Educational Research, Measurement and Evaluation Target Word Count: 3000 - Actual

More information

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data 1 Stats fest 2007 Analysis of variance murray.logan@sci.monash.edu.au Single factor ANOVA 2 Aims Description Investigate differences between population means Explanation How much of the variation in response

More information

Extensions of One-Way ANOVA.

Extensions of One-Way ANOVA. Extensions of One-Way ANOVA http://www.pelagicos.net/classes_biometry_fa17.htm What do I want You to Know What are two main limitations of ANOVA? What two approaches can follow a significant ANOVA? How

More information

A Re-Introduction to General Linear Models

A Re-Introduction to General Linear Models A Re-Introduction to General Linear Models Today s Class: Big picture overview Why we are using restricted maximum likelihood within MIXED instead of least squares within GLM Linear model interpretation

More information

Formula for the t-test

Formula for the t-test Formula for the t-test: How the t-test Relates to the Distribution of the Data for the Groups Formula for the t-test: Formula for the Standard Error of the Difference Between the Means Formula for the

More information

Review of the General Linear Model

Review of the General Linear Model Review of the General Linear Model EPSY 905: Multivariate Analysis Online Lecture #2 Learning Objectives Types of distributions: Ø Conditional distributions The General Linear Model Ø Regression Ø Analysis

More information

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education Deciphering Math Notation Billy Skorupski Associate Professor, School of Education Agenda General overview of data, variables Greek and Roman characters in math and statistics Parameters vs. Statistics

More information

Factorial ANOVA. STA305 Spring More than one categorical explanatory variable

Factorial ANOVA. STA305 Spring More than one categorical explanatory variable Factorial ANOVA STA305 Spring 2014 More than one categorical explanatory variable Optional Background Reading Chapter 7 of Data analysis with SAS 2 Factorial ANOVA More than one categorical explanatory

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as

1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as ST 51, Summer, Dr. Jason A. Osborne Homework assignment # - Solutions 1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available

More information

Three-Level Modeling for Factorial Experiments With Experimentally Induced Clustering

Three-Level Modeling for Factorial Experiments With Experimentally Induced Clustering Three-Level Modeling for Factorial Experiments With Experimentally Induced Clustering John J. Dziak The Pennsylvania State University Inbal Nahum-Shani The University of Michigan Copyright 016, Penn State.

More information

Simple, Marginal, and Interaction Effects in General Linear Models

Simple, Marginal, and Interaction Effects in General Linear Models Simple, Marginal, and Interaction Effects in General Linear Models PRE 905: Multivariate Analysis Lecture 3 Today s Class Centering and Coding Predictors Interpreting Parameters in the Model for the Means

More information

Advanced Experimental Design

Advanced Experimental Design Advanced Experimental Design Topic 8 Chapter : Repeated Measures Analysis of Variance Overview Basic idea, different forms of repeated measures Partialling out between subjects effects Simple repeated

More information

Chapter 19: Logistic regression

Chapter 19: Logistic regression Chapter 19: Logistic regression Self-test answers SELF-TEST Rerun this analysis using a stepwise method (Forward: LR) entry method of analysis. The main analysis To open the main Logistic Regression dialog

More information

(Same) and 2) students who

(Same) and 2) students who 2-Group ANCOVA The purpose of the study was to compare the Test Performance of: 1) students who had prepared for the test using practice problems that were similar in difficulty to the actual test problems

More information

A Re-Introduction to General Linear Models (GLM)

A Re-Introduction to General Linear Models (GLM) A Re-Introduction to General Linear Models (GLM) Today s Class: You do know the GLM Estimation (where the numbers in the output come from): From least squares to restricted maximum likelihood (REML) Reviewing

More information

Introduction to Regression

Introduction to Regression Regression Introduction to Regression If two variables covary, we should be able to predict the value of one variable from another. Correlation only tells us how much two variables covary. In regression,

More information

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College An example ANOVA situation Example (Treating Blisters) Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

Simple, Marginal, and Interaction Effects in General Linear Models: Part 1

Simple, Marginal, and Interaction Effects in General Linear Models: Part 1 Simple, Marginal, and Interaction Effects in General Linear Models: Part 1 PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 2: August 24, 2012 PSYC 943: Lecture 2 Today s Class Centering and

More information

Factorial BG ANOVA. Psy 420 Ainsworth

Factorial BG ANOVA. Psy 420 Ainsworth Factorial BG ANOVA Psy 420 Ainsworth Topics in Factorial Designs Factorial? Crossing and Nesting Assumptions Analysis Traditional and Regression Approaches Main Effects of IVs Interactions among IVs Higher

More information

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont.

Regression: Main Ideas Setting: Quantitative outcome with a quantitative explanatory variable. Example, cont. TCELL 9/4/205 36-309/749 Experimental Design for Behavioral and Social Sciences Simple Regression Example Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted

More information

Keppel, G. & Wickens, T. D. Design and Analysis Chapter 12: Detailed Analyses of Main Effects and Simple Effects

Keppel, G. & Wickens, T. D. Design and Analysis Chapter 12: Detailed Analyses of Main Effects and Simple Effects Keppel, G. & Wickens, T. D. Design and Analysis Chapter 1: Detailed Analyses of Main Effects and Simple Effects If the interaction is significant, then less attention is paid to the two main effects, and

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

Analyses of Variance. Block 2b

Analyses of Variance. Block 2b Analyses of Variance Block 2b Types of analyses 1 way ANOVA For more than 2 levels of a factor between subjects ANCOVA For continuous co-varying factor, between subjects ANOVA for factorial design Multiple

More information

(1) The explanatory or predictor variables may be qualitative. (We ll focus on examples where this is the case.)

(1) The explanatory or predictor variables may be qualitative. (We ll focus on examples where this is the case.) Introduction to Analysis of Variance Analysis of variance models are similar to regression models, in that we re interested in learning about the relationship between a dependent variable (a response)

More information

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression

36-309/749 Experimental Design for Behavioral and Social Sciences. Sep. 22, 2015 Lecture 4: Linear Regression 36-309/749 Experimental Design for Behavioral and Social Sciences Sep. 22, 2015 Lecture 4: Linear Regression TCELL Simple Regression Example Male black wheatear birds carry stones to the nest as a form

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means Data files SpiderBG.sav Attractiveness.sav Homework: sourcesofself-esteem.sav ANOVA: A Framework Understand the basic principles

More information

Repeated Measures Analysis of Variance

Repeated Measures Analysis of Variance Repeated Measures Analysis of Variance Review Univariate Analysis of Variance Group A Group B Group C Repeated Measures Analysis of Variance Condition A Condition B Condition C Repeated Measures Analysis

More information

Correlation and Regression Bangkok, 14-18, Sept. 2015

Correlation and Regression Bangkok, 14-18, Sept. 2015 Analysing and Understanding Learning Assessment for Evidence-based Policy Making Correlation and Regression Bangkok, 14-18, Sept. 2015 Australian Council for Educational Research Correlation The strength

More information

Preview from Notesale.co.uk Page 3 of 63

Preview from Notesale.co.uk Page 3 of 63 Stem-and-leaf diagram - vertical numbers on far left represent the 10s, numbers right of the line represent the 1s The mean should not be used if there are extreme scores, or for ranks and categories Unbiased

More information

Multilevel Modeling: A Second Course

Multilevel Modeling: A Second Course Multilevel Modeling: A Second Course Kristopher Preacher, Ph.D. Upcoming Seminar: February 2-3, 2017, Ft. Myers, Florida What this workshop will accomplish I will review the basics of multilevel modeling

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means ANOVA: A Framework Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one-way between-subjects

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance (ANCOVA) Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 10 1 When to Use ANCOVA In experiment, there is a nuisance factor x that is 1 Correlated with y 2

More information

Statistics: revision

Statistics: revision NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 29 / 30 April 2004 Department of Experimental Psychology University of Cambridge Handouts: Answers

More information

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I PubH 7405: REGRESSION ANALYSIS MLR: INFERENCES, Part I TESTING HYPOTHESES Once we have fitted a multiple linear regression model and obtained estimates for the various parameters of interest, we want to

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

Research Methodology Statistics Comprehensive Exam Study Guide

Research Methodology Statistics Comprehensive Exam Study Guide Research Methodology Statistics Comprehensive Exam Study Guide References Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education and psychology (3rd ed.). Boston: Allyn and Bacon. Gravetter,

More information

WU Weiterbildung. Linear Mixed Models

WU Weiterbildung. Linear Mixed Models Linear Mixed Effects Models WU Weiterbildung SLIDE 1 Outline 1 Estimation: ML vs. REML 2 Special Models On Two Levels Mixed ANOVA Or Random ANOVA Random Intercept Model Random Coefficients Model Intercept-and-Slopes-as-Outcomes

More information

WELCOME! Lecture 13 Thommy Perlinger

WELCOME! Lecture 13 Thommy Perlinger Quantitative Methods II WELCOME! Lecture 13 Thommy Perlinger Parametrical tests (tests for the mean) Nature and number of variables One-way vs. two-way ANOVA One-way ANOVA Y X 1 1 One dependent variable

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

CAMPBELL COLLABORATION

CAMPBELL COLLABORATION CAMPBELL COLLABORATION Random and Mixed-effects Modeling C Training Materials 1 Overview Effect-size estimates Random-effects model Mixed model C Training Materials Effect sizes Suppose we have computed

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Interactions among Continuous Predictors

Interactions among Continuous Predictors Interactions among Continuous Predictors Today s Class: Simple main effects within two-way interactions Conquering TEST/ESTIMATE/LINCOM statements Regions of significance Three-way interactions (and beyond

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

review session gov 2000 gov 2000 () review session 1 / 38

review session gov 2000 gov 2000 () review session 1 / 38 review session gov 2000 gov 2000 () review session 1 / 38 Overview Random Variables and Probability Univariate Statistics Bivariate Statistics Multivariate Statistics Causal Inference gov 2000 () review

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Topics: What happens to missing predictors Effects of time-invariant predictors Fixed vs. systematically varying vs. random effects Model building strategies

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

Keppel, G. & Wickens, T.D. Design and Analysis Chapter 2: Sources of Variability and Sums of Squares

Keppel, G. & Wickens, T.D. Design and Analysis Chapter 2: Sources of Variability and Sums of Squares Keppel, G. & Wickens, T.D. Design and Analysis Chapter 2: Sources of Variability and Sums of Squares K&W introduce the notion of a simple experiment with two conditions. Note that the raw data (p. 16)

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept Interactions Lectures 1 & Regression Sometimes two variables appear related: > smoking and lung cancers > height and weight > years of education and income > engine size and gas mileage > GMAT scores and

More information

Draft Proof - Do not copy, post, or distribute. Chapter Learning Objectives REGRESSION AND CORRELATION THE SCATTER DIAGRAM

Draft Proof - Do not copy, post, or distribute. Chapter Learning Objectives REGRESSION AND CORRELATION THE SCATTER DIAGRAM 1 REGRESSION AND CORRELATION As we learned in Chapter 9 ( Bivariate Tables ), the differential access to the Internet is real and persistent. Celeste Campos-Castillo s (015) research confirmed the impact

More information

Applied Regression Analysis. Section 2: Multiple Linear Regression

Applied Regression Analysis. Section 2: Multiple Linear Regression Applied Regression Analysis Section 2: Multiple Linear Regression 1 The Multiple Regression Model Many problems involve more than one independent variable or factor which affects the dependent or response

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

The independent-means t-test:

The independent-means t-test: The independent-means t-test: Answers the question: is there a "real" difference between the two conditions in my experiment? Or is the difference due to chance? Previous lecture: (a) Dependent-means t-test:

More information

STATS Analysis of variance: ANOVA

STATS Analysis of variance: ANOVA STATS 1060 Analysis of variance: ANOVA READINGS: Chapters 28 of your text book (DeVeaux, Vellman and Bock); on-line notes for ANOVA; on-line practice problems for ANOVA NOTICE: You should print a copy

More information

Research Design: Topic 18 Hierarchical Linear Modeling (Measures within Persons) 2010 R.C. Gardner, Ph.d.

Research Design: Topic 18 Hierarchical Linear Modeling (Measures within Persons) 2010 R.C. Gardner, Ph.d. Research Design: Topic 8 Hierarchical Linear Modeling (Measures within Persons) R.C. Gardner, Ph.d. General Rationale, Purpose, and Applications Linear Growth Models HLM can also be used with repeated

More information

Approximate analysis of covariance in trials in rare diseases, in particular rare cancers

Approximate analysis of covariance in trials in rare diseases, in particular rare cancers Approximate analysis of covariance in trials in rare diseases, in particular rare cancers Stephen Senn (c) Stephen Senn 1 Acknowledgements This work is partly supported by the European Union s 7th Framework

More information

Do not copy, post, or distribute

Do not copy, post, or distribute 14 CORRELATION ANALYSIS AND LINEAR REGRESSION Assessing the Covariability of Two Quantitative Properties 14.0 LEARNING OBJECTIVES In this chapter, we discuss two related techniques for assessing a possible

More information

Psy 420 Final Exam Fall 06 Ainsworth. Key Name

Psy 420 Final Exam Fall 06 Ainsworth. Key Name Psy 40 Final Exam Fall 06 Ainsworth Key Name Psy 40 Final A researcher is studying the effect of Yoga, Meditation, Anti-Anxiety Drugs and taking Psy 40 and the anxiety levels of the participants. Twenty

More information