1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as

Size: px
Start display at page:

Download "1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as"

Transcription

1 ST 51, Summer, Dr. Jason A. Osborne Homework assignment # - Solutions 1. (Rao example 11.15) A study measures oxygen demand (y) (on a log scale) and five explanatory variables (see below). Data are available as x 1 : biol. O demand x : total Kjeldahl Nitrogen x 3 : total solids x 4 : total volatile solids x 5 : chem. O demand (a) Among x 1 through x 5, which variables exhibit a significant linear association with y? x 1 (r =.78,p <.0001),x 3 (r =.84,p <.0001),x 4 (r =.71,p =.0004),x 5 (r =.83,p <.0001) (b) Fit a full multiple linear regression model which includes all of the variables you identified in part (a). For each partial regression coefficient, report the p-value for a test that the coefficient is 0. (The problem is even worse if you fit the model with all five of x 1 x 5. Watch what happens to these partial slope p-values in this case.) p-values for partial slopes are in the right-most column below: Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept x x x x (c) Use an F-test to compare the nested (reduced) model µ = β 0 +β x +β 4 x 4 with the full model with all five predictors. From the output below, it can be seen that R(β 1,β 3,β 5 β 0,β,β 4 )/3 = Division by MS[E] f = leads to a significant F-ratio: (F = 7.19,p =.0037,df = 3,14. So, the reduced model may be rejected in favor of the full model. That is, there is significant evidence of dependence on at least of of the variables x 1,x 3,x 5 after accounting for the effects of x and x 4. Test x1x3x5ns Results for Dependent Variable y Mean Source DF Square F Value Pr > F Numerator Denominator (d) Consider the model involving all five predictors, x 1,x,x 3,x 4,x 5. How many subsets with at least one predictor are possible? (Answer: a lot!): ( ) ( ) ( ) ( ) ( ) = (e) Use the C p criterion (or any other reasonable model selection criteria) to choose the best subset model for predicting log-oxygen demand: proc reg; model y=x1-x5/selection=cp; run;

2 C(p) Selection Method Number in Model C(p) R-Square Variables in Model x3 x x x3 x x3 x4 x x1 x3 x x x3 x4 x x1 x x3 x x1 x3 x4 x x4 x x x4 x5 Looks like µ(x 3,x 5 ) = β 0 + β 3 x 3 + β 5 x 5 is preferred. (f) Consider the model µ = β 0 + β 3 x 3 + β 5 x 5. i. Estimate the mean log-oxygen demand when x 3 = 5 and x 5 = 6. I used the following code: proc glm; model y=x3 x5; estimate "problem 1 (f) i." intercept 1 x3 5 x5 6; estimate "problem 1 (g) " x3 1 x5-1; run; to get the following output, which gives an estimated mean log leafburn time of ˆµ(x 3 = 5,x 5 = 6) = 0.3(ŜE = 0.07) Standard Parameter Estimate Error t Value Pr > t problem 1 (f) i problem 1 (g) Report a standard error. Give the product of vectors and matrices that is evaluated to get this standard error. ˆµ = (1,5,6)ˆβ,(vector product) ŜE = (1,5,6)(X X) 1 (1,5,6) MS[E] = ii. Estimate the standard deviation of log-oxygen demand for x 3 = 5 and x 5 = 6. MS[E] = 0.5 (g) Estimate the difference between the slope for x 3 and that for x 5. ˆβ 1 ˆβ 3 = (0,1, 1)ˆβ = 0.007(SE =.1) (See output above. Looks like slopes are plausibly equal.) (h) Fit a simple linear regression model with x 3 + x 5 as the single predictor. Estimate the standard deviation of log-oxygen demands when x 3 +x 5 = 11. Compare with earlier question. MS[E] = 0.4(df = 18), which is smaller than for the more complex model. (i) For a similar challenge, see the NFL problem on the course website (and compare the predicted outcome for the Colts-Patriots game with the observed outcome).. Rao 1.5: (Refer to plantht1.dat and Example 8. in Rao) Four randomly selected seedlings were grown under t = 5 experimental conditions and heights at four weeks were measured:

3 t Label Description Sample mean Sample variance 1 D Darkness AL safelight type A, low intensity AH safelight type A, high intensity BL safelight type B, low intensity BH safelight type B, high intensity (a) Write a general linear model using dummy variables. for seedling i. Assume E i iid N(0,σ ). Y i = β 0 + β 1 x i,al + β x i,ah + β 3 x i,bl + β 4 x i,bh + E i (b) Write a general linear model using factorial effects. Y ij = µ + τ i + E ij for seedling j, light treatment i. Assume E ij iid N(0,σ ) and also that τ i = 0 (c) Conduct an F-test for the null hypothesis that none of the treatments have any effect on mean plant height. H 0 : τ i 0, H 1 : τ i not all0 F = 9.4,p =.0005,df = 4,15 So we reject H 0 and conclude that the light treatments cause height differences in seedlings. (d) Among the non-darkness treatments, express the mean difference between low and high intensity as a function of parameters in part (a) above. Also, do this for part (b). Report an estimate of this effect, along with a standard error. This questions asks about the effect of light intensity. What function of parameters is estimated by the statistic ˆθ = ȳ3+ + ȳ 5+ Substituting in the models above leads to θ = β 3 + β 5 θ = τ 3 + τ 5 ȳ+ + ȳ 4+ β + β 4 (MLR model τ + τ 4 (factorial effects model) Observed value ˆθ = ,ŜE = 0.5. (The technical term for this quantity is the main effect of light intensity on mean plant height. ) 3. Consider the sample of n F = 18 girls and n M = boys in Bigclass.txt as a random sample from a population of interest. Here is the code I used to answer the questions below: proc reg data=kidz; model height = boy; model height = age; model height = age boy; model height = age boy agexboy; run; (a) Use regression with an indicator variable to conduct an equal variances t-test of the hypothesis the average heights of the two populations (boys and girls) are equal. Is this hypothesis plausible in light of these data? Also, do this with software for a two-sample comparisons of means like PROC TTEST and compare the results. How is the pooled sample variance from the two-sample comparison of means related to the error mean square from the regression? Model Y i = β 0 +

4 β 1 x i,boys + E i where x i,boys is an indicator variable taking the value 1 if person i is a boy, 0 otherwise. The sample mean for girls is ˆβ 0 = for boys it is ˆβ 0 + β 1 = for difference of ˆβ 1 = 3.0,SE = 1.8,t =.37,p =.03,df = 38. There is some evidence that in th population from which these children were sampled, the boys are taller than the girls, on average. The pooled variance, S p from the t-test is the same as MS[E] from the regression approach. (b) Conduct a linear regression of height on age, ignoring gender. Is there a significant linear association between height and age? Report a p-value. Yes, the F-ratio is highly significant, indicating evidence of a linear relationship between height and age. (F =.3, p <.0001, df = 1, 38) (c) Fit a model to test the hypothesis of equal mean heights for boys and girls of the same age when assuming the same dependence of height on age for boys as for girls Model is µ(age,x boy ) = β 0 + β 1 age + β x boy, fitting model give ˆβ =.4,t =.35,p =.040, still significant. (d) Test that this dependence on age is constant across the two genders. Model is µ(age,x boy ) = β 0 + β 1 age + β x boy + β 3 age x boy, fitting model give ˆβ 3 = 1.,t = 1.75,p = At level α =.05, this non-additivity coefficient is not significant, suggesting that the hypothesis that the height-age relationship is plausibly the same for boys as for girls.

5 4. Rao 1.3 (1.3a) Construct the one-way ANOVA table for comparing the three treatment means when z is ignored. Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total (a) Conduct an F-test for equality of means. That is, specify a model and a null hypothesis for no therapy effect, then compute the F-ratio F = MS(trt)/MS(E), df =,7 and compare it to the critical value F(.05,,7). Model is Y ij = µ + τ i + E ij, null hypothesis is H 0 : τ i 0. Observed F-ratio is F = 6.71 on df =,7. Critical value is F(.05,,7) = 3.35, so H 0 is rejected at level α =.05 and we have evidence of a therapy effect. (b) Consider the following equivalent model, that leads to the same inference regarding treatment effects,(ignored) (c) Plot y versus z with a different symbol for each therapy. (d) Using PROC GLM or PROC REG, fit the following analysis of covariance (ANCOVA) model: Y i = β 0 + β 1 x i1 + β 1 x i + βz i + E i where X i1 and x i are indicator variables for therapies 1 and respectively. Report each regression coefficient along with a standard error. ˆβ = (1.8,17.1,.85,1.13) and standard errors as given in output: Standard Parameter Estimate Error t Value Pr > t Intercept B trt B <.0001 trt B trt B... z <.0001

6 (e) Report the F-test for a therapy effect, after controlling for the effect of the pretreatment (z) score. F = R(β 1,β β 0,β)/ MS(E) (f) Report the unadjusted post-test score for therapy. Using factorial notation y ij, ȳ + = = 70.1(df =,6) (g) Report the adjusted post-test score for therapy, along with a standard error. Using regression notation ˆβ 0 + ˆβ + ˆβ z = 35.8(ŜE = 1.1)

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. 1. A study was carried out to examine the relationship between the number

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 y 1 2 3 4 5 6 7 x Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 32 Suhasini Subba Rao Previous lecture We are interested in whether a dependent

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

STAT 525 Fall Final exam. Tuesday December 14, 2010

STAT 525 Fall Final exam. Tuesday December 14, 2010 STAT 525 Fall 2010 Final exam Tuesday December 14, 2010 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Regression With a Categorical Independent Variable

Regression With a Categorical Independent Variable Regression With a Independent Variable Lecture 10 November 5, 2008 ERSH 8320 Lecture #10-11/5/2008 Slide 1 of 54 Today s Lecture Today s Lecture Chapter 11: Regression with a single categorical independent

More information

Formula for the t-test

Formula for the t-test Formula for the t-test: How the t-test Relates to the Distribution of the Data for the Groups Formula for the t-test: Formula for the Standard Error of the Difference Between the Means Formula for the

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

VIII. ANCOVA. A. Introduction

VIII. ANCOVA. A. Introduction VIII. ANCOVA A. Introduction In most experiments and observational studies, additional information on each experimental unit is available, information besides the factors under direct control or of interest.

More information

Bios 6648: Design & conduct of clinical research

Bios 6648: Design & conduct of clinical research Bios 6648: Design & conduct of clinical research Section 2 - Formulating the scientific and statistical design designs 2.5(b) Binary 2.5(c) Skewed baseline (a) Time-to-event (revisited) (b) Binary (revisited)

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Review of the General Linear Model

Review of the General Linear Model Review of the General Linear Model EPSY 905: Multivariate Analysis Online Lecture #2 Learning Objectives Types of distributions: Ø Conditional distributions The General Linear Model Ø Regression Ø Analysis

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Models for Clustered Data

Models for Clustered Data Models for Clustered Data Edps/Psych/Soc 589 Carolyn J Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline Notation NELS88 data Fixed Effects ANOVA

More information

Models for Clustered Data

Models for Clustered Data Models for Clustered Data Edps/Psych/Stat 587 Carolyn J Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2017 Outline Notation NELS88 data Fixed Effects ANOVA

More information

STA441: Spring Multiple Regression. More than one explanatory variable at the same time

STA441: Spring Multiple Regression. More than one explanatory variable at the same time STA441: Spring 2016 Multiple Regression More than one explanatory variable at the same time This slide show is a free open source document. See the last slide for copyright information. One Explanatory

More information

Random Intercept Models

Random Intercept Models Random Intercept Models Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline A very simple case of a random intercept

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Math 3330: Solution to midterm Exam

Math 3330: Solution to midterm Exam Math 3330: Solution to midterm Exam Question 1: (14 marks) Suppose the regression model is y i = β 0 + β 1 x i + ε i, i = 1,, n, where ε i are iid Normal distribution N(0, σ 2 ). a. (2 marks) Compute the

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Difference in two or more average scores in different groups

Difference in two or more average scores in different groups ANOVAs Analysis of Variance (ANOVA) Difference in two or more average scores in different groups Each participant tested once Same outcome tested in each group Simplest is one-way ANOVA (one variable as

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Topic 28: Unequal Replication in Two-Way ANOVA

Topic 28: Unequal Replication in Two-Way ANOVA Topic 28: Unequal Replication in Two-Way ANOVA Outline Two-way ANOVA with unequal numbers of observations in the cells Data and model Regression approach Parameter estimates Previous analyses with constant

More information

ST505/S697R: Fall Homework 2 Solution.

ST505/S697R: Fall Homework 2 Solution. ST505/S69R: Fall 2012. Homework 2 Solution. 1. 1a; problem 1.22 Below is the summary information (edited) from the regression (using R output); code at end of solution as is code and output for SAS. a)

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

Multivariate analysis of variance and covariance

Multivariate analysis of variance and covariance Introduction Multivariate analysis of variance and covariance Univariate ANOVA: have observations from several groups, numerical dependent variable. Ask whether dependent variable has same mean for each

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

Estimation and Centering

Estimation and Centering Estimation and Centering PSYED 3486 Feifei Ye University of Pittsburgh Main Topics Estimating the level-1 coefficients for a particular unit Reading: R&B, Chapter 3 (p85-94) Centering-Location of X Reading

More information

22s:152 Applied Linear Regression. 1-way ANOVA visual:

22s:152 Applied Linear Regression. 1-way ANOVA visual: 22s:152 Applied Linear Regression 1-way ANOVA visual: Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Y We now consider an analysis

More information

y response variable x 1, x 2,, x k -- a set of explanatory variables

y response variable x 1, x 2,, x k -- a set of explanatory variables 11. Multiple Regression and Correlation y response variable x 1, x 2,, x k -- a set of explanatory variables In this chapter, all variables are assumed to be quantitative. Chapters 12-14 show how to incorporate

More information

6. Multiple regression - PROC GLM

6. Multiple regression - PROC GLM Use of SAS - November 2016 6. Multiple regression - PROC GLM Karl Bang Christensen Department of Biostatistics, University of Copenhagen. http://biostat.ku.dk/~kach/sas2016/ kach@biostat.ku.dk, tel: 35327491

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Comparing Nested Models

Comparing Nested Models Comparing Nested Models ST 370 Two regression models are called nested if one contains all the predictors of the other, and some additional predictors. For example, the first-order model in two independent

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

SPSS Output. ANOVA a b Residual Coefficients a Standardized Coefficients

SPSS Output. ANOVA a b Residual Coefficients a Standardized Coefficients SPSS Output Homework 1-1e ANOVA a Sum of Squares df Mean Square F Sig. 1 Regression 351.056 1 351.056 11.295.002 b Residual 932.412 30 31.080 Total 1283.469 31 a. Dependent Variable: Sexual Harassment

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is.

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is. Linear regression We have that the estimated mean in linear regression is The standard error of ˆµ Y X=x is where x = 1 n s.e.(ˆµ Y X=x ) = σ ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. 1 n + (x x)2 i (x i x) 2 i x i. The

More information

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

Correlation & Simple Regression

Correlation & Simple Regression Chapter 11 Correlation & Simple Regression The previous chapter dealt with inference for two categorical variables. In this chapter, we would like to examine the relationship between two quantitative variables.

More information

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I PubH 7405: REGRESSION ANALYSIS MLR: INFERENCES, Part I TESTING HYPOTHESES Once we have fitted a multiple linear regression model and obtained estimates for the various parameters of interest, we want to

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Ron Heck, Fall Week 3: Notes Building a Two-Level Model

Ron Heck, Fall Week 3: Notes Building a Two-Level Model Ron Heck, Fall 2011 1 EDEP 768E: Seminar on Multilevel Modeling rev. 9/6/2011@11:27pm Week 3: Notes Building a Two-Level Model We will build a model to explain student math achievement using student-level

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

Design of Experiments. Factorial experiments require a lot of resources

Design of Experiments. Factorial experiments require a lot of resources Design of Experiments Factorial experiments require a lot of resources Sometimes real-world practical considerations require us to design experiments in specialized ways. The design of an experiment is

More information

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling Linear Modelling in Stata Session 6: Further Topics in Linear Modelling Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 14/11/2017 This Week Categorical Variables Categorical

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

ST Correlation and Regression

ST Correlation and Regression Chapter 5 ST 370 - Correlation and Regression Readings: Chapter 11.1-11.4, 11.7.2-11.8, Chapter 12.1-12.2 Recap: So far we ve learned: Why we want a random sample and how to achieve it (Sampling Scheme)

More information

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA s:5 Applied Linear Regression Chapter 8: ANOVA Two-way ANOVA Used to compare populations means when the populations are classified by two factors (or categorical variables) For example sex and occupation

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Tentative solutions TMA4255 Applied Statistics 16 May, 2015

Tentative solutions TMA4255 Applied Statistics 16 May, 2015 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Tentative solutions TMA455 Applied Statistics 6 May, 05 Problem Manufacturer of fertilizers a) Are these independent

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

using the beginning of all regression models

using the beginning of all regression models Estimating using the beginning of all regression models 3 examples Note about shorthand Cavendish's 29 measurements of the earth's density Heights (inches) of 14 11 year-old males from Alberta study Half-life

More information

Applied Regression Modeling: A Business Approach Chapter 2: Simple Linear Regression Sections

Applied Regression Modeling: A Business Approach Chapter 2: Simple Linear Regression Sections Applied Regression Modeling: A Business Approach Chapter 2: Simple Linear Regression Sections 2.1 2.3 by Iain Pardoe 2.1 Probability model for and 2 Simple linear regression model for and....................................

More information

BIOS 2083: Linear Models

BIOS 2083: Linear Models BIOS 2083: Linear Models Abdus S Wahed September 2, 2009 Chapter 0 2 Chapter 1 Introduction to linear models 1.1 Linear Models: Definition and Examples Example 1.1.1. Estimating the mean of a N(μ, σ 2

More information

STATISTICS 110/201 PRACTICE FINAL EXAM

STATISTICS 110/201 PRACTICE FINAL EXAM STATISTICS 110/201 PRACTICE FINAL EXAM Questions 1 to 5: There is a downloadable Stata package that produces sequential sums of squares for regression. In other words, the SS is built up as each variable

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

EXAM # 2. Total 100. Please show all work! Problem Points Grade. STAT 301, Spring 2013 Name

EXAM # 2. Total 100. Please show all work! Problem Points Grade. STAT 301, Spring 2013 Name STAT 301, Spring 2013 Name Lec 1, MWF 9:55 - Ismor Fischer Discussion Section: Please circle one! TA: Shixue Li...... 311 (M 4:35) / 312 (M 12:05) / 315 (T 4:00) Xinyu Song... 313 (M 2:25) / 316 (T 12:05)

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression Rebecca Barter April 20, 2015 Fisher s Exact Test Fisher s Exact Test

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Regression With a Categorical Independent Variable

Regression With a Categorical Independent Variable Regression ith a Independent Variable ERSH 8320 Slide 1 of 34 Today s Lecture Regression with a single categorical independent variable. Today s Lecture Coding procedures for analysis. Dummy coding. Relationship

More information

BIOMETRICS INFORMATION

BIOMETRICS INFORMATION BIOMETRICS INFORMATION Index of Pamphlet Topics (for pamphlets #1 to #60) as of December, 2000 Adjusted R-square ANCOVA: Analysis of Covariance 13: ANCOVA: Analysis of Covariance ANOVA: Analysis of Variance

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters Objectives 10.1 Simple linear regression Statistical model for linear regression Estimating the regression parameters Confidence interval for regression parameters Significance test for the slope Confidence

More information

One-way ANOVA Model Assumptions

One-way ANOVA Model Assumptions One-way ANOVA Model Assumptions STAT:5201 Week 4: Lecture 1 1 / 31 One-way ANOVA: Model Assumptions Consider the single factor model: Y ij = µ + α }{{} i ij iid with ɛ ij N(0, σ 2 ) mean structure random

More information

STAT 350 Final (new Material) Review Problems Key Spring 2016

STAT 350 Final (new Material) Review Problems Key Spring 2016 1. The editor of a statistics textbook would like to plan for the next edition. A key variable is the number of pages that will be in the final version. Text files are prepared by the authors using LaTeX,

More information

Regression With a Categorical Independent Variable

Regression With a Categorical Independent Variable Regression With a Categorical Independent Variable Lecture 15 March 17, 2005 Applied Regression Analysis Lecture #15-3/17/2005 Slide 1 of 29 Today s Lecture» Today s Lecture» Midterm Note» Example Regression

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

Chapter 1 Linear Regression with One Predictor

Chapter 1 Linear Regression with One Predictor STAT 525 FALL 2018 Chapter 1 Linear Regression with One Predictor Professor Min Zhang Goals of Regression Analysis Serve three purposes Describes an association between X and Y In some applications, the

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Motivations for the ANOVA We defined the F-distribution, this is mainly used in

More information

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 PDF file location: http://www.murraylax.org/rtutorials/regression_anovatable.pdf

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 31 (MWF) Review of test for independence and starting with linear regression Suhasini Subba

More information

Multiple Linear Regression for the Salary Data

Multiple Linear Regression for the Salary Data Multiple Linear Regression for the Salary Data 5 10 15 20 10000 15000 20000 25000 Experience Salary HS BS BS+ 5 10 15 20 10000 15000 20000 25000 Experience Salary No Yes Problem & Data Overview Primary

More information