Overview of Spatial Statistics with Applications to fmri

Size: px
Start display at page:

Download "Overview of Spatial Statistics with Applications to fmri"

Transcription

1 with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016

2 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example of application

3 Wise words to begin with The best way to account for spatial dependence is to avoid doing it. (Michael Stein)

4 Why Spatial Statistics for neurological data? fmri intensity time (s) Figure: Time series of an fmri scan in one voxel

5 The big picture Figure: fmri time series for neighboring voxels

6 Averaging? fmri intensity time (s) time (s) mean fmri intensity Figure: single voxel vs averaging

7 However... Figure: fmri time series for neighboring voxels, a discontinuous case

8 Spatial statistics: a different field Spatial statistics is different from temporal statistics because the questions we want to answer are different. In temporal statistics you want to forecast the future given the past. We want to know the distribution of Y t+k given {Y t,...,y 1 }. In spatial statistics, there is no future.

9 Some theory Let D R 2, then Y s where s R 2 is a Gaussian random field if {Y s1,...,y sn } is a multivariate (scalar) Gaussian random vector for every {s 1,...,s n } D. Here Y s is a point value, but there is also a theory for areal values (e.g. values for different counties).

10 Some theory Main assumption Y s = Y = Xβ +ε p f i (s)β i +ε s, or in matrix form i=1 ε N(0,K), Gaussian process. Let us assume, for now, that Xβ = µ1: constant mean.

11 Some theory, cont d A Gaussian random field is stationary if and only if E(Y s ) = E(Y s+u ) = µ, cov(y s,y s ) = cov(y s+u,y s +u) = K(u), and in particular var(y s ) = var(y s+u ) = K(0). K is called the covariance function.

12 Covariance function So K(u) is defined for all locations in D R 2, not fixed lags. If K(u) = K( u ) the random field is called isotropic: no preferred direction in R 2. Stationarity/isotropy almost never occurs, but it can be used as a reference for more complex dependence structures.

13 Valid covariance Not every function K(u) could be a covariance function for a random field. K(u) must be positive definite, i.e. for every {s 1,...,s n } and every {w 1,...,w n } we have that ( n ) n n var w i Y si = w i w i K(s i s i ) 0. i=1 i=1 i =1

14 Valid covariance, examples Here are some widely used covariance functions squared exponential (not Gaussian): K(u) = σ 2 e ( u /φ)2. σ 2 is the variance and φ is the range. more generally, α-exponential: K(u) = σ 2 e ( u /φ)α for 0 < α 2. spherical ( σ K(u) = 2 ( u /φ)+ 1 ) 2 ( u /φ)3, u φ, 0, u > φ.

15 More valid covariances ( Rational quadratic: K(u) = σ 2 1+ u 2 2αφ 2 Matérn: ) α K(u) = σ 2 {2 ν 1 Γ(ν)} 1 ( u /φ) ν K ν ( u /φ). σ 2 is the variance, φ is the range and ν is the smoothness. Special cases 1 ν = 1/2 K(u) = σ 2 e( u /φ, 2 ν = 3/2 K(u) = σ 2 1+ u ) e u /φ, φ ν squared exponential.

16 Some examples C(u) nu=0.5 k=1.5 nu=10 spherical u Some examples of covariance functions, all of them are isotropic.

17 A realization Figure: Realization of an isotropic model

18 Non-isotropic models A simple generalization: a non-isotropic model, but still stationary: K(u) is not a function of u. Geometrically anisotropic: K(u) = K( Au ), where A is an affine matrix. A is controlled by distortion over the two axis (λ 1,λ 2 ) and rotation θ. Does not require any new theory: just modify the existing covariance functions Applications: Diffusion Tensor Imaging (DTI), water molecules parallel to the fiber tract

19 A realization Figure: Realization of a geometrically anisotropic model

20 Nonstationary In many applications, cov(y s,y s ) K(s s ): nonstationary. DTI: water molecules do not move at the same rate everywhere. Possibly the simplest construction (Fuentes, 2001) Y s = n i=1 w i (s)ỹ i s w i : weight function, decaying from a centroid c i. Ỹ i s: iid isotropic/anisotropic random fields.

21 Nonstationary, mixture model Figure: From an isotropic model to a locally anisotropic model

22 A realization Figure: From an isotropic model to a locally isotropic model

23 Nonstationary, convolution model A generalization (Fuentes and Smith, 2002): convolution Y s = w(s u)ỹs θ(u) du R 2 w: kernel function, θ(u) slowly varying function. Ỹ θ(u) s iid isotropic/anisotropic random fields.

24 Deformed random fields Y s is not isotropic, however we can assume Y f(s) (Sampson and Guttorp, 1992). Example: gravitational lensing in the cosmic microwave background radiation. f(s) : R 2 R 2 is a smooth invertible transformation So In practice two problems: cov(y s,y s ) = K( f(s) f(s ) ) 1 estimate f (from the physics) 2 estimate K (with statistics)

25 A realization Figure: From an isotropic model to a deformed model

26 What about interpolation? Why do you need a spatial model? Typical problem in spatial statistics: interpolate on different locations. We want to know the distribution of Y s given {Y s1,y s2,...,y sn }. Kriging. For fmri data, interpolation is not the primary concern: we are measuring all the voxels at the same time. Y = Xβ +ε environmental statistics is focused on interpolation, neuroimaging on inference on β....so why should we care?

27 Simulation study Simulation for every ROI empirical covariance for ε(t) assume a constant mean across ROI inactive mean 100 simulations, test for activation for different models

28 Simulation study, cont d Table: False Positives (nominal 5%) for three regions and the mean across ROI. ROI ind iso aniso l-aniso SOG, Right PHG, Right ORBsup, Left mean

29 Power curve power glm iso aniso l-aniso β Figure: Power curve.

30 Inference for spatial processes Now we have a spatial model, which implies a covariance matrix K(θ). We need to do inference! Likelihood L(θ Y) = (2π) n/2 K(θ) 1/2 exp { 1 } 2 (Y Xβ) K(θ) 1 (Y Xβ).

31 The likelihood and log likelihood functions Loglikelihood: l(θ Y) = lnl(θ Y) = n 2 ln(2π) 1 2 ln K(θ) (Y Xβ) K(θ) 1 (Y Xβ). The real trouble is K(θ). Storing it requires O(n 2 ) space and O(n 3 ) flops for computing the log determinant and matrix inversion.

32 Computational issues You need to store the matrix first. If you have a 150,000 voxels, the total matrix size would be (8 150,000) 2 /(1024) 4 1.3Tb. We can exploit the structure of K(θ) (symmetric and positive definite) to improve the storage, but This will not solve the problem (650 Gb) Most programming languages do not allow (yet) linear algebra operations with symmetric storage. However... voxels are on a regular grid. Let us assume our model is stationary.

33 Whittle approximation, the basic idea

34 Circulant matrix K(θ) = K(0) K(1) K(2) K(3) K(n 1) K(n 1) K(0) K(1) K(2) K(n 2) K(n 2) K(n 1) K(0) K(1) K(n 3) K(n 3) K(n 2) K(n 1) K(0) K(n 4) K(1) K(2) K(3) K(4) K(0) Every row consists of a circular shift of 1 element of the previous row. This type of matrix is called circulant, and it has some very convenient properties.

35 Whittle approximation In matrix form, K(θ) = D Λ(θ)D. D is the DFT matrix, Λ(θ) is a diagonal matrix with the Fourier coefficients. l(θ Y) = lnl(θ Y) n 2 ln(2π) 1 n 1 lnλ j (θ) 2 n 1 j=0 FFT(Y Xβ) 2 j/λ j (θ). j=0 This is called the Whittle approximation. You don t need to store any large matrix: just compute the FFT of the data. Storage O(n 2 ) O(n), flops O(n 3 ) O(nlogn).

36 An example of application One healthy control in a clinical study with 15 stroke patients and 12 healthy control subjects. Each session has 48 consecutive scans (every 2 seconds), task: hand grasping Rest Task Rest Task Time (TR) Three sessions, T = 144 time points. 150,000 voxels in a 3D space (2mm 2mm 2mm) for each time. Total of 22 million data points.

37 Preliminaries Response: Each voxel v belongs to a Region of Interest (ROI) r. The fmri intensity at v is Y v;r (t). Y(t) = {Y v1 ;r v1 (t),...,y vv ;r vv (t)}, Y = {Y(1),...,Y(T)}. Covariates: Rest Task Rest Task Time (TR) I 1 (t): indicator for task. I 2 (t) = 1 I 1 (t): indicator for rest.

38 Preliminaries Hemodynamic response function h(t) known and common across voxels Figure: fmri intensity (blue), below I 1 (t) and X 1 (t) = (h I 1 )(t) (red)

39 The model The model is: Y = Xβ +ε, Mean structure ( for every voxel): contribution of X 1 (t) and X 2 (t) (β 1 and β 2 ) intercept session mean time effect

40 Neuroscience questions Is a voxel active?: is β 1 β 2 0 for some voxel v? Activation This is an hypothesis test, for each voxel. Standard approach: independent voxels linear regression (general linear model). Some more advanced: False Discovery Rate to bound false positives under (positive) dependence. Here: model spatial dependence, to obtain more accurate activation patterns.

41 A few notes Y = Xβ +ε In my model, β is fixed, all spatial information is in ε. In a classical Bayesian model β is a Gaussian Markov Random Field, and ε simple noise. All spatial information is in β. Combinations are possible: β s and a model for ε.

42 The spatial model Figure: The three-step spatial model.

43 Temporal dependence and multiple scales Vector AR(2) in time: ε(t) = Φ 1 ε(t 1)+Φ 2 ε(t 2)+S{ΩH 1 (t)+(i V Ω)H 2 (t)}. Φ i = {φ i;v } i = 1,2 diagonal S = {σ v } diagonal ΩH 1 (t)+(i V Ω)H 2 (t) unscaled innovations Ω: relative contribution of H 1 w.r.t. H 2

44 Results 600 time (in seconds) (a) (b) fmri intensity data fitted 95% pred (c) (d) Figure: Fit for four random voxels.

45 The spatial model Figure: Scheme of the model of the spatial part of the model

46 Modeling local dependence H 1 (v;r) independent for every ROI. Sum of geometrically anisotropic processes H 1 (v;r) = k H i 1(v;r)w i (v), i=1 where H i 1(v;r) are iid Gaussian processes with cov{h i 1(v;r),H i 1(v ;r)} = Matérn with anisotropic distance (in 3D!).

47 Results loc anisotropic isotropic -1-2 BIC ROI number Figure: BIC for all 90 ROIs for the isotropic model and the locally anisotropic model.

48 Results Figure: Activation at 0.01% for independent voxels (top) and the model (bottom).

49 Results Table: Activated voxels (in %). ROI Active Inhibited Total ind Supp Motor Area L Supp Motor Area R mean

50 Conclusions Spatial statistics can help assessing activation, but more work is needed in defining appropriate models for fmri. Inference is hard ( 100,000 voxels), but not impossible: we are on a grid and there is a large literature in environmental statistics. A statistical analysis for a large data set requires a large computer. Where to inject spatial information? β vs ε. Someone s mean function is someone else s covariance function

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Towards a Regression using Tensors

Towards a Regression using Tensors February 27, 2014 Outline Background 1 Background Linear Regression Tensorial Data Analysis 2 Definition Tensor Operation Tensor Decomposition 3 Model Attention Deficit Hyperactivity Disorder Data Analysis

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

The General Linear Model (GLM)

The General Linear Model (GLM) The General Linear Model (GLM) Dr. Frederike Petzschner Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich With many thanks for slides & images

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Event-related fmri Christian Ruff Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Institute of Neurology University College London With thanks to the FIL

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Reading Assignment. Distributed Lag and Autoregressive Models. Chapter 17. Kennedy: Chapters 10 and 13. AREC-ECON 535 Lec G 1

Reading Assignment. Distributed Lag and Autoregressive Models. Chapter 17. Kennedy: Chapters 10 and 13. AREC-ECON 535 Lec G 1 Reading Assignment Distributed Lag and Autoregressive Models Chapter 17. Kennedy: Chapters 10 and 13. AREC-ECON 535 Lec G 1 Distributed Lag and Autoregressive Models Distributed lag model: y t = α + β

More information

ROI ANALYSIS OF PHARMAFMRI DATA:

ROI ANALYSIS OF PHARMAFMRI DATA: ROI ANALYSIS OF PHARMAFMRI DATA: AN ADAPTIVE APPROACH FOR GLOBAL TESTING Giorgos Minas, John A.D. Aston, Thomas E. Nichols and Nigel Stallard Department of Statistics and Warwick Centre of Analytical Sciences,

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Symmetry and Separability In Spatial-Temporal Processes

Symmetry and Separability In Spatial-Temporal Processes Symmetry and Separability In Spatial-Temporal Processes Man Sik Park, Montserrat Fuentes Symmetry and Separability In Spatial-Temporal Processes 1 Motivation In general, environmental data have very complex

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Introduction. Spatial Processes & Spatial Patterns

Introduction. Spatial Processes & Spatial Patterns Introduction Spatial data: set of geo-referenced attribute measurements: each measurement is associated with a location (point) or an entity (area/region/object) in geographical (or other) space; the domain

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data

Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data Beyond Univariate Analyses: Multivariate Modeling of Functional Neuroimaging Data F. DuBois Bowman Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University,

More information

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 4 Spatial Point Patterns Definition Set of point locations with recorded events" within study

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia GARCH Models Estimation and Inference Eduardo Rossi University of Pavia Likelihood function The procedure most often used in estimating θ 0 in ARCH models involves the maximization of a likelihood function

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

Data analysis of massive data sets a Planck example

Data analysis of massive data sets a Planck example Data analysis of massive data sets a Planck example Radek Stompor (APC) LOFAR workshop, Meudon, 29/03/06 Outline 1. Planck mission; 2. Planck data set; 3. Planck data analysis plan and challenges; 4. Planck

More information

Multivariate spatial models and the multikrig class

Multivariate spatial models and the multikrig class Multivariate spatial models and the multikrig class Stephan R Sain, IMAGe, NCAR ENAR Spring Meetings March 15, 2009 Outline Overview of multivariate spatial regression models Case study: pedotransfer functions

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother Feb 1 and 5: Local weighted least squares: Quadratic loess smoother An example of weighted least squares fitting of data to a simple model for the purposes of simultaneous smoothing and interpolation is

More information

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University Lecture 19 Modeling Topics plan: Modeling (linear/non- linear least squares) Bayesian inference Bayesian approaches to spectral esbmabon;

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model

What s for today. Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model What s for today Continue to discuss about nonstationary models Moving windows Convolution model Weighted stationary model c Mikyoung Jun (Texas A&M) Stat647 Lecture 11 October 2, 2012 1 / 23 Nonstationary

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA BY MIKYOUNG JUN AND MICHAEL L. STEIN Presented by Sungkyu Jung April, 2009 Outline 1 Introduction 2 Covariance Models 3 Application: Level

More information

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire

More information

Density Modeling and Clustering Using Dirichlet Diffusion Trees

Density Modeling and Clustering Using Dirichlet Diffusion Trees p. 1/3 Density Modeling and Clustering Using Dirichlet Diffusion Trees Radford M. Neal Bayesian Statistics 7, 2003, pp. 619-629. Presenter: Ivo D. Shterev p. 2/3 Outline Motivation. Data points generation.

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Heteroskedasticity in Time Series

Heteroskedasticity in Time Series Heteroskedasticity in Time Series Figure: Time Series of Daily NYSE Returns. 206 / 285 Key Fact 1: Stock Returns are Approximately Serially Uncorrelated Figure: Correlogram of Daily Stock Market Returns.

More information