Point-Referenced Data Models

Size: px
Start display at page:

Download "Point-Referenced Data Models"

Transcription

1 Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

2 Objectives By the end of these meetings, participants should be able to: Define stationarity, variogram, and isotropy. Draw image and surface plots in R. Create empirical semivariograms and estimate parametric variograms in R. Forecast the value of a variable given its spatial site. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

3 Reminder: Our Purpose Looking ahead to chapter 5, a basic model of a stationary spatial process is: Y (s) = µ(s) + w(s) + ɛ(s) (1) The elements are: mean structure (µ(s)), spatial residual process (w(s)), and nonspatial residual process (ɛ(s)). Normally we think of mean structure first. But here, we start by modeling w(s). Why do we do this? Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

4 Stationarity Antonym: trending data. (Or unit roots.) Assumptions Spatial process: {Y (s) : s D}, D R r. Mean, µ(s) = E(Y (s)), exists for all s D. Variance exists for all s D. Forms of Stationarity Gaussian: any set of sites is distributed MVN. Strictly stationary: the distribution of sites does not change. For any set of sites {s1,..., s n } and any h R r, the distribution of {Y (s 1 ),..., Y (s n )} is the same as for {Y (s 1 + h),..., Y (s n + h)}. Weakly stationary (second order): the mean does not change and spatial covariance only depends on distance. µ(s) µ and Cov(Y (s), Y (s + h)) = C(h) for all h R r such that s and s + h both lie within D. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

5 Intrinsic Stationarity Assume E[Y (s + h) Y (s)] = 0. Define E[Y (s + h) Y (s)] 2 = Var(Y (s + h) Y (s)) = 2γ(h). If the LHS on the previous line depends only on h and not on s, then the process is intrinsically stationary. Note: Intrinsic stationarity depends only on the difference E[Y (s + h) Y (s)] and says nothing about joint distributions. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

6 Variograms Give us a sense of how the variance between data points changes with distance. (Alternatively, how much do data points covary, contingent on their distance?) Terms 2γ(h) is the variogram. γ(h) is the semivariogram. C(h) is the covariogram. Properties We can determine the variogram if we know the covariogram. We can also do the reverse if the process is ergodic and lim h γ(h) exists. Analogue: The autocorrelation and partial autocorrelation functions from time series. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

7 Isotropy If the semivariogram γ(h) depends on the separation vector only through its length, h, then the process is isotropic. Hence, we can write γ( h ). For simplicity, h = t, which we represent as the only input. Anisotropy There could be directional dependence. Geometric anisotropy. Sill anisotropy, nugget anisotropy, and range anisotropy. Assessment techniques: directional semivariograms and rose diagrams. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

8 Three Prominent Features of Variograms Nugget: Baseline variance in a variable, present even when t 0. Sill: Maximal (asymptotic) variance in a variable, when t is very large. The partial sill is the difference between the sill and nugget. Range: The value R = 1/φ where γ(t) reaches its sill or ultimate level. φ is the decay parameter, but some call it the range parameter as well. The effective range is often used when R is technically infinite. Switching to the covariance function, when the correlation drops below 0.05 the effective range is often declared. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

9 Process for Fitting a Parametric Variogram Similar to fitting an ARIMA model in time series. Plot the empirical semivariogram: ˆγ(t) = 1 2N(t) (s i,s j ) N(t) [Y (s i ) Y (s j )] 2 Grid-up the t-space into discrete intervals. Compare to the empirical footprint/signature we would see from various parametric processes. Check how well the model fits (AIC, etc). Common parametric isotropic models: Linear Rational quadratic Spherical Wave Exponential Power law Powered Exponential Matérn Gaussian Matérn at ν = 3/2 Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

10 Exploratory Approaches for Point-Referenced Data Drop line plots. Image/contour plots. Surface plots. Empirical semivariograms. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

11 For February 13 Read from Banerjee, Carlin, & Gelfand. Answer 1.a from pp. 66. Download the 1974 Nixon thermometer data. Draw: 1 An image plot with contours, 2 a surface plot, and 3 a drop line plot. Which figure most clearly conveys the data? Graphically report an empirical semivariogram for the data. What do you think this semivariogram tells you? Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

12 Kriging Goals of Data Analysis Inference Prediction Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

13 Prediction in OLS E(Y X) = Ŷ = Xˆβ Given a certain exogenous situation, what will we expect our endogenous variable to be? Spatial Prediction Given observations Y = (Y (s 1 ),..., Y (s n )), how do we predict the variable s value at an unobserved site s 0? Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

14 A Linear Spatial Predictor li Y (s i ) + δ 0 Our best predictions will minimize the following equation over δ 0 and the l i : E[Y (s 0 ) ( l i Y (s i ) + δ 0 )] 2 We assume intrinsic stationarity, which causes δ 0 to drop out and allows us to instead minimize: E[Y (s 0 ) l i Y (s i )] 2 where l i = 1. A constrained minimization for the l i will yield λ(s 0 ), which allows us to make our predictions. Ultimately, the following equation provides our projections: Ŷ (s 0 ) = λ(s 0 ) y. But what is λ? Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

15 Ordinary Kriging No covariates Y = µ1 + ɛ, where ɛ N (0, Σ). Σ = σ 2 H(φ) + τ 2 I, where: (H(φ))ij = ρ(φ; d ij ), dij = s i s j, and ρ is a correlation function, perhaps defined by a model in BCG Table 2.1. The only feature of this model that can change our projection is the semivariogram; hence, that is all we need to determine λ. Intuition: more correlated values carry greater weight. Note: if we have no nugget effect (i.e., all unexplained variance is spatially-dependent), then τ 2 = 0 Note: R refers to µ as β Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

16 Ordinary Kriging Equation λ 1. λ n η = 2γ(Y 1, Y 1 )... 2γ(Y 1, Y n ) 1 2γ(Y 1, Y (s 0 )) γ(Y n, Y 1 )... 2γ(Y n, Y n ) 1 2γ(Y n, Y (s 0 )) In this estimator: λ i is the weight that the observation at location i is given. η is a Lagrange multiplier used in the computation of the forecast error. γ is the semivariogram function (and hence 2γ the variogram makes-up the component cells). Y i is shorthand for Y (s i ). The value of λ(s 0 ) is contingent on the location of s 0. Once a unique λ(s 0 ) is computed, λ(s 0 ) y will return your forecast of Y at location s 0. Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

17 Universal Kriging Covariates are present. Y = Xβ + ɛ, where ɛ N (0, Σ) and Σ is the same as before. A model of the mean surface influences predictions, as well as the semivariogram. Rethink the prediction problem E[(Y (s 0 ) f (y)) 2 y]. The predictor that minimizes this is f (y) = E[Y (s 0 ) y]. MVN theory leads us to: E[Y (s0 ) y] = x 0 β + γ Σ 1 (y Xβ), and Var[Y (s0 ) y] = σ 2 + τ 2 γ Σ 1 γ. Provided we know population parameters and x 0 (large caveats). Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

18 Using Estimates f (y) = x 0 ˆβ + ˆγ ˆΣ 1 (y Xˆβ), where: where ˆγ = (ˆσ 2 ρ( ˆφ; d 01 ),..., ˆσ 2 ρ( ˆφ; d 0n )), and ˆβ = (X ˆΣ 1 X) 1 X ˆΣ 1 y. In our original terms of Ŷ(s 0 ) = λ(s 0 ) y, we can now define: λ(s 0 ) = ˆΣ 1ˆγ + ˆΣ 1 X(X ˆΣ 1 X) 1 (x 0 X ˆΣ 1ˆγ). We recognize all of the elements individually, but simple subsitution would not account for uncertainty. Do we know x 0? If not, try an EM algorithm. Expectation step: ˆx 0 = X λ(s 0 ). Maximization step: Calculate λ(s 0 ). Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

19 For February 20 Read from Banerjee, Carlin, & Gelfand. Download the 1974 pilot data. Study the variable V Recode values of 0, 8, & 9 as missing. Graphically report an empirical semivariogram for the variable. Estimate, a parametric variogram for the variable. Krige the predicted values of V for two locations. Meades Ranch in Kansas (0,0). Oregon countryside ( , ). Jamie Monogan (UGA) Point-Referenced Data Models Spring / 19

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Modeling the Covariance

Modeling the Covariance Modeling the Covariance Jamie Monogan University of Georgia February 3, 2016 Jamie Monogan (UGA) Modeling the Covariance February 3, 2016 1 / 16 Objectives By the end of this meeting, participants should

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Practicum : Spatial Regression

Practicum : Spatial Regression : Alexandra M. Schmidt Instituto de Matemática UFRJ - www.dme.ufrj.br/ alex 2014 Búzios, RJ, www.dme.ufrj.br Exploratory (Spatial) Data Analysis 1. Non-spatial summaries Numerical summaries: Mean, median,

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data

More information

Lecture 9: Introduction to Kriging

Lecture 9: Introduction to Kriging Lecture 9: Introduction to Kriging Math 586 Beginning remarks Kriging is a commonly used method of interpolation (prediction) for spatial data. The data are a set of observations of some variable(s) of

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time Space-time data Observations taken over space and over time Z(s, t): indexed by space, s, and time, t Here, consider geostatistical/time data Z(s, t) exists for all locations and all times May consider

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Two-Variable Regression Model: The Problem of Estimation

Two-Variable Regression Model: The Problem of Estimation Two-Variable Regression Model: The Problem of Estimation Introducing the Ordinary Least Squares Estimator Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Two-Variable

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data Sue Welham Rothamsted Research Harpenden UK AL5 2JQ December 1, 2008 1 We will start by reviewing the principles

More information

Spatial Misalignment

Spatial Misalignment Spatial Misalignment Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Spatial Misalignment Spring 2013 1 / 28 Objectives By the end of today s meeting, participants should be able to:

More information

Midterm Suggested Solutions

Midterm Suggested Solutions CUHK Dept. of Economics Spring 2011 ECON 4120 Sung Y. Park Midterm Suggested Solutions Q1 (a) In time series, autocorrelation measures the correlation between y t and its lag y t τ. It is defined as. ρ(τ)

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

Introduction. Semivariogram Cloud

Introduction. Semivariogram Cloud Introduction Data: set of n attribute measurements {z(s i ), i = 1,, n}, available at n sample locations {s i, i = 1,, n} Objectives: Slide 1 quantify spatial auto-correlation, or attribute dissimilarity

More information

Geostatistics in Hydrology: Kriging interpolation

Geostatistics in Hydrology: Kriging interpolation Chapter Geostatistics in Hydrology: Kriging interpolation Hydrologic properties, such as rainfall, aquifer characteristics (porosity, hydraulic conductivity, transmissivity, storage coefficient, etc.),

More information

MEI Exam Review. June 7, 2002

MEI Exam Review. June 7, 2002 MEI Exam Review June 7, 2002 1 Final Exam Revision Notes 1.1 Random Rules and Formulas Linear transformations of random variables. f y (Y ) = f x (X) dx. dg Inverse Proof. (AB)(AB) 1 = I. (B 1 A 1 )(AB)(AB)

More information

Vector Autoregression

Vector Autoregression Vector Autoregression Jamie Monogan University of Georgia February 27, 2018 Jamie Monogan (UGA) Vector Autoregression February 27, 2018 1 / 17 Objectives By the end of these meetings, participants should

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Modeling the Mean: Response Profiles v. Parametric Curves

Modeling the Mean: Response Profiles v. Parametric Curves Modeling the Mean: Response Profiles v. Parametric Curves Jamie Monogan University of Georgia Escuela de Invierno en Métodos y Análisis de Datos Universidad Católica del Uruguay Jamie Monogan (UGA) Modeling

More information

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH SURESH TRIPATHI Geostatistical Society of India Assumptions and Geostatistical Variogram

More information

Modelling the Covariance

Modelling the Covariance Modelling the Covariance Jamie Monogan Washington University in St Louis February 9, 2010 Jamie Monogan (WUStL) Modelling the Covariance February 9, 2010 1 / 13 Objectives By the end of this meeting, participants

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Forest Research Institute Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Arne Nothdurft 1, Thilo Wolf 1, Andre Ringeler 2, Jürgen Böhner 2, Joachim Saborowski

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

Types of Spatial Data

Types of Spatial Data Spatial Data Types of Spatial Data Point pattern Point referenced geostatistical Block referenced Raster / lattice / grid Vector / polygon Point Pattern Data Interested in the location of points, not their

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2 1 Gaussian Processes Definition 1.1 A Gaussian process { i } over sites i is defined by its mean function and its covariance function E( i ) = µ i c ij = Cov( i, j ) plus joint normality of the finite

More information

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA)

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) Fluvial Variography: Characterizing Spatial Dependence on Stream Networks Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) March 5, 2015 Stream network data Flow Legend o 4.40-5.80

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University An Introduction to Spatial Statistics Chunfeng Huang Department of Statistics, Indiana University Microwave Sounding Unit (MSU) Anomalies (Monthly): 1979-2006. Iron Ore (Cressie, 1986) Raw percent data

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Bayesian Transgaussian Kriging

Bayesian Transgaussian Kriging 1 Bayesian Transgaussian Kriging Hannes Müller Institut für Statistik University of Klagenfurt 9020 Austria Keywords: Kriging, Bayesian statistics AMS: 62H11,60G90 Abstract In geostatistics a widely used

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Spatial analysis is the quantitative study of phenomena that are located in space.

Spatial analysis is the quantitative study of phenomena that are located in space. c HYON-JUNG KIM, 2016 1 Introduction Spatial analysis is the quantitative study of phenomena that are located in space. Spatial data analysis usually refers to an analysis of the observations in which

More information

Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t

Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t Problem-1: Consider random walk with drift plus a linear time trend: y t = c + y t 1 + δ t + ϵ t, (1) where {ϵ t } is white noise with E[ϵ 2 t ] = σ 2 >, and y is a non-stochastic initial value. (a) Show

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Intervention Models and Forecasting

Intervention Models and Forecasting Intervention Models and Forecasting Transfer Functions with Binary Inputs Jamie Monogan University of Georgia January 23, 2018 Jamie Monogan (UGA) Intervention Models and Forecasting January 23, 2018 1

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38 ARIMA Models Jamie Monogan University of Georgia January 25, 2012 Jamie Monogan (UGA) ARIMA Models January 25, 2012 1 / 38 Objectives By the end of this meeting, participants should be able to: Describe

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

Outline. Overview of Issues. Spatial Regression. Luc Anselin

Outline. Overview of Issues. Spatial Regression. Luc Anselin Spatial Regression Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline Overview of Issues Spatial Regression Specifications Space-Time Models Spatial Latent Variable Models

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN:

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN: Index Akaike information criterion (AIC) 105, 290 analysis of variance 35, 44, 127 132 angular transformation 22 anisotropy 59, 99 affine or geometric 59, 100 101 anisotropy ratio 101 exploring and displaying

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Granger Causality Testing

Granger Causality Testing Granger Causality Testing Jamie Monogan University of Georgia April 4, 2012 Jamie Monogan (UGA) Granger Causality Testing April 4, 2012 1 / 19 Objectives By the end of this meeting, participants should

More information

Part 5: Spatial-Temporal Modeling

Part 5: Spatial-Temporal Modeling Part 5: Spatial-Temporal Modeling 1 Introductory Model Formulation For a broad spectrum of applications within the realm of spatial statistics, commonly the data vary across both space and time giving

More information

A kernel indicator variogram and its application to groundwater pollution

A kernel indicator variogram and its application to groundwater pollution Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS101) p.1514 A kernel indicator variogram and its application to groundwater pollution data Menezes, Raquel University

More information

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1 (Z i Z j ) 2 / 2 (Z i Zj) 2 / 2 Semivariance y 11/8/2018 Spatial Interpolation & Geostatistics Kriging Step 1 Describe spatial variation with Semivariogram Lag Distance between pairs of points Lag Mean

More information

Final Exam. Economics 835: Econometrics. Fall 2010

Final Exam. Economics 835: Econometrics. Fall 2010 Final Exam Economics 835: Econometrics Fall 2010 Please answer the question I ask - no more and no less - and remember that the correct answer is often short and simple. 1 Some short questions a) For each

More information

Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis

Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis Discussion of Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions, by Li Pan and Dimitris Politis Sílvia Gonçalves and Benoit Perron Département de sciences économiques,

More information

The regression model with one stochastic regressor (part II)

The regression model with one stochastic regressor (part II) The regression model with one stochastic regressor (part II) 3150/4150 Lecture 7 Ragnar Nymoen 6 Feb 2012 We will finish Lecture topic 4: The regression model with stochastic regressor We will first look

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Spatial analysis of a designed experiment. Uniformity trials. Blocking

Spatial analysis of a designed experiment. Uniformity trials. Blocking Spatial analysis of a designed experiment RA Fisher s 3 principles of experimental design randomization unbiased estimate of treatment effect replication unbiased estimate of error variance blocking =

More information

Spatial Backfitting of Roller Measurement Values from a Florida Test Bed

Spatial Backfitting of Roller Measurement Values from a Florida Test Bed Spatial Backfitting of Roller Measurement Values from a Florida Test Bed Daniel K. Heersink 1, Reinhard Furrer 1, and Mike A. Mooney 2 1 Institute of Mathematics, University of Zurich, CH-8057 Zurich 2

More information

2.5 Forecasting and Impulse Response Functions

2.5 Forecasting and Impulse Response Functions 2.5 Forecasting and Impulse Response Functions Principles of forecasting Forecast based on conditional expectations Suppose we are interested in forecasting the value of y t+1 based on a set of variables

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 y Kriging Step 1 Describe spatial variation with Semivariogram (Z i Z j ) 2 / 2 Point cloud Map 3

More information

Geostatistics for Gaussian processes

Geostatistics for Gaussian processes Introduction Geostatistical Model Covariance structure Cokriging Conclusion Geostatistics for Gaussian processes Hans Wackernagel Geostatistics group MINES ParisTech http://hans.wackernagel.free.fr Kernels

More information

Autocorrelation. Jamie Monogan. Intermediate Political Methodology. University of Georgia. Jamie Monogan (UGA) Autocorrelation POLS / 20

Autocorrelation. Jamie Monogan. Intermediate Political Methodology. University of Georgia. Jamie Monogan (UGA) Autocorrelation POLS / 20 Autocorrelation Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Autocorrelation POLS 7014 1 / 20 Objectives By the end of this meeting, participants should be

More information

Introduction to Bayes and non-bayes spatial statistics

Introduction to Bayes and non-bayes spatial statistics Introduction to Bayes and non-bayes spatial statistics Gabriel Huerta Department of Mathematics and Statistics University of New Mexico http://www.stat.unm.edu/ ghuerta/georcode.txt General Concepts Spatial

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

Statistical Inference for Means

Statistical Inference for Means Statistical Inference for Means Jamie Monogan University of Georgia February 18, 2011 Jamie Monogan (UGA) Statistical Inference for Means February 18, 2011 1 / 19 Objectives By the end of this meeting,

More information

Introduction. Spatial Processes & Spatial Patterns

Introduction. Spatial Processes & Spatial Patterns Introduction Spatial data: set of geo-referenced attribute measurements: each measurement is associated with a location (point) or an entity (area/region/object) in geographical (or other) space; the domain

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13 What s for today Random Fields Autocovariance Stationarity, Isotropy c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, 2012 1 / 13 Stochastic Process and Random Fields A stochastic process is a family

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

Bayesian Transformed Gaussian Random Field: A Review

Bayesian Transformed Gaussian Random Field: A Review Bayesian Transformed Gaussian Random Field: A Review Benjamin Kedem Department of Mathematics & ISR University of Maryland College Park, MD (Victor De Oliveira, David Bindel, Boris and Sandra Kozintsev)

More information

STAT 248: EDA & Stationarity Handout 3

STAT 248: EDA & Stationarity Handout 3 STAT 248: EDA & Stationarity Handout 3 GSI: Gido van de Ven September 17th, 2010 1 Introduction Today s section we will deal with the following topics: the mean function, the auto- and crosscovariance

More information

Linear Model Under General Variance Structure: Autocorrelation

Linear Model Under General Variance Structure: Autocorrelation Linear Model Under General Variance Structure: Autocorrelation A Definition of Autocorrelation In this section, we consider another special case of the model Y = X β + e, or y t = x t β + e t, t = 1,..,.

More information

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17 What s for today All about Variogram Nugget effect Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, 2012 1 / 17 What is the variogram? Let us consider a stationary (or isotropic) random field Z

More information