Hierarchical Modelling for Multivariate Spatial Data

Size: px
Start display at page:

Download "Hierarchical Modelling for Multivariate Spatial Data"

Transcription

1 Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15,

2 Point-referenced spatial data often come as multivariate measurements at each location. 2 Geography 890

3 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM Geography 890

4 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM 2.5. Community ecology: assembiages of plant species due to water availibility, temerature, and light requirements. 2 Geography 890

5 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM 2.5. Community ecology: assembiages of plant species due to water availibility, temerature, and light requirements. Forestry: measurements of stand characteristics age, total biomass, and average tree diameter. 2 Geography 890

6 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM 2.5. Community ecology: assembiages of plant species due to water availibility, temerature, and light requirements. Forestry: measurements of stand characteristics age, total biomass, and average tree diameter. Atmospheric modeling: at a given site we observe surface temperature, precipitation and wind speed 2 Geography 890

7 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM 2.5. Community ecology: assembiages of plant species due to water availibility, temerature, and light requirements. Forestry: measurements of stand characteristics age, total biomass, and average tree diameter. Atmospheric modeling: at a given site we observe surface temperature, precipitation and wind speed We anticipate dependence between measurements 2 Geography 890

8 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM 2.5. Community ecology: assembiages of plant species due to water availibility, temerature, and light requirements. Forestry: measurements of stand characteristics age, total biomass, and average tree diameter. Atmospheric modeling: at a given site we observe surface temperature, precipitation and wind speed We anticipate dependence between measurements at a particular location 2 Geography 890

9 Point-referenced spatial data often come as multivariate measurements at each location. Examples: Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM 2.5. Community ecology: assembiages of plant species due to water availibility, temerature, and light requirements. Forestry: measurements of stand characteristics age, total biomass, and average tree diameter. Atmospheric modeling: at a given site we observe surface temperature, precipitation and wind speed We anticipate dependence between measurements at a particular location across locations 2 Geography 890

10 Each location contains m spatial regressions Y k (s) = µ k (s) + w k (s) + ɛ k (s), k = 1,..., m. Mean: µ(s) = [µ k (s)] m k=1 = [xt k (s)β k] m k=1 Cov: w(s) = [w k (s)] m k=1 MV GP (0, Γ w(, )) Γ w (s, s ) = [Cov(w k (s), w k (s ))] m k,k =1 Error: ɛ(s) = [ɛ k (s)] m k=1 MV N(0, Ψ) Ψ is an m m p.d. matrix, e.g. usually Diag(τk 2)m k=1. 3 Geography 890

11 Multivariate Gaussian process w(s) MV GP (0, Γ w ( )) with Γ w (s, s ) = [Cov(w k (s), w k (s ))] m k,k =1 Example: with m = 2 ( Γ w (s, s Cov(w1 (s), w ) = 1 (s )) Cov(w 1 (s), w 2 (s ) )) Cov(w 2 (s), w 1 (s )) Cov(w 2 (s), w 2 (s )) For finite set of locations S = {s 1,..., s n }: V ar ([w(s i )] n i=1) = Σ w = [Γ w (s i, s j )] n i,j=1 4 Geography 890

12 Multivariate Gaussian process Properties: Γ w (s, s) = Γ T w(s, s ) lim s s Γ w (s, s ) is p.d. and Γ w (s, s) = V ar(w(s)). For sites in any finite collection S = {s 1,..., s n }: n i=1 j=1 n u T i Γ w (s i, s j )u j 0 for all u i, u j R m. Any valid Γ W must satisfy the above conditions. The last property implies that Σ w is p.d. In complete generality: Γ w (s, s ) need not be symmetric. Γ w (s, s ) need not be p.d. fors s. 5 Geography 890

13 Modelling cross-covariances Moving average or kernel convolution of a process: Let Z(s) GP (0, ρ( )). Use kernels to form: w j (s) = κ j (u)z(s + u)du = κ j (s s )Z(s )ds Γ w (s s ) has (i, j)-th element: [Γ w (s s )] i,j = κ i (s s + u)κ j (u )ρ(u u )dudu Convolution of Covariance Functions: ρ 1, ρ 2,...ρ m are valid covariance functions. Form: [Γ w (s s )] i,j = ρ i (s s t)ρ j (t)dt. 6 Geography 890

14 Modelling cross-covariances Constructive approach Let v k (s) GP (0, ρ k (s, s )), for k = 1,..., m be m independent GP s with unit variance. Form the simple multivariate process v(s) = [v k (s)] m k=1 : v(s) MV GP (0, Γ v (, )) with Γ v (s, s ) = Diag(ρ k (s, s )) m k=1. Assume w(s) = A(s)v(s) arises as a space-varying linear transformation of v(s). Then: Γ w (s, s ) = A(s)Γ v (s, s )A T (s ) is a valid cross-covariance function. 7 Geography 890

15 Modelling cross-covariances Constructive approach, contd. When s = s, Γ v (s, s) = I m, so: Γ w (s, s) = A(s)A T (s) A(s) identifies with any square-root of Γ w (s, s). Can be taken as lower-triangular (Cholesky). A(s) is unknown! Should we first model A(s) to obtain Γ w (s, s)? Or should we model Γ w (s, s ) first and derive A(s)? A(s) is completely determined from within-site associations. 8 Geography 890

16 Modelling cross-covariances Constructive approach, contd. If A(s) = A: w(s) is stationary when v(s) is. Γ w (s, s ) is symmetric. Γ v (s, s ) = ρ(s, s )I m Γ w = ρ(s, s )AA T Last specification is called intrinsic and leads to separable models: Σ w = H(φ) Λ; Λ = AA T 9 Geography 890

17 Hierarchical modelling Let y = [Y(s i )] n i=1 and w = [W(s i)] n i=1. First stage: n y β, w, Ψ MV N ( Y(s i ) X(s i ) T β + w(s i ), Ψ ) i=1 10 Geography 890

18 Hierarchical modelling Let y = [Y(s i )] n i=1 and w = [W(s i)] n i=1. First stage: n y β, w, Ψ MV N ( Y(s i ) X(s i ) T β + w(s i ), Ψ ) i=1 Second stage: w θ MV N(0, Σ w (Φ)) where Σ w (Φ) = [Γ W (s i, s j ; Φ)] n i,j=1. 10 Geography 890

19 Hierarchical modelling Let y = [Y(s i )] n i=1 and w = [W(s i)] n i=1. First stage: n y β, w, Ψ MV N ( Y(s i ) X(s i ) T β + w(s i ), Ψ ) i=1 Second stage: w θ MV N(0, Σ w (Φ)) where Σ w (Φ) = [Γ W (s i, s j ; Φ)] n i,j=1. Third stage: Priors on Ω = (β, Ψ, Φ). 10 Geography 890

20 Hierarchical modelling Let y = [Y(s i )] n i=1 and w = [W(s i)] n i=1. First stage: n y β, w, Ψ MV N ( Y(s i ) X(s i ) T β + w(s i ), Ψ ) i=1 Second stage: w θ MV N(0, Σ w (Φ)) where Σ w (Φ) = [Γ W (s i, s j ; Φ)] n i,j=1. Third stage: Priors on Ω = (β, Ψ, Φ). Marginalized likelihood: y β, θ, Ψ MV N(Xβ, Σ w (Φ) + I Ψ) 10 Geography 890

21 Bayesian computations Choice: Fit as [y Ω] [Ω] or as [y β, w, Ψ] [w Φ] [Ω]. 11 Geography 890

22 Bayesian computations Choice: Fit as [y Ω] [Ω] or as [y β, w, Ψ] [w Φ] [Ω]. Conditional model: Conjugate distributions are available for Ψ and other variance parameters. Easy to program. 11 Geography 890

23 Bayesian computations Choice: Fit as [y Ω] [Ω] or as [y β, w, Ψ] [w Φ] [Ω]. Conditional model: Conjugate distributions are available for Ψ and other variance parameters. Easy to program. Marginalized model: need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program. But reduced parameter space (no w s) results in faster convergence Σ w (Φ) + I Ψ is more stable than Σ w (Φ). 11 Geography 890

24 Bayesian computations Choice: Fit as [y Ω] [Ω] or as [y β, w, Ψ] [w Φ] [Ω]. Conditional model: Conjugate distributions are available for Ψ and other variance parameters. Easy to program. Marginalized model: need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program. But reduced parameter space (no w s) results in faster convergence Σ w (Φ) + I Ψ is more stable than Σ w (Φ). But what about Σ 1 w (Φ)?? Matrix inversion is EXPENSIVE O(n 3 ). 11 Geography 890

25 Bayesian computations Recovering the w s? Interest often lies in the spatial surface w y. 12 Geography 890

26 Bayesian computations Recovering the w s? Interest often lies in the spatial surface w y. They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: 12 Geography 890

27 Bayesian computations Recovering the w s? Interest often lies in the spatial surface w y. They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: Obtain Ω (1),..., Ω (G) [Ω y, X] 12 Geography 890

28 Bayesian computations Recovering the w s? Interest often lies in the spatial surface w y. They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: Obtain Ω (1),..., Ω (G) [Ω y, X] For each Ω (g), draw w (g) [w Ω (g), y, X] 12 Geography 890

29 Bayesian computations Recovering the w s? Interest often lies in the spatial surface w y. They are recovered from [w y, X] = [w Ω, y, X] [Ω y, X]dΩ using posterior samples: Obtain Ω (1),..., Ω (G) [Ω y, X] For each Ω (g), draw w (g) [w Ω (g), y, X] NOTE: With Gaussian likelihoods [w Ω, y, X] is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred. 12 Geography 890

30 Spatial prediction Often we need to predict Y (s) at a new set of locations { s 0,..., s m } with associated predictor matrix X. Sample from predictive distribution: [ỹ y, X, X] = [ỹ, Ω y, X, X]dΩ = [ỹ y, Ω, X, X] [Ω y, X]dΩ, [ỹ y, Ω, X, X] is multivariate normal. Sampling scheme: Obtain Ω (1),..., Ω (G) [Ω y, X] For each Ω (g), draw ỹ (g) [ỹ y, Ω (g), X, X]. 13 Geography 890

31 Illustration Illustration from: Finley, A.O., S. Banerjee, A.R. Ek, and R.E. McRoberts. (2008) Bayesian multivariate process modeling for prediction of forest attributes. Journal of Agricultural, Biological, and Environmental Statistics, 13: Geography 890

32 Illustration Bartlett Experimental Forest Slight digression why we fit a model: Association between response and covariates, β, (e.g., ecological interpretation) Residual spatial and/or non-spatial associations and patterns (i.e., given covariates) Subsequent prediction 15 Geography 890

33 Illustration Bartlett Experimental Forest Study objectives: Evaluate methods for multi-source forest attribute mapping Find the best model, given the data Produce maps of biomass and uncertainty, by tree species 16 Geography 890

34 Illustration Bartlett Experimental Forest Study objectives: Evaluate methods for multi-source forest attribute mapping Find the best model, given the data Produce maps of biomass and uncertainty, by tree species Study area: USDA FS Bartlett Experimental Forest (BEF), NH 1,053 ha heavily forested Major tree species: American beech (BE), eastern hemlock (EH), red maple (RM), sugar maple (SM), and yellow birch (YB) 16 Geography 890

35 Illustration Bartlett Experimental Forest Bartlett Experimental Forest Image provided by 17 Geography 890

36 Illustration Bartlett Experimental Forest Response variables: Metric tons of total tree biomass per ha Measured on ha plots Models fit using random subset of 218 plots Prediction at remaining 219 plots Inventory plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) Geography 890

37 Illustration Bartlett Experimental Forest Covariates DEM derived elevation and slope Spring, Summer, Fall Landsat ETM+ Tasseled Cap features (brightness, greeness, wetness) Latitude (meters) Elevation Slope Longitude (meters) Longitude (meters) 19 Geography 890

38 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Geography 890

39 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Different specifications of variance structures: 1 Non-spatial multivariate Diag(Ψ) = τ 2 20 Geography 890

40 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Different specifications of variance structures: 1 Non-spatial multivariate Diag(Ψ) = τ 2 2 Diag(K), same φ, Diag(Ψ) 20 Geography 890

41 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Different specifications of variance structures: 1 Non-spatial multivariate Diag(Ψ) = τ 2 2 Diag(K), same φ, Diag(Ψ) 3 K, same φ, Diag(Ψ) 20 Geography 890

42 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Different specifications of variance structures: 1 Non-spatial multivariate Diag(Ψ) = τ 2 2 Diag(K), same φ, Diag(Ψ) 3 K, same φ, Diag(Ψ) 4 Diag(K), different φ, Diag(Ψ) 20 Geography 890

43 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Different specifications of variance structures: 1 Non-spatial multivariate Diag(Ψ) = τ 2 2 Diag(K), same φ, Diag(Ψ) 3 K, same φ, Diag(Ψ) 4 Diag(K), different φ, Diag(Ψ) 5 K, different φ, Diag(Ψ) 20 Geography 890

44 Illustration Bartlett Experimental Forest Candidate models Each model includes 55 covariates and 5 intercepts, therefore, X T is Different specifications of variance structures: 1 Non-spatial multivariate Diag(Ψ) = τ 2 2 Diag(K), same φ, Diag(Ψ) 3 K, same φ, Diag(Ψ) 4 Diag(K), different φ, Diag(Ψ) 5 K, different φ, Diag(Ψ) 6 K, different φ, Ψ 20 Geography 890

45 Illustration Bartlett Experimental Forest Model comparison Deviance Information Criterion (DIC): D(Ω) = 2 log L(Data Ω) D(Ω) = E Ω Y [D(Ω)] p D = D(Ω) D( Ω); Ω = E Ω Y [Ω] DIC = D(Ω) + p D. Lower DIC is better. 21 Geography 890

46 Illustration Bartlett Experimental Forest Model comparison Deviance Information Criterion (DIC): D(Ω) = 2 log L(Data Ω) D(Ω) = E Ω Y [D(Ω)] p D = D(Ω) D( Ω); Ω = E Ω Y [Ω] DIC = D(Ω) + p D. Lower DIC is better. Model p D DIC Geography 890

47 Illustration Bartlett Experimental Forest Selected model Model 5: K, different φ, Diag(Ψ) Parameters: K = 15, φ = 5, Diag(Ψ) = 5 22 Geography 890

48 Illustration Bartlett Experimental Forest Selected model Model 5: K, different φ, Diag(Ψ) Parameters: K = 15, φ = 5, Diag(Ψ) = 5 Focus on spatial cross-covariance matrix K (for brevity). Posterior inference of cor(k), e.g., 50 (2.5, 97.5) percentiles: BE EH BE 1 EH 0.16 (0.13, 0.21) 1 RM (-0.23, -0.15) 0.45 (0.26, 0.66) SM (-0.22, -0.17) (-0.16, -0.09) YB 0.07 (0.04, 0.08) 0.22 (0.20, 0.25) These relationships expressed in mapped random spatial effects, w. 22 Geography 890

49 Illustration Bartlett Experimental Forest Selected model Model 5: K, different φ, Diag(Ψ) Parameters: K = 15, φ = 5, Diag(Ψ) = 5 Focus on spatial cross-covariance matrix K (for brevity). Posterior inference of cor(k), e.g., 50 (2.5, 97.5) percentiles: BE EH BE 1 EH 0.16 (0.13, 0.21) 1 RM (-0.23, -0.15) 0.45 (0.26, 0.66) SM (-0.22, -0.17) (-0.16, -0.09) YB 0.07 (0.04, 0.08) 0.22 (0.20, 0.25) These relationships expressed in mapped random spatial effects, w. 22 Geography 890

50 Illustration Bartlett Experimental Forest E[w Data] Inventory plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) Geography 890

51 Illustration Bartlett Experimental Forest E[w Data] Inventory plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) E[w Data] Validation plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) Geography 890

52 Illustration Bartlett Experimental Forest E[Y Data] Validation plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) Geography 890

53 Illustration Bartlett Experimental Forest E[Y Data] Validation plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) P (2.5 < Y < 97.5 Data) Validation plots Latitude (meters) BE EH Latitude (meters) RM SM Longitude (meters) Latitude (meters) YB Longitude (meters) Geography 890

54 Illustration Bartlett Experimental Forest Summary Proposed Bayesian hierarchical spatial methodology: Partition sources of uncertainty Provides hypothesis testing Reveal spatial patterns and missing covariates 25 Geography 890

55 Illustration Bartlett Experimental Forest Summary Proposed Bayesian hierarchical spatial methodology: Partition sources of uncertainty Provides hypothesis testing Reveal spatial patterns and missing covariates Allow flexible inference Access parameters posterior distribution Access posterior predictive distribution 25 Geography 890

56 Illustration Bartlett Experimental Forest Summary Proposed Bayesian hierarchical spatial methodology: Partition sources of uncertainty Provides hypothesis testing Reveal spatial patterns and missing covariates Allow flexible inference Access parameters posterior distribution Access posterior predictive distribution Provide consistent prediction of multiple variables Maintains spatial and non-spatial association 25 Geography 890

57 Illustration Bartlett Experimental Forest Summary Proposed Bayesian hierarchical spatial methodology: Partition sources of uncertainty Provides hypothesis testing Reveal spatial patterns and missing covariates Allow flexible inference Access parameters posterior distribution Access posterior predictive distribution Provide consistent prediction of multiple variables Maintains spatial and non-spatial association Extendable model template: Cluster plot sample design multiresolution models Non-continuous response general linear models Obs. over time and space spatiotemporal models 25 Geography 890

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Modelling Multivariate Spatial Data

Modelling Multivariate Spatial Data Modelling Multivariate Spatial Data Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. June 20th, 2014 1 Point-referenced spatial data often

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Hierarchical Modelling for Univariate and Multivariate Spatial Data

Hierarchical Modelling for Univariate and Multivariate Spatial Data Hierarchical Modelling for Univariate and Multivariate Spatial Data p. 1/4 Hierarchical Modelling for Univariate and Multivariate Spatial Data Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

Hierarchical Modeling for non-gaussian Spatial Data

Hierarchical Modeling for non-gaussian Spatial Data Hierarchical Modeling for non-gaussian Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Hierarchical Modelling for non-gaussian Spatial Data

Hierarchical Modelling for non-gaussian Spatial Data Hierarchical Modelling for non-gaussian Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Generalized Linear Models Often data

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

Hierarchical Modelling for non-gaussian Spatial Data

Hierarchical Modelling for non-gaussian Spatial Data Hierarchical Modelling for non-gaussian Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software April 2007, Volume 19, Issue 4. http://www.jstatsoft.org/ spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O.

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Hierarchical Modeling for Spatial Data

Hierarchical Modeling for Spatial Data Bayesian Spatial Modelling Spatial model specifications: P(y X, θ). Prior specifications: P(θ). Posterior inference of model parameters: P(θ y). Predictions at new locations: P(y 0 y). Model comparisons.

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 1 Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 2 MOVING AVERAGE SPATIAL MODELS Kernel basis representation for spatial processes z(s) Define m basis functions

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Fusing point and areal level space-time data. data with application to wet deposition

Fusing point and areal level space-time data. data with application to wet deposition Fusing point and areal level space-time data with application to wet deposition Alan Gelfand Duke University Joint work with Sujit Sahu and David Holland Chemical Deposition Combustion of fossil fuel produces

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Model Assessment and Comparisons

Model Assessment and Comparisons Model Assessment and Comparisons Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

On Gaussian Process Models for High-Dimensional Geostatistical Datasets

On Gaussian Process Models for High-Dimensional Geostatistical Datasets On Gaussian Process Models for High-Dimensional Geostatistical Datasets Sudipto Banerjee Joint work with Abhirup Datta, Andrew O. Finley and Alan E. Gelfand University of California, Los Angeles, USA May

More information

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios

Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Forest Research Institute Spatio-temporal prediction of site index based on forest inventories and climate change scenarios Arne Nothdurft 1, Thilo Wolf 1, Andre Ringeler 2, Jürgen Böhner 2, Joachim Saborowski

More information

spbayes: an R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: an R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: an R package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley, Sudipto Banerjee, and Bradley P. Carlin 1 Department Correspondence of Forest Resources,

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Lecture 23. Spatio-temporal Models. Colin Rundel 04/17/2017

Lecture 23. Spatio-temporal Models. Colin Rundel 04/17/2017 Lecture 23 Spatio-temporal Models Colin Rundel 04/17/2017 1 Spatial Models with AR time dependence 2 Example - Weather station data Based on Andrew Finley and Sudipto Banerjee s notes from National Ecological

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets

Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Bayesian Modeling and Inference for High-Dimensional Spatiotemporal Datasets Sudipto Banerjee University of California, Los Angeles, USA Based upon projects involving: Abhirup Datta (Johns Hopkins University)

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Coregionalized Single- and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth

Coregionalized Single- and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth Biometrics 62, 864 876 September 2006 DOI: 10.1111/j.1541-0420.2006.00535.x Coregionalized Single- and Multiresolution Spatially Varying Growth Curve Modeling with Application to Weed Growth Sudipto Banerjee

More information

Machine learning: Hypothesis testing. Anders Hildeman

Machine learning: Hypothesis testing. Anders Hildeman Location of trees 0 Observed trees 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 700 800 900 1000 Figur: Observed points pattern of the tree specie Beilschmiedia pendula. Location of

More information

Spatial Misalignment

Spatial Misalignment Spatial Misalignment Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Spatial Misalignment Spring 2013 1 / 28 Objectives By the end of today s meeting, participants should be able to:

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Point process with spatio-temporal heterogeneity

Point process with spatio-temporal heterogeneity Point process with spatio-temporal heterogeneity Jony Arrais Pinto Jr Universidade Federal Fluminense Universidade Federal do Rio de Janeiro PASI June 24, 2014 * - Joint work with Dani Gamerman and Marina

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

False Discovery Control in Spatial Multiple Testing

False Discovery Control in Spatial Multiple Testing False Discovery Control in Spatial Multiple Testing WSun 1,BReich 2,TCai 3, M Guindani 4, and A. Schwartzman 2 WNAR, June, 2012 1 University of Southern California 2 North Carolina State University 3 University

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 Time allowed: 3 HOURS. STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 This is an open book exam: all course notes and the text are allowed, and you are expected to use your own calculator.

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data Combining Data IB/NRES 509 Statistical Modeling What is a? A quantitative synthesis of previous research Studies as individual observations, weighted by n, σ 2, quality, etc. Can combine heterogeneous

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging

A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging A Divide-and-Conquer Bayesian Approach to Large-Scale Kriging Cheng Li DSAP, National University of Singapore Joint work with Rajarshi Guhaniyogi (UC Santa Cruz), Terrance D. Savitsky (US Bureau of Labor

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Gibbs Sampling in Endogenous Variables Models

Gibbs Sampling in Endogenous Variables Models Gibbs Sampling in Endogenous Variables Models Econ 690 Purdue University Outline 1 Motivation 2 Identification Issues 3 Posterior Simulation #1 4 Posterior Simulation #2 Motivation In this lecture we take

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Practicum : Spatial Regression

Practicum : Spatial Regression : Alexandra M. Schmidt Instituto de Matemática UFRJ - www.dme.ufrj.br/ alex 2014 Búzios, RJ, www.dme.ufrj.br Exploratory (Spatial) Data Analysis 1. Non-spatial summaries Numerical summaries: Mean, median,

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Penalized Loss functions for Bayesian Model Choice

Penalized Loss functions for Bayesian Model Choice Penalized Loss functions for Bayesian Model Choice Martyn International Agency for Research on Cancer Lyon, France 13 November 2009 The pure approach For a Bayesian purist, all uncertainty is represented

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information p. 1/27 Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Shengde Liang, Bradley

More information

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Lognormal Measurement Error in Air Pollution Health Effect Studies

Lognormal Measurement Error in Air Pollution Health Effect Studies Lognormal Measurement Error in Air Pollution Health Effect Studies Richard L. Smith Department of Statistics and Operations Research University of North Carolina, Chapel Hill rls@email.unc.edu Presentation

More information

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated Spatial Trends and Spatial Extremes in South Korean Ozone Seokhoon Yun University of Suwon, Department of Applied Statistics Suwon, Kyonggi-do 445-74 South Korea syun@mail.suwon.ac.kr Richard L. Smith

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information