Introduction to Spatial Data and Models

Size: px
Start display at page:

Download "Introduction to Spatial Data and Models"

Transcription

1 Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. March 9,

2 Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are: 2 ENAR 2009 Hierarchical Modeling and Analysis

3 Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are: highly multivariate, with many important predictors and response variables, 2 ENAR 2009 Hierarchical Modeling and Analysis

4 Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are: highly multivariate, with many important predictors and response variables, geographically referenced, and often presented as maps, and 2 ENAR 2009 Hierarchical Modeling and Analysis

5 Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are: highly multivariate, with many important predictors and response variables, geographically referenced, and often presented as maps, and temporally correlated, as in longitudinal or other time series structures. 2 ENAR 2009 Hierarchical Modeling and Analysis

6 Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are: highly multivariate, with many important predictors and response variables, geographically referenced, and often presented as maps, and temporally correlated, as in longitudinal or other time series structures. motivates hierarchical modeling and data analysis for complex spatial (and spatiotemporal) data sets. 2 ENAR 2009 Hierarchical Modeling and Analysis

7 Type of spatial data point-referenced data, where Y (s) is a random vector at a location s R r, where s varies continuously over D, a fixed subset of R r that contains an r-dimensional rectangle of positive volume; 3 ENAR 2009 Hierarchical Modeling and Analysis

8 Type of spatial data point-referenced data, where Y (s) is a random vector at a location s R r, where s varies continuously over D, a fixed subset of R r that contains an r-dimensional rectangle of positive volume; areal data, where D is again a fixed subset (of regular or irregular shape), but now partitioned into a finite number of areal units with well-defined boundaries; 3 ENAR 2009 Hierarchical Modeling and Analysis

9 Type of spatial data point-referenced data, where Y (s) is a random vector at a location s R r, where s varies continuously over D, a fixed subset of R r that contains an r-dimensional rectangle of positive volume; areal data, where D is again a fixed subset (of regular or irregular shape), but now partitioned into a finite number of areal units with well-defined boundaries; point pattern data, where now D is itself random; its index set gives the locations of random events that are the spatial point pattern. Y (s) itself can simply equal 1 for all s D (indicating occurrence of the event), or possibly give some additional covariate information (producing a marked point pattern process). 3 ENAR 2009 Hierarchical Modeling and Analysis

10 Exploration of spatial data First step in analyzing data 4 ENAR 2009 Hierarchical Modeling and Analysis

11 Exploration of spatial data First step in analyzing data First Law of Geography: Mean + Error 4 ENAR 2009 Hierarchical Modeling and Analysis

12 Exploration of spatial data First step in analyzing data First Law of Geography: Mean + Error Mean: first-order behavior 4 ENAR 2009 Hierarchical Modeling and Analysis

13 Exploration of spatial data First step in analyzing data First Law of Geography: Mean + Error Mean: first-order behavior Error: second-order behavior (covariance function) 4 ENAR 2009 Hierarchical Modeling and Analysis

14 Exploration of spatial data First step in analyzing data First Law of Geography: Mean + Error Mean: first-order behavior Error: second-order behavior (covariance function) EDA tools examine both first and second order behavior 4 ENAR 2009 Hierarchical Modeling and Analysis

15 Exploration of spatial data First step in analyzing data First Law of Geography: Mean + Error Mean: first-order behavior Error: second-order behavior (covariance function) EDA tools examine both first and second order behavior Preliminary displays: Simple locations to surface displays 4 ENAR 2009 Hierarchical Modeling and Analysis

16 Exploration of spatial data First Law of Geography = + data mean error 5 ENAR 2009 Hierarchical Modeling and Analysis

17 Exploration of spatial data Scallops Sites 6 ENAR 2009 Hierarchical Modeling and Analysis

18 Deterministic surface interpolation Spatial surface observed at finite set of locations S = {s 1, s 2,..., s n } Tessellate the spatial domain (usually with data locations as vertices) Fit an interpolating polynomial: f(s) = i w i (S ; s)f(s i ) Interpolate by reading off f(s 0 ). Issues: Sensitivity to tessellations Choices of multivariate interpolators Numerical error analysis 7 ENAR 2009 Hierarchical Modeling and Analysis

19 Scallops data: image and contour plots Latitude Longitude 8 ENAR 2009 Hierarchical Modeling and Analysis

20 Scallops data: image and contour plots Drop-line scatter plot 9 ENAR 2009 Hierarchical Modeling and Analysis

21 logsp Introduction to spatial data and models Scallops data: image and contour plots Surface plot Latitude Longitude ENAR 2009 Hierarchical Modeling and Analysis

22 Scallops data: image and contour plots Image contour plot Latitude Longitude 11 ENAR 2009 Hierarchical Modeling and Analysis

23 Scallops data: image and contour plots Locations form patterns Eastings Northings ENAR 2009 Hierarchical Modeling and Analysis

24 Shrub Density Introduction to spatial data and models Scallops data: image and contour plots Surface features Northings Eastings 13 ENAR 2009 Hierarchical Modeling and Analysis

25 Scallops data: image and contour plots Interesting plot arrangements N S UTM coordinates E W UTM coordinates 14 ENAR 2009 Hierarchical Modeling and Analysis

26 Elements of point-level modelling Point-level modelling refers to modelling of spatial datacollected at locations referenced by coordinates (e.g., lat-long, Easting-Northing). 15 ENAR 2009 Hierarchical Modeling and Analysis

27 Elements of point-level modelling Point-level modelling refers to modelling of spatial datacollected at locations referenced by coordinates (e.g., lat-long, Easting-Northing). Fundamental concept: Data from a spatial process {Y (s) : s D}, where D is a fixed subset in Euclidean space. 15 ENAR 2009 Hierarchical Modeling and Analysis

28 Elements of point-level modelling Point-level modelling refers to modelling of spatial datacollected at locations referenced by coordinates (e.g., lat-long, Easting-Northing). Fundamental concept: Data from a spatial process {Y (s) : s D}, where D is a fixed subset in Euclidean space. Example: Y (s) is a pollutant level at site s 15 ENAR 2009 Hierarchical Modeling and Analysis

29 Elements of point-level modelling Point-level modelling refers to modelling of spatial datacollected at locations referenced by coordinates (e.g., lat-long, Easting-Northing). Fundamental concept: Data from a spatial process {Y (s) : s D}, where D is a fixed subset in Euclidean space. Example: Y (s) is a pollutant level at site s Conceptually: Pollutant level exists at all possible sites 15 ENAR 2009 Hierarchical Modeling and Analysis

30 Elements of point-level modelling Point-level modelling refers to modelling of spatial datacollected at locations referenced by coordinates (e.g., lat-long, Easting-Northing). Fundamental concept: Data from a spatial process {Y (s) : s D}, where D is a fixed subset in Euclidean space. Example: Y (s) is a pollutant level at site s Conceptually: Pollutant level exists at all possible sites Practically: Data will be a partial realization of a spatial process observed at {s 1,..., s n } 15 ENAR 2009 Hierarchical Modeling and Analysis

31 Elements of point-level modelling Point-level modelling refers to modelling of spatial datacollected at locations referenced by coordinates (e.g., lat-long, Easting-Northing). Fundamental concept: Data from a spatial process {Y (s) : s D}, where D is a fixed subset in Euclidean space. Example: Y (s) is a pollutant level at site s Conceptually: Pollutant level exists at all possible sites Practically: Data will be a partial realization of a spatial process observed at {s 1,..., s n } Statistical objectives: Inference about the process Y (s); predict at new locations. 15 ENAR 2009 Hierarchical Modeling and Analysis

32 Stationary Gaussian processes Suppose our spatial process has a mean, µ (s) = E (Y (s)), and that the variance of Y (s) exists for all s D. 16 ENAR 2009 Hierarchical Modeling and Analysis

33 Stationary Gaussian processes Suppose our spatial process has a mean, µ (s) = E (Y (s)), and that the variance of Y (s) exists for all s D. Strong stationarity: If for any given set of sites, and any displacement h, the distribution of (Y (s 1 ),..., Y (s n )) is the same as, (Y (s 1 + h),..., Y (s n + h)). Weak stationarity: Constant mean µ(s) = µ, and Cov(Y (s), Y (s + h)) = C(h): the covariance depends only upon the displacement (or separation) vector. 16 ENAR 2009 Hierarchical Modeling and Analysis

34 Stationary Gaussian processes Suppose our spatial process has a mean, µ (s) = E (Y (s)), and that the variance of Y (s) exists for all s D. Strong stationarity: If for any given set of sites, and any displacement h, the distribution of (Y (s 1 ),..., Y (s n )) is the same as, (Y (s 1 + h),..., Y (s n + h)). Weak stationarity: Constant mean µ(s) = µ, and Cov(Y (s), Y (s + h)) = C(h): the covariance depends only upon the displacement (or separation) vector. Strong stationarity implies weak stationarity 16 ENAR 2009 Hierarchical Modeling and Analysis

35 Stationary Gaussian processes Suppose our spatial process has a mean, µ (s) = E (Y (s)), and that the variance of Y (s) exists for all s D. Strong stationarity: If for any given set of sites, and any displacement h, the distribution of (Y (s 1 ),..., Y (s n )) is the same as, (Y (s 1 + h),..., Y (s n + h)). Weak stationarity: Constant mean µ(s) = µ, and Cov(Y (s), Y (s + h)) = C(h): the covariance depends only upon the displacement (or separation) vector. Strong stationarity implies weak stationarity The process isgaussian if Y = (Y (s 1 ),..., Y (s n )) has a multivariate normal distribution. 16 ENAR 2009 Hierarchical Modeling and Analysis

36 Stationary Gaussian processes Suppose our spatial process has a mean, µ (s) = E (Y (s)), and that the variance of Y (s) exists for all s D. Strong stationarity: If for any given set of sites, and any displacement h, the distribution of (Y (s 1 ),..., Y (s n )) is the same as, (Y (s 1 + h),..., Y (s n + h)). Weak stationarity: Constant mean µ(s) = µ, and Cov(Y (s), Y (s + h)) = C(h): the covariance depends only upon the displacement (or separation) vector. Strong stationarity implies weak stationarity The process isgaussian if Y = (Y (s 1 ),..., Y (s n )) has a multivariate normal distribution. For Gaussian processes, strong and weak stationarity are equivalent. 16 ENAR 2009 Hierarchical Modeling and Analysis

37 Stationary Gaussian processes Variograms Suppose we assume E[Y (s + h) Y (s)] = 0 and define E[Y (s + h) Y (s)] 2 = V ar (Y (s + h) Y (s)) = 2γ (h). This is sensible if the left hand side depends only upon h. Then we say the process is intrinsically stationary. 17 ENAR 2009 Hierarchical Modeling and Analysis

38 Stationary Gaussian processes Variograms Suppose we assume E[Y (s + h) Y (s)] = 0 and define E[Y (s + h) Y (s)] 2 = V ar (Y (s + h) Y (s)) = 2γ (h). This is sensible if the left hand side depends only upon h. Then we say the process is intrinsically stationary. γ(h) is called the semivariogram and 2γ(h) is called the variogram. 17 ENAR 2009 Hierarchical Modeling and Analysis

39 Stationary Gaussian processes Variograms Suppose we assume E[Y (s + h) Y (s)] = 0 and define E[Y (s + h) Y (s)] 2 = V ar (Y (s + h) Y (s)) = 2γ (h). This is sensible if the left hand side depends only upon h. Then we say the process is intrinsically stationary. γ(h) is called the semivariogram and 2γ(h) is called the variogram. Note that intrinsic stationarity defines only the first and second moments of the differences Y (s + h) Y (s). It says nothing about the joint distribution of a collection of variables Y (s 1 ),..., Y (s n ), and thus provides no likelihood. 17 ENAR 2009 Hierarchical Modeling and Analysis

40 Stationary Gaussian processes Intrinsic Stationarity and Ergodicity Relationship between γ(h) and C(h): 2γ(h) = V ar(y (s + h)) + V ar(y (s)) 2Cov(Y (s + h), Y (s)) = C(0) + C(0) 2C(h) = 2[C(0) C(h)]. 18 ENAR 2009 Hierarchical Modeling and Analysis

41 Stationary Gaussian processes Intrinsic Stationarity and Ergodicity Relationship between γ(h) and C(h): 2γ(h) = V ar(y (s + h)) + V ar(y (s)) 2Cov(Y (s + h), Y (s)) = C(0) + C(0) 2C(h) = 2[C(0) C(h)]. Easy to recover γ from C. The converse needs the additional assumption of ergodicity: lim u C(u) = ENAR 2009 Hierarchical Modeling and Analysis

42 Stationary Gaussian processes Intrinsic Stationarity and Ergodicity Relationship between γ(h) and C(h): 2γ(h) = V ar(y (s + h)) + V ar(y (s)) 2Cov(Y (s + h), Y (s)) = C(0) + C(0) 2C(h) = 2[C(0) C(h)]. Easy to recover γ from C. The converse needs the additional assumption of ergodicity: lim u C(u) = 0. So lim u γ(u) = C(0), and we can recover C from γ as long as this limit exists. C(h) = lim γ(u) γ(h). u 18 ENAR 2009 Hierarchical Modeling and Analysis

43 Isotropy When γ(h) or C(h) depends upon the separation vector only through the distance h, we say that the process is isotropic. In that case, we write γ( h ) or C( h ). Otherwise we say that the process is anisotropic. 19 ENAR 2009 Hierarchical Modeling and Analysis

44 Isotropy When γ(h) or C(h) depends upon the separation vector only through the distance h, we say that the process is isotropic. In that case, we write γ( h ) or C( h ). Otherwise we say that the process is anisotropic. If the process is intrinsically stationary and isotropic, it is also called homogeneous. 19 ENAR 2009 Hierarchical Modeling and Analysis

45 Isotropy When γ(h) or C(h) depends upon the separation vector only through the distance h, we say that the process is isotropic. In that case, we write γ( h ) or C( h ). Otherwise we say that the process is anisotropic. If the process is intrinsically stationary and isotropic, it is also called homogeneous. Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for C (and γ). Denoting h by t for notational simplicity, the next two tables provide a few examples ENAR 2009 Hierarchical Modeling and Analysis

46 Isotropy Some common isotropic variograms model Variogram, { γ(t) τ Linear γ(t) = 2 + σ 2 t if t > 0 0 otherwise τ 2 + σ 2 if t 1/φ Spherical γ(t) = τ 2 + σ 2 [ 3 2 φt 1 2 (φt)3] if 0 < t 1/φ { 0 otherwise τ Exponential γ(t) = 2 + σ 2 (1 exp( φt)) if t > 0 { 0 otherwise Powered τ γ(t) = 2 + σ 2 (1 exp( φt p )) if t > 0 exponential { 0 otherwise Matérn τ γ(t) = 2 + σ 2 [ 1 (1 + φt) e φt] if t > 0 at ν = 3/2 0 o/w 20 ENAR 2009 Hierarchical Modeling and Analysis

47 Isotropy γ(t) = Examples: Spherical Variogram τ 2 + σ 2 if t 1/φ τ 2 + σ 2 [ 3 2 φt 1 2 (φt)3] if 0 < t 1/φ 0 if t = ENAR 2009 Hierarchical Modeling and Analysis

48 Isotropy γ(t) = Examples: Spherical Variogram τ 2 + σ 2 if t 1/φ τ 2 + σ 2 [ 3 2 φt 1 2 (φt)3] if 0 < t 1/φ 0 if t = 0. While γ(0) = 0 by definition, γ(0 + ) lim t 0 + γ(t) = τ 2 ; this quantity is the nugget. 21 ENAR 2009 Hierarchical Modeling and Analysis

49 Isotropy γ(t) = Examples: Spherical Variogram τ 2 + σ 2 if t 1/φ τ 2 + σ 2 [ 3 2 φt 1 2 (φt)3] if 0 < t 1/φ 0 if t = 0. While γ(0) = 0 by definition, γ(0 + ) lim t 0 + γ(t) = τ 2 ; this quantity is the nugget. lim t γ(t) = τ 2 + σ 2 ; this asymptotic value of the semivariogram is called the sill. (The sill minus the nugget, σ 2 in this case, is called the partial sill.) 21 ENAR 2009 Hierarchical Modeling and Analysis

50 Isotropy γ(t) = Examples: Spherical Variogram τ 2 + σ 2 if t 1/φ τ 2 + σ 2 [ 3 2 φt 1 2 (φt)3] if 0 < t 1/φ 0 if t = 0. While γ(0) = 0 by definition, γ(0 + ) lim t 0 + γ(t) = τ 2 ; this quantity is the nugget. lim t γ(t) = τ 2 + σ 2 ; this asymptotic value of the semivariogram is called the sill. (The sill minus the nugget, σ 2 in this case, is called the partial sill.) Finally, the value t = 1/φ at which γ(t) first reaches its ultimate level (the sill) is called the range, R 1/φ. 21 ENAR 2009 Hierarchical Modeling and Analysis

51 Isotropy Examples: Spherical Variogram b) spherical; a0 = 0.2, a1 = 1, R = 1 22 ENAR 2009 Hierarchical Modeling and Analysis

52 Isotropy Some common isotropic covariograms Model Covariance function, C(t) Linear C(t) does not exist 0 if t 1/φ Spherical C(t) = σ 2 [ φt (φt)3] if 0 < t 1/φ { τ 2 + σ 2 otherwise σ Exponential C(t) = 2 exp( φt) if t > 0 { τ 2 + σ 2 otherwise Powered σ C(t) = 2 exp( φt p ) if t > 0 exponential { τ 2 + σ 2 otherwise Matérn σ C(t) = 2 (1 + φt) exp( φt) if t > 0 at ν = 3/2 τ 2 + σ 2 otherwise 23 ENAR 2009 Hierarchical Modeling and Analysis

53 Isotropy Notes on exponential model C(t) = { τ 2 + σ 2 if t = 0 σ 2 exp( φt) if t > ENAR 2009 Hierarchical Modeling and Analysis

54 Isotropy Notes on exponential model C(t) = { τ 2 + σ 2 if t = 0 σ 2 exp( φt) if t > 0. We define the effective range, t 0, as the distance at which this correlation has dropped to only Setting exp( φt 0 ) equal to this value we obtain t 0 3/φ, since log(0.05) ENAR 2009 Hierarchical Modeling and Analysis

55 Isotropy Notes on exponential model C(t) = { τ 2 + σ 2 if t = 0 σ 2 exp( φt) if t > 0. We define the effective range, t 0, as the distance at which this correlation has dropped to only Setting exp( φt 0 ) equal to this value we obtain t 0 3/φ, since log(0.05) 3. Finally, the form of C(t) shows why the nugget τ 2 is often viewed as a nonspatial effect variance, and the partial sill (σ 2 ) is viewed as a spatial effect variance. 24 ENAR 2009 Hierarchical Modeling and Analysis

56 Isotropy The Matèrn Correlation Function Much of statistical modelling is carried out through correlation functions rather than variograms 25 ENAR 2009 Hierarchical Modeling and Analysis

57 Isotropy The Matèrn Correlation Function Much of statistical modelling is carried out through correlation functions rather than variograms The Matèrn is a very versatile family: { σ 2 C(t) = 2 ν 1 Γ(ν) (2 νtφ) ν K ν (2 (ν)tφ) if t > 0 τ 2 + σ 2 if t = 0 K ν is the modified Bessel function of order ν (computationally tractable) 25 ENAR 2009 Hierarchical Modeling and Analysis

58 Isotropy The Matèrn Correlation Function Much of statistical modelling is carried out through correlation functions rather than variograms The Matèrn is a very versatile family: { σ 2 C(t) = 2 ν 1 Γ(ν) (2 νtφ) ν K ν (2 (ν)tφ) if t > 0 τ 2 + σ 2 if t = 0 K ν is the modified Bessel function of order ν (computationally tractable) ν is a smoothness parameter (a fractal) controlling process smoothness 25 ENAR 2009 Hierarchical Modeling and Analysis

59 Variogram model fitting How do we select a variogram? Can the data really distinguish between variograms? 26 ENAR 2009 Hierarchical Modeling and Analysis

60 Variogram model fitting How do we select a variogram? Can the data really distinguish between variograms? Empirical Variogram: γ(t) = 1 2 N(t) s i,s j N(t) (Y (s i ) Y (s j )) 2 where N(t) is the number of points such that s i s j = t and N(t) is the number of points in N(t). 26 ENAR 2009 Hierarchical Modeling and Analysis

61 Variogram model fitting How do we select a variogram? Can the data really distinguish between variograms? Empirical Variogram: γ(t) = 1 2 N(t) s i,s j N(t) (Y (s i ) Y (s j )) 2 where N(t) is the number of points such that s i s j = t and N(t) is the number of points in N(t). Grid up the t space into intervals I 1 = (0, t 1 ), I 2 = (t 1, t 2 ), and so forth, up to I K = (t K 1, t K ). Representing t values in each interval by its midpoint, we define: N(t k ) = {(s i, s j ) : s i s j I k }, k = 1,..., K. 26 ENAR 2009 Hierarchical Modeling and Analysis

62 Variogram model fitting Empirical variogram: scallops data Gamma(d) distance 27 ENAR 2009 Hierarchical Modeling and Analysis

63 Variogram model fitting Empirical variogram: scallops data Parametric Semivariograms gamma(d) Exponential Gaussian Cauchy Spherical Bessel-J distance Bessel Mixtures - Random Weights gamma(d) Two Three Four Five distance Bessel Mixtures - Random Phi s gamma(d) Two Three Four Five distance 28 ENAR 2009 Hierarchical Modeling and Analysis

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Introduction to Geostatistics

Introduction to Geostatistics Introduction to Geostatistics Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Hierarchical Modeling for Spatio-temporal Data

Hierarchical Modeling for Spatio-temporal Data Hierarchical Modeling for Spatio-temporal Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Hierarchical Modelling for Univariate and Multivariate Spatial Data

Hierarchical Modelling for Univariate and Multivariate Spatial Data Hierarchical Modelling for Univariate and Multivariate Spatial Data p. 1/4 Hierarchical Modelling for Univariate and Multivariate Spatial Data Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Univariate spatial models Spatial Domain Hierarchical Modeling for Univariate Spatial Data Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis,

More information

Introduction. Spatial Processes & Spatial Patterns

Introduction. Spatial Processes & Spatial Patterns Introduction Spatial data: set of geo-referenced attribute measurements: each measurement is associated with a location (point) or an entity (area/region/object) in geographical (or other) space; the domain

More information

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models

spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models spbayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models Andrew O. Finley 1, Sudipto Banerjee 2, and Bradley P. Carlin 2 1 Michigan State University, Departments

More information

Hierarchical Modeling and Analysis for Spatial Data

Hierarchical Modeling and Analysis for Spatial Data Hierarchical Modeling and Analysis for Spatial Data Bradley P. Carlin, Sudipto Banerjee, and Alan E. Gelfand brad@biostat.umn.edu, sudiptob@biostat.umn.edu, and alan@stat.duke.edu University of Minnesota

More information

Hierarchical Modelling for non-gaussian Spatial Data

Hierarchical Modelling for non-gaussian Spatial Data Hierarchical Modelling for non-gaussian Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data Sue Welham Rothamsted Research Harpenden UK AL5 2JQ December 1, 2008 1 We will start by reviewing the principles

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Practicum : Spatial Regression

Practicum : Spatial Regression : Alexandra M. Schmidt Instituto de Matemática UFRJ - www.dme.ufrj.br/ alex 2014 Búzios, RJ, www.dme.ufrj.br Exploratory (Spatial) Data Analysis 1. Non-spatial summaries Numerical summaries: Mean, median,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Nearest Neighbor Gaussian Processes for Large Spatial Data

Nearest Neighbor Gaussian Processes for Large Spatial Data Nearest Neighbor Gaussian Processes for Large Spatial Data Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public Health, Johns

More information

Positive Definite Functions on Spheres

Positive Definite Functions on Spheres Positive Definite Functions on Spheres Tilmann Gneiting Institute for Applied Mathematics Heidelberg University, Germany t.gneiting@uni-heidelberg.de www.math.uni-heidelberg.de/spatial/tilmann/ International

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Hierarchical Modeling for non-gaussian Spatial Data

Hierarchical Modeling for non-gaussian Spatial Data Hierarchical Modeling for non-gaussian Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17

What s for today. All about Variogram Nugget effect. Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, / 17 What s for today All about Variogram Nugget effect Mikyoung Jun (Texas A&M) stat647 lecture 4 September 6, 2012 1 / 17 What is the variogram? Let us consider a stationary (or isotropic) random field Z

More information

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University

An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University An Introduction to Spatial Statistics Chunfeng Huang Department of Statistics, Indiana University Microwave Sounding Unit (MSU) Anomalies (Monthly): 1979-2006. Iron Ore (Cressie, 1986) Raw percent data

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH SURESH TRIPATHI Geostatistical Society of India Assumptions and Geostatistical Variogram

More information

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA)

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) Fluvial Variography: Characterizing Spatial Dependence on Stream Networks Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) March 5, 2015 Stream network data Flow Legend o 4.40-5.80

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

Introduction. Semivariogram Cloud

Introduction. Semivariogram Cloud Introduction Data: set of n attribute measurements {z(s i ), i = 1,, n}, available at n sample locations {s i, i = 1,, n} Objectives: Slide 1 quantify spatial auto-correlation, or attribute dissimilarity

More information

7 Geostatistics. Figure 7.1 Focus of geostatistics

7 Geostatistics. Figure 7.1 Focus of geostatistics 7 Geostatistics 7.1 Introduction Geostatistics is the part of statistics that is concerned with geo-referenced data, i.e. data that are linked to spatial coordinates. To describe the spatial variation

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Improving Spatial Data Interoperability

Improving Spatial Data Interoperability Improving Spatial Data Interoperability A Framework for Geostatistical Support-To To-Support Interpolation Michael F. Goodchild, Phaedon C. Kyriakidis, Philipp Schneider, Matt Rice, Qingfeng Guan, Jordan

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

ON THE USE OF NON-EUCLIDEAN ISOTROPY IN GEOSTATISTICS

ON THE USE OF NON-EUCLIDEAN ISOTROPY IN GEOSTATISTICS Johns Hopkins University, Dept. of Biostatistics Working Papers 12-5-2005 ON THE USE OF NON-EUCLIDEAN ISOTROPY IN GEOSTATISTICS Frank C. Curriero Department of Environmental Health Sciences and Biostatistics,

More information

Spatio-Temporal Geostatistical Models, with an Application in Fish Stock

Spatio-Temporal Geostatistical Models, with an Application in Fish Stock Spatio-Temporal Geostatistical Models, with an Application in Fish Stock Ioannis Elmatzoglou Submitted for the degree of Master in Statistics at Lancaster University, September 2006. Abstract Geostatistics

More information

Types of Spatial Data

Types of Spatial Data Spatial Data Types of Spatial Data Point pattern Point referenced geostatistical Block referenced Raster / lattice / grid Vector / polygon Point Pattern Data Interested in the location of points, not their

More information

Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets

Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets Is there spatial pattern? Chapter 3: Basics of Areal Data Models p. 1/18 Areal Unit Data Regular or Irregular Grids

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

Interpolation of Spatial Data

Interpolation of Spatial Data Michael L. Stein Interpolation of Spatial Data Some Theory for Kriging With 27 Illustrations Springer Contents Preface vii 1 Linear Prediction 1 1.1 Introduction 1 1.2 Best linear prediction 2 Exercises

More information

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2

E(x i ) = µ i. 2 d. + sin 1 d θ 2. for d < θ 2 0 for d θ 2 1 Gaussian Processes Definition 1.1 A Gaussian process { i } over sites i is defined by its mean function and its covariance function E( i ) = µ i c ij = Cov( i, j ) plus joint normality of the finite

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Spatial and Environmental Statistics

Spatial and Environmental Statistics Spatial and Environmental Statistics Dale Zimmerman Department of Statistics and Actuarial Science University of Iowa January 17, 2019 Dale Zimmerman (UIOWA) Spatial and Environmental Statistics January

More information

Lecture 9: Introduction to Kriging

Lecture 9: Introduction to Kriging Lecture 9: Introduction to Kriging Math 586 Beginning remarks Kriging is a commonly used method of interpolation (prediction) for spatial data. The data are a set of observations of some variable(s) of

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University Seminar p.1/28 Predictive spatio-temporal models for spatially sparse environmental data Xavier de Luna and Marc G. Genton xavier.deluna@stat.umu.se and genton@stat.ncsu.edu http://www.stat.umu.se/egna/xdl/index.html

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Estimation of non-stationary spatial covariance structure

Estimation of non-stationary spatial covariance structure Estimation of non-stationary spatial covariance structure DAVID J NOTT Department of Statistics, University of New South Wales, Sydney 2052, Australia djn@mathsunsweduau WILLIAM T M DUNSMUIR Division of

More information

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire

More information

The ProbForecastGOP Package

The ProbForecastGOP Package The ProbForecastGOP Package April 24, 2006 Title Probabilistic Weather Field Forecast using the GOP method Version 1.3 Author Yulia Gel, Adrian E. Raftery, Tilmann Gneiting, Veronica J. Berrocal Description

More information

Assessing the covariance function in geostatistics

Assessing the covariance function in geostatistics Statistics & Probability Letters 52 (2001) 199 206 Assessing the covariance function in geostatistics Ana F. Militino, M. Dolores Ugarte Departamento de Estadstica e Investigacion Operativa, Universidad

More information

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Hatice Çitakoğlu 1, Murat Çobaner 1, Tefaruk Haktanir 1, 1 Department of Civil Engineering, Erciyes University, Kayseri,

More information

Spatial analysis is the quantitative study of phenomena that are located in space.

Spatial analysis is the quantitative study of phenomena that are located in space. c HYON-JUNG KIM, 2016 1 Introduction Spatial analysis is the quantitative study of phenomena that are located in space. Spatial data analysis usually refers to an analysis of the observations in which

More information

Spatial-Temporal Modeling of Active Layer Thickness

Spatial-Temporal Modeling of Active Layer Thickness Spatial-Temporal Modeling of Active Layer Thickness Qian Chen Advisor : Dr. Tatiyana Apanasovich Department of Statistics The George Washington University Abstract The objective of this study is to provide

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Introduction to Bayes and non-bayes spatial statistics

Introduction to Bayes and non-bayes spatial statistics Introduction to Bayes and non-bayes spatial statistics Gabriel Huerta Department of Mathematics and Statistics University of New Mexico http://www.stat.unm.edu/ ghuerta/georcode.txt General Concepts Spatial

More information

Bayesian Transgaussian Kriging

Bayesian Transgaussian Kriging 1 Bayesian Transgaussian Kriging Hannes Müller Institut für Statistik University of Klagenfurt 9020 Austria Keywords: Kriging, Bayesian statistics AMS: 62H11,60G90 Abstract In geostatistics a widely used

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Bayesian Thinking in Spatial Statistics

Bayesian Thinking in Spatial Statistics Bayesian Thinking in Spatial Statistics Lance A. Waller Department of Biostatistics Rollins School of Public Health Emory University 1518 Clifton Road NE Atlanta, GA 30322 E-mail: lwaller@sph.emory.edu

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics,

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics, Chapter 1 Summer School GEOSTAT 2014, Geostatistics, 2014-06-19 sum- http://ifgi.de/graeler Institute for Geoinformatics University of Muenster 1.1 Spatial Data From a purely statistical perspective, spatial

More information

Part 5: Spatial-Temporal Modeling

Part 5: Spatial-Temporal Modeling Part 5: Spatial-Temporal Modeling 1 Introductory Model Formulation For a broad spectrum of applications within the realm of spatial statistics, commonly the data vary across both space and time giving

More information

Model Assessment and Comparisons

Model Assessment and Comparisons Model Assessment and Comparisons Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Generating Spatial Correlated Binary Data Through a Copulas Method

Generating Spatial Correlated Binary Data Through a Copulas Method Science Research 2015; 3(4): 206-212 Published online July 23, 2015 (http://www.sciencepublishinggroup.com/j/sr) doi: 10.11648/j.sr.20150304.18 ISSN: 2329-0935 (Print); ISSN: 2329-0927 (Online) Generating

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

1 Isotropic Covariance Functions

1 Isotropic Covariance Functions 1 Isotropic Covariance Functions Let {Z(s)} be a Gaussian process on, ie, a collection of jointly normal random variables Z(s) associated with n-dimensional locations s The joint distribution of {Z(s)}

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

Overview of Statistical Analysis of Spatial Data

Overview of Statistical Analysis of Spatial Data Overview of Statistical Analysis of Spatial Data Geog 2C Introduction to Spatial Data Analysis Phaedon C. Kyriakidis www.geog.ucsb.edu/ phaedon Department of Geography University of California Santa Barbara

More information

Influence of parameter estimation uncertainty in Kriging: Part 2 Test and case study applications

Influence of parameter estimation uncertainty in Kriging: Part 2 Test and case study applications Hydrology and Earth System Influence Sciences, of 5(), parameter 5 3 estimation (1) uncertainty EGS in Kriging: Part Test and case study applications Influence of parameter estimation uncertainty in Kriging:

More information

Derivatives of Spatial Variances of Growing Windows and the Variogram 1

Derivatives of Spatial Variances of Growing Windows and the Variogram 1 Mathematical Geology, Vol. 3, No. 7, 000 Derivatives of Spatial Variances of Growing Windows and the Variogram 1 J. A. Vargas-Guzmán, D. E. Myers, 3 and A. W. Warrick 4 Geostatistical analysis of spatial

More information

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract Statistical Models for Monitoring and Regulating Ground-level Ozone Eric Gilleland 1 and Douglas Nychka 2 Abstract The application of statistical techniques to environmental problems often involves a tradeoff

More information

On prediction and density estimation Peter McCullagh University of Chicago December 2004

On prediction and density estimation Peter McCullagh University of Chicago December 2004 On prediction and density estimation Peter McCullagh University of Chicago December 2004 Summary Having observed the initial segment of a random sequence, subsequent values may be predicted by calculating

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time Space-time data Observations taken over space and over time Z(s, t): indexed by space, s, and time, t Here, consider geostatistical/time data Z(s, t) exists for all locations and all times May consider

More information

Nonstationary cross-covariance models for multivariate processes on a globe

Nonstationary cross-covariance models for multivariate processes on a globe Nonstationary cross-covariance models for multivariate processes on a globe Mikyoung Jun 1 April 15, 2011 Abstract: In geophysical and environmental problems, it is common to have multiple variables of

More information

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA

Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA Paper Review: NONSTATIONARY COVARIANCE MODELS FOR GLOBAL DATA BY MIKYOUNG JUN AND MICHAEL L. STEIN Presented by Sungkyu Jung April, 2009 Outline 1 Introduction 2 Covariance Models 3 Application: Level

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Non-stationary Cross-Covariance Models for Multivariate Processes on a Globe

Non-stationary Cross-Covariance Models for Multivariate Processes on a Globe Scandinavian Journal of Statistics, Vol. 38: 726 747, 2011 doi: 10.1111/j.1467-9469.2011.00751.x Published by Blackwell Publishing Ltd. Non-stationary Cross-Covariance Models for Multivariate Processes

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information