An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University

Size: px
Start display at page:

Download "An Introduction to Spatial Statistics. Chunfeng Huang Department of Statistics, Indiana University"

Transcription

1 An Introduction to Spatial Statistics Chunfeng Huang Department of Statistics, Indiana University

2

3 Microwave Sounding Unit (MSU) Anomalies (Monthly):

4 Iron Ore (Cressie, 1986) Raw percent data

5 North Carolina sudden infant deaths, and (Cressie, 1993) SIDS (sudden infant death syndrome) in North Carolina 36.5 N N 35.5 N 35 N 34.5 N 34 N N 36 N 35.5 N 35 N 34.5 N 84 W 82 W 80 W 78 W 76 W 34 N

6 cells japanesepines redwoodfull

7 Three types of spatial data Geostatistics Variogram Kriging Lattice or Areal data Markov Random Field Conditional Autoregressive Model (CAR) Spatial point pattern Complete spatial randomness (CSR) K function, L function

8 Geostatistics: Quantify spatial dependency and Assumptions Second-order stationarity: E(Z(s i )) = µ, cov(z(s i ), Z(s j )) = C(s i s j ) Isotropy: cov(z(s i ), Z(s j )) = C( s i s j ) Intrinsic stationarity: E(Z(s i )) = µ, var(z(s i ) Z(s j )) = 2γ(s i s j ) γ( ): semi-variogram, 2γ( ): variogram. Stationary implies intrinsic stationary: γ(s i s j ) = C(0) C(s i s j ) Intrinsic stationary does not necessarily imply stationary.

9 vgm(1,"sph",1.5,nugget=0.2) semivariance distance

10 Variogram (Semi-variogram) Sill, range, nugget Conditional negative definite. (Variance may be negative if this is not satisfied.) Parametric models

11 vgm(1,"nug",0) vgm(1,"exp",1) vgm(1,"sph",1) vgm(1,"gau",1) vgm(1,"exc",1) vgm(1,"mat",1) vgm(1,"ste",1) vgm(1,"cir",1) vgm(1,"lin",0) vgm(1,"bes",1) semivariance 3 2 vgm(1,"pen",1) vgm(1,"per",1) vgm(1,"hol",1) vgm(1,"log",1) vgm(1,"pow",1) vgm(1,"spl",1) vgm(1,"leg",1) distance

12 Estimation of variogram Empirical variogram (Method-of-moments estimator) 2ˆγ(h) = 1 N(h) {Z(s i ) Z(s j )} 2, N(h) where N(h) is the set of pairs with distance h, N(h) is the number of pairs. Tolerance regions. Fitting parametric models (weighted least squares, MLE, REML)

13 Empirical variogram semivariance distance

14 Empirical variogram semivariance distance

15 Kriging Suppose we observe a spatial process Z(s 1 ), Z(s 2 ),..., Z(s n ). The best (in terms of minimizing mean squared prediction error) unbiased linear predictor of Z(s 0 ) is (Cressie, 1993) Ẑ(s 0 ) = n λ i Z(s i ), i=1 where (λ 1,..., λ n ) = ( γ + 1 (1 1T Γ 1 ) T γ) 1 T Γ 1 Γ 1 1 γ = (γ(s 0 s 1 ),..., γ(s 0 s n )) T Kriging variance: Γ = {γ(s i s j )} n n σ 2 K (s 0) = λ T Γ 1 λ (1 T Γ 1 1 1) 2 /(1 T Γ 1 1)

16 Z y x

17 Prediction MSE y x

18 Northing x x o o x o x o x xo x x o o x o o Iron Ore % ox ox o o o o o o x o ox x o o x x x x x o o o ox x ox x x x Easting x o = Median Iron Ore % Iron Ore % x = Mean Iron Ore %

19 Areal Data or Lattice Data Simultaneous autoregressive (SAR) model z(s 1 ) = +b 12 z(s 2 ) b 1n z(s n ) + ɛ 1 z(s 2 ) = b 21 z(s 1 ) b 2n z(s n ) + ɛ 2. z(s n ) = b n1 z(s 1 ) + b n2 z(s 2 ) ɛ n Or z = Bz + ɛ Explanatory variables. One can show that ɛ is not independent of z. What if z is discrete?

20 Conditional autoregressive (CAR) model where z(s i ) {z(s j ) : j i} N( n i=1 c ij τ 2 j = c ji τ 2 i, c ii = 0 c ij z(s j ), τ 2 i ) If we further assume the conditional dependency only through the neighborhood of s i : N(s i ) (Markov random field (MRF)) c ik = 0, k / N(s i )

21 Response variable falls in exponential family: auto spatial models. Response variable is normal: auto Gaussian model. Response variable is binary: auto logistic model. Response variable is poisson: auto poisson model. SAR can be represented as a CAR model. Not necessarily vice versa, see example in Cressie (1993). Markov random field theory is used to guide from the conditional distributions to a valid joint distribution.

22 Proximity matrix W. Some choices for W ij (W ii = 0): W ij = 1 if i, j share a common boundary. W ij is an inverse distance between units. W ij = 1 if distance between i and j less than some fixed value. W ij = 1 for m nearest neighbors.

23 CAR model where and z N(X β, (I C) 1 M) C = {c ij } n n, M = τ 2 I C = ρw ρ = 0 spatial independence Condition on ρ: I ρw is positive definite.

24 Spatial point process A spatial point process is said to have the complete spatial randomness (CSR) property if it is a homogeneous poisson point process. A 1,..., A r disjoint, then N(A 1 ),..., N(A r ) are independent. (N(A) : number of events in A) N(A) Poisson(λ A ), where A is the volume of A.

25 Testing for CSR W : distance from a randomly chosen event to its nearest event. X : point to nearest event. Through Monte Carlo test.

26 First order intensity function λ(x) = lim dx 0 Second order intensity function λ 2 (x, y) = lim dx, dy 0 { } E[N(dx)] dx Stationary: λ(x) = λ, λ 2 (x, y) = λ 2 (x y) Isotropy: λ 2 (x y) = λ 2 ( x y ) Under CSR: λ(x) = λ, λ 2 (x, y) = λ 2 { } E[N(dx)N(dy)] dx dy

27 K function K(t) = 1 λ E[N 0(t)] where N 0 (t) is the number of further events within distance t of an arbitrary event. One can show that λ 2 (t) = λ2 K (t), λ 2 K(t) = 2π 2πt For the CSR: K(t) = πt 2 L function: L(t) = K(t)/π t t 0 λ 2 (y)ydy

28 Kenvjap K(r) K obs(r) K theo(r) K hi(r) K lo(r) r

29 Kenvred K(r) K obs(r) K theo(r) K hi(r) K lo(r) r

30 References Cressie, N. (1993), Statistics for Spatial Data, rev. ed., Wiley. Cressie, N. and Wikle, C. (2012), Statistics for Spatio-Temporal Data, Wiley. Diggle, P. J. (1983), Statistical Analysis of Spatial Point Patterns, Academic Press. Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004), Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall. Bivand, R., Pebesma, E. and Gomez-Rubio V. (2008), Applied Spatial Data Analysis with R, Springer-Verlag. Stein, M. (1999), Interpolation of Spatial Data. Cressie, N. (1986). Kiring non stationary data. Journal of American Statistical Association, 81,

Spatial and Environmental Statistics

Spatial and Environmental Statistics Spatial and Environmental Statistics Dale Zimmerman Department of Statistics and Actuarial Science University of Iowa January 17, 2019 Dale Zimmerman (UIOWA) Spatial and Environmental Statistics January

More information

Asymptotic standard errors of MLE

Asymptotic standard errors of MLE Asymptotic standard errors of MLE Suppose, in the previous example of Carbon and Nitrogen in soil data, that we get the parameter estimates For maximum likelihood estimation, we can use Hessian matrix

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

BAYESIAN MODEL FOR SPATIAL DEPENDANCE AND PREDICTION OF TUBERCULOSIS

BAYESIAN MODEL FOR SPATIAL DEPENDANCE AND PREDICTION OF TUBERCULOSIS BAYESIAN MODEL FOR SPATIAL DEPENDANCE AND PREDICTION OF TUBERCULOSIS Srinivasan R and Venkatesan P Dept. of Statistics, National Institute for Research Tuberculosis, (Indian Council of Medical Research),

More information

Practicum : Spatial Regression

Practicum : Spatial Regression : Alexandra M. Schmidt Instituto de Matemática UFRJ - www.dme.ufrj.br/ alex 2014 Búzios, RJ, www.dme.ufrj.br Exploratory (Spatial) Data Analysis 1. Non-spatial summaries Numerical summaries: Mean, median,

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH SURESH TRIPATHI Geostatistical Society of India Assumptions and Geostatistical Variogram

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph Spatial analysis Huge topic! Key references Diggle (point patterns); Cressie (everything); Diggle and Ribeiro (geostatistics); Dormann et al (GLMMs for species presence/abundance); Haining; (Pinheiro and

More information

Recent Developments in Biostatistics: Space-Time Models. Tuesday: Geostatistics

Recent Developments in Biostatistics: Space-Time Models. Tuesday: Geostatistics Recent Developments in Biostatistics: Space-Time Models Tuesday: Geostatistics Sonja Greven Department of Statistics Ludwig-Maximilians-Universität München (with special thanks to Michael Höhle for some

More information

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case Areal data models Spatial smoothers Brook s Lemma and Gibbs distribution CAR models Gaussian case Non-Gaussian case SAR models Gaussian case Non-Gaussian case CAR vs. SAR STAR models Inference for areal

More information

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics,

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics, Chapter 1 Summer School GEOSTAT 2014, Geostatistics, 2014-06-19 sum- http://ifgi.de/graeler Institute for Geoinformatics University of Muenster 1.1 Spatial Data From a purely statistical perspective, spatial

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Space-time analysis using a general product-sum model

Space-time analysis using a general product-sum model Space-time analysis using a general product-sum model De Iaco S., Myers D. E. 2 and Posa D. 3,4 Università di Chieti, Pescara - ITALY; sdeiaco@tiscalinet.it 2 University of Arizona, Tucson AZ - USA; myers@math.arizona.edu

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Second-Order Analysis of Spatial Point Processes

Second-Order Analysis of Spatial Point Processes Title Second-Order Analysis of Spatial Point Process Tonglin Zhang Outline Outline Spatial Point Processes Intensity Functions Mean and Variance Pair Correlation Functions Stationarity K-functions Some

More information

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

Geostatistics for Gaussian processes

Geostatistics for Gaussian processes Introduction Geostatistical Model Covariance structure Cokriging Conclusion Geostatistics for Gaussian processes Hans Wackernagel Geostatistics group MINES ParisTech http://hans.wackernagel.free.fr Kernels

More information

Spatial analysis is the quantitative study of phenomena that are located in space.

Spatial analysis is the quantitative study of phenomena that are located in space. c HYON-JUNG KIM, 2016 1 Introduction Spatial analysis is the quantitative study of phenomena that are located in space. Spatial data analysis usually refers to an analysis of the observations in which

More information

STATISTICAL INTERPOLATION METHODS RICHARD SMITH AND NOEL CRESSIE Statistical methods of interpolation are all based on assuming that the process

STATISTICAL INTERPOLATION METHODS RICHARD SMITH AND NOEL CRESSIE Statistical methods of interpolation are all based on assuming that the process 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 STATISTICAL INTERPOLATION METHODS

More information

A kernel indicator variogram and its application to groundwater pollution

A kernel indicator variogram and its application to groundwater pollution Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS101) p.1514 A kernel indicator variogram and its application to groundwater pollution data Menezes, Raquel University

More information

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time Space-time data Observations taken over space and over time Z(s, t): indexed by space, s, and time, t Here, consider geostatistical/time data Z(s, t) exists for all locations and all times May consider

More information

Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets

Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets Areal Unit Data Regular or Irregular Grids or Lattices Large Point-referenced Datasets Is there spatial pattern? Chapter 3: Basics of Areal Data Models p. 1/18 Areal Unit Data Regular or Irregular Grids

More information

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1 (Z i Z j ) 2 / 2 (Z i Zj) 2 / 2 Semivariance y 11/8/2018 Spatial Interpolation & Geostatistics Kriging Step 1 Describe spatial variation with Semivariogram Lag Distance between pairs of points Lag Mean

More information

Lecture 7 Autoregressive Processes in Space

Lecture 7 Autoregressive Processes in Space Lecture 7 Autoregressive Processes in Space Dennis Sun Stanford University Stats 253 July 8, 2015 1 Last Time 2 Autoregressive Processes in Space 3 Estimating Parameters 4 Testing for Spatial Autocorrelation

More information

Introduction. Semivariogram Cloud

Introduction. Semivariogram Cloud Introduction Data: set of n attribute measurements {z(s i ), i = 1,, n}, available at n sample locations {s i, i = 1,, n} Objectives: Slide 1 quantify spatial auto-correlation, or attribute dissimilarity

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes Chapter 4 - Fundamentals of spatial processes Lecture notes Geir Storvik January 21, 2013 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites Mostly positive correlation Negative

More information

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets

A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets A full scale, non stationary approach for the kriging of large spatio(-temporal) datasets Thomas Romary, Nicolas Desassis & Francky Fouedjio Mines ParisTech Centre de Géosciences, Equipe Géostatistique

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 y Kriging Step 1 Describe spatial variation with Semivariogram (Z i Z j ) 2 / 2 Point cloud Map 3

More information

Point patterns. The average number of events (the intensity, (s)) is homogeneous

Point patterns. The average number of events (the intensity, (s)) is homogeneous Point patterns Consider the point process {Z(s) :s 2 D R 2 }.Arealization of this process consists of a pattern (arrangement) of points in D. (D is a random set.) These points are called the events of

More information

An Introduction to Pattern Statistics

An Introduction to Pattern Statistics An Introduction to Pattern Statistics Nearest Neighbors The CSR hypothesis Clark/Evans and modification Cuzick and Edwards and controls All events k function Weighted k function Comparative k functions

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13 What s for today Random Fields Autocovariance Stationarity, Isotropy c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, 2012 1 / 13 Stochastic Process and Random Fields A stochastic process is a family

More information

Bayesian Thinking in Spatial Statistics

Bayesian Thinking in Spatial Statistics Bayesian Thinking in Spatial Statistics Lance A. Waller Department of Biostatistics Rollins School of Public Health Emory University 1518 Clifton Road NE Atlanta, GA 30322 E-mail: lwaller@sph.emory.edu

More information

SPATIAL-TEMPORAL TECHNIQUES FOR PREDICTION AND COMPRESSION OF SOIL FERTILITY DATA

SPATIAL-TEMPORAL TECHNIQUES FOR PREDICTION AND COMPRESSION OF SOIL FERTILITY DATA SPATIAL-TEMPORAL TECHNIQUES FOR PREDICTION AND COMPRESSION OF SOIL FERTILITY DATA D. Pokrajac Center for Information Science and Technology Temple University Philadelphia, Pennsylvania A. Lazarevic Computer

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information

Saddlepoint-Based Bootstrap Inference in Dependent Data Settings

Saddlepoint-Based Bootstrap Inference in Dependent Data Settings Saddlepoint-Based Bootstrap Inference in Dependent Data Settings Alex Trindade Dept. of Mathematics & Statistics, Texas Tech University Rob Paige, Missouri University of Science and Technology Indika Wickramasinghe,

More information

Geostatistics: Kriging

Geostatistics: Kriging Geostatistics: Kriging 8.10.2015 Konetekniikka 1, Otakaari 4, 150 10-12 Rangsima Sunila, D.Sc. Background What is Geostatitics Concepts Variogram: experimental, theoretical Anisotropy, Isotropy Lag, Sill,

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Limit Kriging. Abstract

Limit Kriging. Abstract Limit Kriging V. Roshan Joseph School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA 30332-0205, USA roshan@isye.gatech.edu Abstract A new kriging predictor is proposed.

More information

Spatial Statistics A Framework for Analyzing Geographically Referenced Data in Insurance Ratemaking

Spatial Statistics A Framework for Analyzing Geographically Referenced Data in Insurance Ratemaking Spatial Statistics A Framework for Analyzing Geographically Referenced Data in Insurance Ratemaking Satadru Sengupta Personal Market Liberty Mutual Group CAS Ratemaking & Product Management Seminar Chicago

More information

Roger S. Bivand Edzer J. Pebesma Virgilio Gömez-Rubio. Applied Spatial Data Analysis with R. 4:1 Springer

Roger S. Bivand Edzer J. Pebesma Virgilio Gömez-Rubio. Applied Spatial Data Analysis with R. 4:1 Springer Roger S. Bivand Edzer J. Pebesma Virgilio Gömez-Rubio Applied Spatial Data Analysis with R 4:1 Springer Contents Preface VII 1 Hello World: Introducing Spatial Data 1 1.1 Applied Spatial Data Analysis

More information

Approaches for Multiple Disease Mapping: MCAR and SANOVA

Approaches for Multiple Disease Mapping: MCAR and SANOVA Approaches for Multiple Disease Mapping: MCAR and SANOVA Dipankar Bandyopadhyay Division of Biostatistics, University of Minnesota SPH April 22, 2015 1 Adapted from Sudipto Banerjee s notes SANOVA vs MCAR

More information

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA)

Fluvial Variography: Characterizing Spatial Dependence on Stream Networks. Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) Fluvial Variography: Characterizing Spatial Dependence on Stream Networks Dale Zimmerman University of Iowa (joint work with Jay Ver Hoef, NOAA) March 5, 2015 Stream network data Flow Legend o 4.40-5.80

More information

Statistics 352: Spatial statistics. Jonathan Taylor. Department of Statistics. Models for discrete data. Stanford University.

Statistics 352: Spatial statistics. Jonathan Taylor. Department of Statistics. Models for discrete data. Stanford University. 352: 352: Models for discrete data April 28, 2009 1 / 33 Models for discrete data 352: Outline Dependent discrete data. Image data (binary). Ising models. Simulation: Gibbs sampling. Denoising. 2 / 33

More information

Combining Regressive and Auto-Regressive Models for Spatial-Temporal Prediction

Combining Regressive and Auto-Regressive Models for Spatial-Temporal Prediction Combining Regressive and Auto-Regressive Models for Spatial-Temporal Prediction Dragoljub Pokrajac DPOKRAJA@EECS.WSU.EDU Zoran Obradovic ZORAN@EECS.WSU.EDU School of Electrical Engineering and Computer

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Spatio-Temporal Geostatistical Models, with an Application in Fish Stock

Spatio-Temporal Geostatistical Models, with an Application in Fish Stock Spatio-Temporal Geostatistical Models, with an Application in Fish Stock Ioannis Elmatzoglou Submitted for the degree of Master in Statistics at Lancaster University, September 2006. Abstract Geostatistics

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Part 5: Spatial-Temporal Modeling

Part 5: Spatial-Temporal Modeling Part 5: Spatial-Temporal Modeling 1 Introductory Model Formulation For a broad spectrum of applications within the realm of spatial statistics, commonly the data vary across both space and time giving

More information

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract

Statistical Models for Monitoring and Regulating Ground-level Ozone. Abstract Statistical Models for Monitoring and Regulating Ground-level Ozone Eric Gilleland 1 and Douglas Nychka 2 Abstract The application of statistical techniques to environmental problems often involves a tradeoff

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Spatial analysis of a designed experiment. Uniformity trials. Blocking

Spatial analysis of a designed experiment. Uniformity trials. Blocking Spatial analysis of a designed experiment RA Fisher s 3 principles of experimental design randomization unbiased estimate of treatment effect replication unbiased estimate of error variance blocking =

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Lab #3 Background Material Quantifying Point and Gradient Patterns

Lab #3 Background Material Quantifying Point and Gradient Patterns Lab #3 Background Material Quantifying Point and Gradient Patterns Dispersion metrics Dispersion indices that measure the degree of non-randomness Plot-based metrics Distance-based metrics First-order

More information

Dale L. Zimmerman Department of Statistics and Actuarial Science, University of Iowa, USA

Dale L. Zimmerman Department of Statistics and Actuarial Science, University of Iowa, USA SPATIAL STATISTICS Dale L. Zimmerman Department of Statistics and Actuarial Science, University of Iowa, USA Keywords: Geostatistics, Isotropy, Kriging, Lattice Data, Spatial point patterns, Stationarity

More information

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN:

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN: Index Akaike information criterion (AIC) 105, 290 analysis of variance 35, 44, 127 132 angular transformation 22 anisotropy 59, 99 affine or geometric 59, 100 101 anisotropy ratio 101 exploring and displaying

More information

Fast kriging of large data sets with Gaussian Markov random fields

Fast kriging of large data sets with Gaussian Markov random fields Computational Statistics & Data Analysis 52 (2008) 233 2349 www.elsevier.com/locate/csda Fast kriging of large data sets with Gaussian Markov random fields Linda Hartman a,,, Ola Hössjer b,2 a Centre for

More information

Introduction to Bayes and non-bayes spatial statistics

Introduction to Bayes and non-bayes spatial statistics Introduction to Bayes and non-bayes spatial statistics Gabriel Huerta Department of Mathematics and Statistics University of New Mexico http://www.stat.unm.edu/ ghuerta/georcode.txt General Concepts Spatial

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA JAPANESE BEETLE DATA 6 MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA Gauge Plots TuscaroraLisa Central Madsen Fairways, 996 January 9, 7 Grubs Adult Activity Grub Counts 6 8 Organic Matter

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Effective Sample Size in Spatial Modeling

Effective Sample Size in Spatial Modeling Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS029) p.4526 Effective Sample Size in Spatial Modeling Vallejos, Ronny Universidad Técnica Federico Santa María, Department

More information

Spatial-Temporal Modeling of Active Layer Thickness

Spatial-Temporal Modeling of Active Layer Thickness Spatial-Temporal Modeling of Active Layer Thickness Qian Chen Advisor : Dr. Tatiyana Apanasovich Department of Statistics The George Washington University Abstract The objective of this study is to provide

More information

Anomaly Density Estimation from Strip Transect Data: Pueblo of Isleta Example

Anomaly Density Estimation from Strip Transect Data: Pueblo of Isleta Example Anomaly Density Estimation from Strip Transect Data: Pueblo of Isleta Example Sean A. McKenna, Sandia National Laboratories Brent Pulsipher, Pacific Northwest National Laboratory May 5 Distribution Statement

More information

Interpolation and 3D Visualization of Geodata

Interpolation and 3D Visualization of Geodata Marek KULCZYCKI and Marcin LIGAS, Poland Key words: interpolation, kriging, real estate market analysis, property price index ABSRAC Data derived from property markets have spatial character, no doubt

More information

Approximating likelihoods for large spatial data sets

Approximating likelihoods for large spatial data sets Approximating likelihoods for large spatial data sets By Michael Stein, Zhiyi Chi, and Leah Welty Jessi Cisewski April 28, 2009 1 Introduction Given a set of spatial data, often the desire is to estimate

More information

Markov random fields. The Markov property

Markov random fields. The Markov property Markov random fields The Markov property Discrete time: (X k X k!1,x k!2,... = (X k X k!1 A time symmetric version: (X k! X!k = (X k X k!1,x k+1 A more general version: Let A be a set of indices >k, B

More information

Areal data. Infant mortality, Auckland NZ districts. Number of plant species in 20cm x 20 cm patches of alpine tundra. Wheat yield

Areal data. Infant mortality, Auckland NZ districts. Number of plant species in 20cm x 20 cm patches of alpine tundra. Wheat yield Areal data Reminder about types of data Geostatistical data: Z(s) exists everyhere, varies continuously Can accommodate sudden changes by a model for the mean E.g., soil ph, two soil types with different

More information

adaptive prior information and Bayesian Partition Modelling.

adaptive prior information and Bayesian Partition Modelling. Beyond kriging - Dealing with discontinuous spatial data fields using adaptive prior information and Bayesian Partition Modelling. John Stephenson 1 (john.stephenson@imperial.ac.uk), K. Gallagher 1 and

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

An introduction to spatial point processes

An introduction to spatial point processes An introduction to spatial point processes Jean-François Coeurjolly 1 Examples of spatial data 2 Intensities and Poisson p.p. 3 Summary statistics 4 Models for point processes A very very brief introduction...

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

Spatial Statistics and Spatio-Temporal Data

Spatial Statistics and Spatio-Temporal Data Spatial Statistics and Spatio-Temporal Data Covariance Functions and Directional Properties Michael Sherman Texas A&M University, USA Spatial Statistics and Spatio-Temporal Data WILEY SERIES IN PROBABILITY

More information

GIST 4302/5302: Spatial Analysis and Modeling Point Pattern Analysis

GIST 4302/5302: Spatial Analysis and Modeling Point Pattern Analysis GIST 4302/5302: Spatial Analysis and Modeling Point Pattern Analysis Guofeng Cao www.spatial.ttu.edu Department of Geosciences Texas Tech University guofeng.cao@ttu.edu Fall 2018 Spatial Point Patterns

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

Assessing the covariance function in geostatistics

Assessing the covariance function in geostatistics Statistics & Probability Letters 52 (2001) 199 206 Assessing the covariance function in geostatistics Ana F. Militino, M. Dolores Ugarte Departamento de Estadstica e Investigacion Operativa, Universidad

More information

Point process with spatio-temporal heterogeneity

Point process with spatio-temporal heterogeneity Point process with spatio-temporal heterogeneity Jony Arrais Pinto Jr Universidade Federal Fluminense Universidade Federal do Rio de Janeiro PASI June 24, 2014 * - Joint work with Dani Gamerman and Marina

More information

Spatial Models: A Quick Overview Astrostatistics Summer School, 2017

Spatial Models: A Quick Overview Astrostatistics Summer School, 2017 Spatial Models: A Quick Overview Astrostatistics Summer School, 2017 Murali Haran Department of Statistics Penn State University April 10, 2017 1 What this tutorial will cover I will explain why spatial

More information

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Master s Thesis Presentation Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master s Thesis Presentation

More information

RESEARCH REPORT. Estimation of sample spacing in stochastic processes. Anders Rønn-Nielsen, Jon Sporring and Eva B.

RESEARCH REPORT. Estimation of sample spacing in stochastic processes.   Anders Rønn-Nielsen, Jon Sporring and Eva B. CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING www.csgb.dk RESEARCH REPORT 6 Anders Rønn-Nielsen, Jon Sporring and Eva B. Vedel Jensen Estimation of sample spacing in stochastic processes No. 7,

More information

7 Geostatistics. Figure 7.1 Focus of geostatistics

7 Geostatistics. Figure 7.1 Focus of geostatistics 7 Geostatistics 7.1 Introduction Geostatistics is the part of statistics that is concerned with geo-referenced data, i.e. data that are linked to spatial coordinates. To describe the spatial variation

More information

Types of Spatial Data

Types of Spatial Data Spatial Data Types of Spatial Data Point pattern Point referenced geostatistical Block referenced Raster / lattice / grid Vector / polygon Point Pattern Data Interested in the location of points, not their

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

SPATIO-TEMPORAL REGRESSION MODELS FOR DEFORESTATION IN THE BRAZILIAN AMAZON

SPATIO-TEMPORAL REGRESSION MODELS FOR DEFORESTATION IN THE BRAZILIAN AMAZON SPATIO-TEMPORAL REGRESSION MODELS FOR DEFORESTATION IN THE BRAZILIAN AMAZON Giovana M. de Espindola a, Edzer Pebesma b,c1, Gilberto Câmara a a National institute for space research (INPE), Brazil b Institute

More information

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data

REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data REML Estimation and Linear Mixed Models 4. Geostatistics and linear mixed models for spatial data Sue Welham Rothamsted Research Harpenden UK AL5 2JQ December 1, 2008 1 We will start by reviewing the principles

More information

OFTEN we need to be able to integrate point attribute information

OFTEN we need to be able to integrate point attribute information ALLAN A NIELSEN: GEOSTATISTICS AND ANALYSIS OF SPATIAL DATA 1 Geostatistics and Analysis of Spatial Data Allan A Nielsen Abstract This note deals with geostatistical measures for spatial correlation, namely

More information

Multiple Imputation for Missing Data in Repeated Measurements Using MCMC and Copulas

Multiple Imputation for Missing Data in Repeated Measurements Using MCMC and Copulas Multiple Imputation for Missing Data in epeated Measurements Using MCMC and Copulas Lily Ingsrisawang and Duangporn Potawee Abstract This paper presents two imputation methods: Marov Chain Monte Carlo

More information