A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

Size: px
Start display at page:

Download "A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking"

Transcription

1 A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire des Signaux et Systemes, Supelec, Paris, Gif-sur-Yvette

2 Spatio-temporal observations New York City air pollution data, PM2.5 measure is one of six primary air pollutants and is a mixture of fine particles and gaseous compounds such as sulphur dioxide (SO2) and nitrogen oxides (NOx)

3 PM2.5 In 2002, every 3 days and during the first 9 months, 91 equally spaced days, observed at 15 monitoring stations, X (s, t), see [SM05], {Z (s, t) = t X (s, t) : (s, t) : s R 2, t Z} Days

4 Longitudes Missing data: mean by locations and fixed in time, but 3/4 of data at Location #11 is missing, namely from days 24th to 91st, location s 0, {Z(s 0, t); t = 1, 2, 3...n}. Sample {Z (s i, t) ; s i = 1, 2,...m; t = 1,..., n}. Bronx, Brooklyn, Manhattan, Queens, Staten Island X = Y = Latitudes

5 X = Y =

6 We assume that the random process is spatially and temporally second order stationary, homogeneous and isotropic, i.e. E [Z (s, t)] = µ, Var [Z (s, t)] = σ 2 Z < Cov [Z (s, t), Z (s + h, t + u)] = c (h, u) = c ( h, u), We note that c (h, 0) and c (0, u) correspond to the purely spatial and purely temporal covariances. Spatio-temporal variogram for {Z (h, t)} 2γ (h, u) = Var [Z (s + h, t + u) Z (s, t)]. 2γ (h, u) = 2 [c (0, 0) c (h, u)], for an isotropic process, γ (h, u) = γ ( h, u).

7 DFT Frequency domain in time and Spatial domain in space, {Z (s i, t) ; t = 1,..., n} DFT at ω k = 2πk n, k = 0, ±1,..., ± [ n 2]. J si (ω k ) = 1 2πn n t=1 Z (s i, t) e itω k, periodogram I si (ω k ) = J si (ω k ) 2.

8 J si (ω k ) asymptotically independent and Gaussian Isotropy E (J si (ω k )) = 0 Var (J si (ω k )) = E (I si (ω k )) g si (ω k ). Cov ( J si (ω k ), J si ( ωk )) 0, k = k. g si (ω k ) = g (ω k ), for all i

9 Fourier T and Spectral Repr Introduce white noise Laplacian [ 2 J s,e (ω) = s s 2 2 [ ] n e is λ dz e (λ, ω). 2π c (ω) 2 ] ν J s (ω) = J s,e (ω). ( λ 2 1 λ 2 2 c (ω) 2) ν dzz (λ, ω) = dz e (λ, ω),

10 Spectral density Covariance f z (λ, ω) = σ 2 e (2π) 2 ( λ λ c (ω) 2) 2ν Cov (J s (ω), J s+h (ω)) ( ) = σ2 e h 2ν 1 K 2ν 1 ( c (ω) h ) 2π 2 c (ω) Γ(2ν) K 2ν 1 : modified Bessel function of the second kind of order 2ν 1.

11 General, R d, ν 2 integer, correlation function is given by ρ ( h, ω) = ( h c d (ω) )2ν 2 2 2ν d 2 1 Γ ( )K 2ν d 2ν d ( h c (ω) ), 2 2 and C (0, ω) = (2π) d 2 2 d 2 σ 2 e ( c (ω) 2) 2ν d 2 Γ ( 2ν d 2 Γ (2ν) ) = g (ω).

12 Parameters C (0, ω) = σ 2 e 2 (2ν 1) ( c (ω) 2) 2ν 1 = g (ω). c (ω) 2 and common spectral density g (ω), ARMA, FARMA etc.. Estimation of parameters

13 Correlation ρ ( h, ω) = C ( h, ω) C (0, ω) = 1 2 2ν 2 Γ (2ν 1) ( h c (ω) ) 2ν 1 K 2ν 1 ( c (ω) h ). Special case ν = 1, ρ ( h, ω) = h c (ω) K 1 ( h c (ω) ).

14 Spatio-temporal prediction J s0 (ω) = and by inversion, we have 1 (2πn) n t=1 Z (s 0, t) e itω, Z (s 0, t) = n 2π π π J s0 (ω) e itω dω. In other words given {J s0 (ω), for all π ω π}, we can uniquely recover the sequence {Z (s 0, t) ; t = 1,..., n}.

15 Given We note J m (ω) = [J s1 (ω), J s2 (ω),..., J sm (ω)]. E [J m (ω)] = 0 E [J m (ω) J m (ω)] = F m (ω), F m (ω) = (C ( s i s j, ω) ; i, j = 1, 2,..., m), and each element C ( s i s j, ω) is given above.

16 J m+1 (ω) = [J 0 (ω), J m (ω)], which has zero mean, and variance covariance matrix = = E [J m+1 (ω) J m+1 (ω)] [ C 0 (0, ω) E (J 0 (ω) J m (ω)) E (J m (ω) J0 (ω)) E (J m (ω) J m (ω)) [ C0 (0, ω) G ] 0 (ω), G 0 (ω) F m (ω) ]

17 C 0 (0, ω) = E (J 0 (ω) J 0 (ω)) = C (0, ω), G 0 (ω) = E [J 0 (ω) J m (ω)] = [C ( s 0 s 1, ω),..., C ( s 0 s m, ω)] E [J 0 (ω) J m (ω)] = G 0 (ω) F 1 m the minimum mean square error (ω) J m (ω) σ 2 m (ω) = C (0, ω) G 0 (ω) F 1 m (ω) G 0 (ω). Ĵ 0 (ω) = Ĝ 0 (ω) ˆF 1 m (ω) J m (ω).

18 Air pollution data, common spectral density g (ω), ARMA(1,1), parameters estimation by Whittle method, see [ST13] for details Predicted Measured & means Gy. Terdik & S. Rao T. (UofD, 0 HU & UofM, 20UK ) Spatio-Temporal 40 Fields

19

20 S. K. S K. V. M. A bayesian kriged kalman model for short-term forecasting of air pollution levels. Journal of the Royal Statistical Society: Series C (Applied Statistics) 54(1), (2005). T. S R G. T. A space-time covariance function for spatio-temporal random processes and spatio-temporal prediction (kriging). ArXiv e-prints (November 2013).

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19

What s for today. Introduction to Space-time models. c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, / 19 What s for today Introduction to Space-time models c Mikyoung Jun (Texas A&M) Stat647 Lecture 14 October 16, 2012 1 / 19 Space-time Data So far we looked at the data that vary over space Now we add another

More information

Symmetry and Separability In Spatial-Temporal Processes

Symmetry and Separability In Spatial-Temporal Processes Symmetry and Separability In Spatial-Temporal Processes Man Sik Park, Montserrat Fuentes Symmetry and Separability In Spatial-Temporal Processes 1 Motivation In general, environmental data have very complex

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry

More information

Introduction to Spatial Data and Models

Introduction to Spatial Data and Models Introduction to Spatial Data and Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

A Frequency Domain Approach for the Estimation of Parameters of Spatio-Temporal Stationary Random Processes

A Frequency Domain Approach for the Estimation of Parameters of Spatio-Temporal Stationary Random Processes A Frequency Domain Approach for the Estimation of Parameters of Spatio-Temporal Stationary Random Processes Tata Subba Rao, Sourav Das & Georgi Boshnakov First version: 5 October 202 Research Report No.

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

1 Isotropic Covariance Functions

1 Isotropic Covariance Functions 1 Isotropic Covariance Functions Let {Z(s)} be a Gaussian process on, ie, a collection of jointly normal random variables Z(s) associated with n-dimensional locations s The joint distribution of {Z(s)}

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

CBMS Lecture 1. Alan E. Gelfand Duke University

CBMS Lecture 1. Alan E. Gelfand Duke University CBMS Lecture 1 Alan E. Gelfand Duke University Introduction to spatial data and models Researchers in diverse areas such as climatology, ecology, environmental exposure, public health, and real estate

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

On the frequency variogram and on frequency domain methods for the analysis of spatio-temporal data.

On the frequency variogram and on frequency domain methods for the analysis of spatio-temporal data. On the frequency variogram and on frequency domain methods for the analysis of spatio-temporal data. arxiv:1610.05891v1 [math.st] 19 Oct 2016 T. Subba Rao University of Manchester,U.K. and C. R. Rao AIMSCS,

More information

Spatio-temporal modelling of daily air temperature in Catalonia

Spatio-temporal modelling of daily air temperature in Catalonia Spatio-temporal modelling of daily air temperature in Catalonia M. Saez 1,, M.A. Barceló 1,, A. Tobias 3, D. Varga 1,4 and R. Ocaña-Riola 5 1 Research Group on Statistics, Applied Economics and Health

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Publications (in chronological order)

Publications (in chronological order) Publications (in chronological order) 1. A note on the investigation of the optimal weight function in estimation of the spectral density (1963), J. Univ. Gau. 14, pages 141 149. 2. On the cross periodogram

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

New Classes of Asymmetric Spatial-Temporal Covariance Models. Man Sik Park and Montserrat Fuentes 1

New Classes of Asymmetric Spatial-Temporal Covariance Models. Man Sik Park and Montserrat Fuentes 1 New Classes of Asymmetric Spatial-Temporal Covariance Models Man Sik Park and Montserrat Fuentes 1 Institute of Statistics Mimeo Series# 2584 SUMMARY Environmental spatial data often show complex spatial-temporal

More information

Kalman Filter in Real Time URBIS

Kalman Filter in Real Time URBIS 2010-0000 Kalman Filter in Real Time URBIS Date Jan 2010 Author(s) R. Kranenburg Projectnumber Keywords NOx, Real Time URBIS, Uncertainty, Rijnmond Target 2010-0000 2 / 72 Contents 1 Introduction 4 2 Model

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Simple example of analysis on spatial-temporal data set

Simple example of analysis on spatial-temporal data set Simple example of analysis on spatial-temporal data set I used the ground level ozone data in North Carolina (from Suhasini Subba Rao s website) The original data consists of 920 days of data over 72 locations

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström.

Spatial Statistics with Image Analysis. Lecture L02. Computer exercise 0 Daily Temperature. Lecture 2. Johan Lindström. C Stochastic fields Covariance Spatial Statistics with Image Analysis Lecture 2 Johan Lindström November 4, 26 Lecture L2 Johan Lindström - johanl@maths.lth.se FMSN2/MASM2 L /2 C Stochastic fields Covariance

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Spatial Inference of Nitrate Concentrations in Groundwater

Spatial Inference of Nitrate Concentrations in Groundwater Spatial Inference of Nitrate Concentrations in Groundwater Dawn Woodard Operations Research & Information Engineering Cornell University joint work with Robert Wolpert, Duke Univ. Dept. of Statistical

More information

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency

Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Gaussian processes for spatial modelling in environmental health: parameterizing for flexibility vs. computational efficiency Chris Paciorek March 11, 2005 Department of Biostatistics Harvard School of

More information

BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN

BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN BAYESIAN KRIGING AND BAYESIAN NETWORK DESIGN Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C., U.S.A. J. Stuart Hunter Lecture TIES 2004

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

STAT 153: Introduction to Time Series

STAT 153: Introduction to Time Series STAT 153: Introduction to Time Series Instructor: Aditya Guntuboyina Lectures: 12:30 pm - 2 pm (Tuesdays and Thursdays) Office Hours: 10 am - 11 am (Tuesdays and Thursdays) 423 Evans Hall GSI: Brianna

More information

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell Background Benefits of Spectral Analysis Type of data Basic Idea

More information

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time

Space-time data. Simple space-time analyses. PM10 in space. PM10 in time Space-time data Observations taken over space and over time Z(s, t): indexed by space, s, and time, t Here, consider geostatistical/time data Z(s, t) exists for all locations and all times May consider

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Model selection Mean square error

More information

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University Seminar p.1/28 Predictive spatio-temporal models for spatially sparse environmental data Xavier de Luna and Marc G. Genton xavier.deluna@stat.umu.se and genton@stat.ncsu.edu http://www.stat.umu.se/egna/xdl/index.html

More information

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification François Bachoc Josselin Garnier Jean-Marc Martinez CEA-Saclay, DEN, DM2S, STMF,

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

On Moving Average Parameter Estimation

On Moving Average Parameter Estimation On Moving Average Parameter Estimation Niclas Sandgren and Petre Stoica Contact information: niclas.sandgren@it.uu.se, tel: +46 8 473392 Abstract Estimation of the autoregressive moving average (ARMA)

More information

Comments on New Approaches in Period Analysis of Astronomical Time Series by Pavlos Protopapas (Or: A Pavlosian Response ) Don Percival

Comments on New Approaches in Period Analysis of Astronomical Time Series by Pavlos Protopapas (Or: A Pavlosian Response ) Don Percival Comments on New Approaches in Period Analysis of Astronomical Time Series by Pavlos Protopapas (Or: A Pavlosian Response ) Don Percival Applied Physics Laboratory Department of Statistics University of

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13

What s for today. Random Fields Autocovariance Stationarity, Isotropy. c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, / 13 What s for today Random Fields Autocovariance Stationarity, Isotropy c Mikyoung Jun (Texas A&M) stat647 Lecture 2 August 30, 2012 1 / 13 Stochastic Process and Random Fields A stochastic process is a family

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University Bayesian Statistics and Data Assimilation Jonathan Stroud Department of Statistics The George Washington University 1 Outline Motivation Bayesian Statistics Parameter Estimation in Data Assimilation Combined

More information

COMPLEX SIGNALS are used in various areas of signal

COMPLEX SIGNALS are used in various areas of signal IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997 411 Second-Order Statistics of Complex Signals Bernard Picinbono, Fellow, IEEE, and Pascal Bondon, Member, IEEE Abstract The second-order

More information

Modeling and testing long memory in random fields

Modeling and testing long memory in random fields Modeling and testing long memory in random fields Frédéric Lavancier lavancier@math.univ-lille1.fr Université Lille 1 LS-CREST Paris 24 janvier 6 1 Introduction Long memory random fields Motivations Previous

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

NRCSE. Misalignment and use of deterministic models

NRCSE. Misalignment and use of deterministic models NRCSE Misalignment and use of deterministic models Work with Veronica Berrocal Peter Craigmile Wendy Meiring Paul Sampson Gregory Nikulin The choice of spatial scale some questions 1. Which spatial scale

More information

The Sobol decomposition

The Sobol decomposition Introduction Generalized decomposition Generalized sensitivity indices Examples of distribution The Sobol decomposition Suppose x =(x1,,x p ) [0, 1] p η : [0, 1] p R adeterministicfunction ANOVA decomposition

More information

arxiv: v1 [stat.me] 27 Aug 2015

arxiv: v1 [stat.me] 27 Aug 2015 Semiparametric estimation of spectral density function for irregular spatial data Shu Yang a,, Zhengyuan Zhu b arxiv:1508.06886v1 [stat.me] 27 Aug 2015 Abstract a Dept. of Biostatistics, Harvard University,

More information

Time series models in the Frequency domain. The power spectrum, Spectral analysis

Time series models in the Frequency domain. The power spectrum, Spectral analysis ime series models in the Frequency domain he power spectrum, Spectral analysis Relationship between the periodogram and the autocorrelations = + = ( ) ( ˆ α ˆ ) β I Yt cos t + Yt sin t t= t= ( ( ) ) cosλ

More information

PERIODIC ARMA MODELS: APPLICATION TO PARTICULATE MATTER CONCENTRATIONS

PERIODIC ARMA MODELS: APPLICATION TO PARTICULATE MATTER CONCENTRATIONS PERIODIC ARMA MODELS: APPLICATION TO PARTICULATE MATTER CONCENTRATIONS A. J. Q. Sarnaglia, V. A. Reisen, P. Bondon Federal University of Espírito Santo, Department of Statistics, Vitória, ES, Brazil Federal

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS

A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS Statistica Sinica 22 (2012), 1737-1764 doi:http://dx.doi.org/10.5705/ss.2010.251 A TEST FOR STATIONARITY OF SPATIO-TEMPORAL RANDOM FIELDS ON PLANAR AND SPHERICAL DOMAINS Mikyoung Jun and Marc G. Genton

More information

Generalised AR and MA Models and Applications

Generalised AR and MA Models and Applications Chapter 3 Generalised AR and MA Models and Applications 3.1 Generalised Autoregressive Processes Consider an AR1) process given by 1 αb)x t = Z t ; α < 1. In this case, the acf is, ρ k = α k for k 0 and

More information

A Complete Spatial Downscaler

A Complete Spatial Downscaler A Complete Spatial Downscaler Yen-Ning Huang, Brian J Reich, Montserrat Fuentes 1 Sankar Arumugam 2 1 Department of Statistics, NC State University 2 Department of Civil, Construction, and Environmental

More information

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated Spatial Trends and Spatial Extremes in South Korean Ozone Seokhoon Yun University of Suwon, Department of Applied Statistics Suwon, Kyonggi-do 445-74 South Korea syun@mail.suwon.ac.kr Richard L. Smith

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

More information

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics,

Chapter 1. Summer School GEOSTAT 2014, Spatio-Temporal Geostatistics, Chapter 1 Summer School GEOSTAT 2014, Geostatistics, 2014-06-19 sum- http://ifgi.de/graeler Institute for Geoinformatics University of Muenster 1.1 Spatial Data From a purely statistical perspective, spatial

More information

Uncertainty in merged radar - rain gauge rainfall products

Uncertainty in merged radar - rain gauge rainfall products Uncertainty in merged radar - rain gauge rainfall products Francesca Cecinati University of Bristol francesca.cecinati@bristol.ac.uk Supervisor: Miguel A. Rico-Ramirez This project has received funding

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Large sample distribution for fully functional periodicity tests

Large sample distribution for fully functional periodicity tests Large sample distribution for fully functional periodicity tests Siegfried Hörmann Institute for Statistics Graz University of Technology Based on joint work with Piotr Kokoszka (Colorado State) and Gilles

More information

Max stable Processes & Random Fields: Representations, Models, and Prediction

Max stable Processes & Random Fields: Representations, Models, and Prediction Max stable Processes & Random Fields: Representations, Models, and Prediction Stilian Stoev University of Michigan, Ann Arbor March 2, 2011 Based on joint works with Yizao Wang and Murad S. Taqqu. 1 Preliminaries

More information

Half-Spectral Space-Time Covariance Models

Half-Spectral Space-Time Covariance Models Half-Spectral Space-Time Covariance Models Michael T. Horrell & Michael L. Stein University of Chicago arxiv:1505.01243v1 [stat.me] 6 May 2015 September 18, 2018 Abstract We develop two new classes of

More information

Video Coding with Motion Compensation for Groups of Pictures

Video Coding with Motion Compensation for Groups of Pictures International Conference on Image Processing 22 Video Coding with Motion Compensation for Groups of Pictures Markus Flierl Telecommunications Laboratory University of Erlangen-Nuremberg mflierl@stanford.edu

More information

Bayesian inference methods for sources separation

Bayesian inference methods for sources separation A. Mohammad-Djafari, BeBec2012, February 22-23, 2012, Berlin, Germany, 1/12. Bayesian inference methods for sources separation Ali Mohammad-Djafari Laboratoire des Signaux et Systèmes, UMR8506 CNRS-SUPELEC-UNIV

More information

Bayesian X-ray Computed Tomography using a Three-level Hierarchical Prior Model

Bayesian X-ray Computed Tomography using a Three-level Hierarchical Prior Model L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 1/26 Bayesian X-ray Computed Tomography using a Three-level Hierarchical Prior Model Li Wang, Ali Mohammad-Djafari, Nicolas Gac Laboratoire

More information

Chapter 4 - Fundamentals of spatial processes Lecture notes

Chapter 4 - Fundamentals of spatial processes Lecture notes TK4150 - Intro 1 Chapter 4 - Fundamentals of spatial processes Lecture notes Odd Kolbjørnsen and Geir Storvik January 30, 2017 STK4150 - Intro 2 Spatial processes Typically correlation between nearby sites

More information

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100 ECE302 Spring 2006 Practice Final Exam Solution May 4, 2006 1 Name: Score: /100 You must show ALL of your work for full credit. This exam is open-book. Calculators may NOT be used. 1. As a function of

More information

A test for stationarity for irregularly spaced spatial data

A test for stationarity for irregularly spaced spatial data A test for stationarity for irregularly spaced spatial data Soutir Bandyopadhyay and Suhasini Subba Rao Department of Mathematics, Lehigh University Bethlehem, PA, U.S.A. Department of Statistics, Texas

More information

A Gaussian state-space model for wind fields in the North-East Atlantic

A Gaussian state-space model for wind fields in the North-East Atlantic A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013 Plan Motivations 1 Motivations 2 Context

More information

TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS. Wei-Ying Wu

TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS. Wei-Ying Wu TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Case study -3: Monthly streamflows

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets The spatial model Solving linear systems Matrix multiplication Creating sparsity Doug Nychka National Center for Atmospheric Research Sparsity,

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

Non-parametric identification

Non-parametric identification Non-parametric Non-parametric Transient Step-response using Spectral Transient Correlation Frequency function estimate Spectral System Identification, SSY230 Non-parametric 1 Non-parametric Transient Step-response

More information

Spatio-Temporal Analysis of Air Pollution Data in Malta

Spatio-Temporal Analysis of Air Pollution Data in Malta Spatio-Temporal Analysis of Air Pollution Data in Malta Ms Luana Chetcuti Zammit 1, Dr Kenneth Scerri 1, Dr Maria Attard 2, Ms Thérèse Bajada 3, Mr Mark Scerri 4 1 Systems and Control Engineering Department,

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Positive Definite Functions on Spheres

Positive Definite Functions on Spheres Positive Definite Functions on Spheres Tilmann Gneiting Institute for Applied Mathematics Heidelberg University, Germany t.gneiting@uni-heidelberg.de www.math.uni-heidelberg.de/spatial/tilmann/ International

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

Spectral and morphing ensemble Kalman filters

Spectral and morphing ensemble Kalman filters Spectral and morphing ensemble Kalman filters Department of Mathematical and Statistical Sciences University of Colorado Denver 91st American Meteorological Society Annual Meeting Seattle, WA, January

More information

Latent Gaussian Processes and Stochastic Partial Differential Equations

Latent Gaussian Processes and Stochastic Partial Differential Equations Latent Gaussian Processes and Stochastic Partial Differential Equations Johan Lindström 1 1 Centre for Mathematical Sciences Lund University Lund 2016-02-04 Johan Lindström - johanl@maths.lth.se Gaussian

More information

Point-Referenced Data Models

Point-Referenced Data Models Point-Referenced Data Models Jamie Monogan University of Georgia Spring 2013 Jamie Monogan (UGA) Point-Referenced Data Models Spring 2013 1 / 19 Objectives By the end of these meetings, participants should

More information

Bayesian nonparametric modelling of covariance functions, with application to time series and spatial statistics. Gudmund Horn Hermansen

Bayesian nonparametric modelling of covariance functions, with application to time series and spatial statistics. Gudmund Horn Hermansen Bayesian nonparametric modelling of covariance functions, with application to time series and spatial statistics by Gudmund Horn Hermansen THESIS presented for the degree of MASTER OF SCIENCE under the

More information

Model Selection for Geostatistical Models

Model Selection for Geostatistical Models Model Selection for Geostatistical Models Richard A. Davis Colorado State University http://www.stat.colostate.edu/~rdavis/lectures Joint work with: Jennifer A. Hoeting, Colorado State University Andrew

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

HIGHER ORDER CUMULANTS OF RANDOM VECTORS, DIFFERENTIAL OPERATORS, AND APPLICATIONS TO STATISTICAL INFERENCE AND TIME SERIES

HIGHER ORDER CUMULANTS OF RANDOM VECTORS, DIFFERENTIAL OPERATORS, AND APPLICATIONS TO STATISTICAL INFERENCE AND TIME SERIES HIGHER ORDER CUMULANTS OF RANDOM VECTORS DIFFERENTIAL OPERATORS AND APPLICATIONS TO STATISTICAL INFERENCE AND TIME SERIES S RAO JAMMALAMADAKA T SUBBA RAO AND GYÖRGY TERDIK Abstract This paper provides

More information