A Gaussian state-space model for wind fields in the North-East Atlantic

Size: px
Start display at page:

Download "A Gaussian state-space model for wind fields in the North-East Atlantic"

Transcription

1 A Gaussian state-space model for wind fields in the North-East Atlantic Julie BESSAC - Université de Rennes 1 with Pierre AILLIOT and Valï 1 rie MONBET 2 Juillet 2013

2 Plan Motivations 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

3 Motivations Motivations for the use of weather generators Many natural phenomena and human activities depend on wind conditions Production of electricity by wind turbines Evolution of a coast line Maritime transport Drift of objects in the ocean... Wind data generally available on short periods of time 50 years of data maximum Not enough to compute reliable estimates of the probability of complex events Stochastic model used to simulate artificial wind conditions Monte-Carlo methods

4 Plan Context and goals 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

5 Context and goals latitude Goals: longitude wind speed Available data: day Reanalysis data from ECMWF: wind speed to propose a stochastic state-space model for wind fields to generate realistic wind conditions

6 Context and goals One of the main difficulties and goals is: reproducing space-time motions of meteorological systems e.g. propagation of storms longitude longitude latitude latitude longitude latitude latitude latitude longitude longitude

7 Plan Context and goals 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

8 Plan Wind data 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

9 Wind data Data under study: reanalysis data ERA Interim from ECMWF Available with regular sampling: x = 0.75 o, t = 6h To eliminate seasonality: study of months of January from 1979 to 2011 Wind speed are transformed according to Box-Cox method to get approximately a Gaussian distribution (Box-Cox transformation = wind speedλ 1 λ ) 18 gridded points under study in the North-East Atlantic channel

10 Some time series Wind data Site 13 Site 18 vitesse du vent vitesse du vent jour jour Time shifts are observable on time series

11 Wind data Some statistics computed on data Cross-correlations highlight the temporal advance of western locations on eastern locations Cross correlation between locations 13 & 18 cross correlation lag (day)

12 Plan Model 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

13 Model Gaussian Linear State-Space Model Modeling by a Gaussian state-space model [DK01], [CMR] X t = ρx t 1 + σɛ t Y t (1) = α1 1X t+1 + α0 1X t + α 1 1 X t 1 + η t (1).. Y t (K) = α1 K X t+1 + α0 K X t + α 1 K X t 1 + η t (K) pour t 1, - Y t R K : vector of observations, K: number of locations studied - X t R: scalar hidden state, - ɛ and η are serially independent Gaussian white noises, η t N K (0, Γ) Parameters and equations interpretation: X : mean transformed wind conditions at regional scale, temporal dynamic is contained in the state equation, Y : mean corrected transformed wind speed at local scale, (α 1, α 0, α 1 ) : links regional and local scales, Γ : contains a part of the spatial structure of the error between the two scales.

14 Model Stationarity and identifiability Gaussian Linear State-Space Model Stationarity: Under the assumption ρ < 1, the process Y is stationary [BD]. Identifiability: based on the second order structure of the Gaussian process Y. In order to ensure identifiability of the model: σ - fixing the variance of the hidden variable X (we choose 2 = 1) 1 ρ 2 - constraining the vectors α 1, α 0 et α 1 to be linearly independent

15 Model Parameter Estimation Procedure Parameter Estimation Procedure The following estimation procedure is performed: First initialization: - ρ initialized as the mean of all available ratios: cov(y t, Y t+3 ) cov(y t, Y t+2 ), - Λ = (α 1 α 0 α 1 ) and Γ initialized by a least square estimation between the observed and theoretical quantities defined in the identifiability procedure, Least square estimation on the auto-covariance (GMM): initialized with the previous parameters EM algorithm: initialized with the parameters estimated by GMM

16 Model Maximum Likelihood Estimation Parameter Estimation Procedure Expectation-Maximization algorithm is used [CMR]: E-step: Linearity and Gaussianity of the model enable to use Kalman filter and smoother to derive the incomplete likelihood, M-step: Explicit forms of the parameters: ρ, Λ and Γ. Starting point: Least square estimation on second order structure.

17 Plan Validation of the model 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

18 Marginal distributions Validation of the model Validation by simulation quantile of simulation quantile of data Figure : Quantile-Quantile plot at location 18 with 90% confidence intervals (red), parameters estimated by ML

19 Temporal dynamics Validation of the model Validation by simulation 13 & 18 Autocorrelation Observed GMM ML lag(day) Figure : Cross-correlation of Y between locations 13 and 18

20 Spatial structure Validation of the model Validation by simulation correlation Observed Theoretical correlation Observed Theoretical dlong dlat Figure : Correlation of Y at lag 0 differences of longitude (left) and latitude (right)

21 Spatial structure Validation of the model Validation by simulation correlation Observed Theoretical correlation Observed Theoretical dlong dlat Figure : Correlation of Y at lag 1 differences of longitude (left) and latitude (right)

22 Prediction Validation of the model Validation by prediction RMSE Persistence X~AR1 (ML) Y~VAR(1) (ML) site Figure : Root mean square error between observed wind speed and predicted wind speed at each location

23 Validation of the model Validation by prediction longitude latitude latitude Model 52 latitude latitude latitude longitude longitude longitude longitude 10 Observation latitude longitude longitude latitude latitude latitude longitude longitude

24 Validation of the model Improvement of prediction? Improvement of prediction? The state equation is: X t = ρ 1 X t 1 + ρ 2 X t 2 + ɛ t RMSE Persistence AR1 (ML) AR2 (ML) site Figure : Root mean square error between observed wind speed and predicted wind speed at each location No improvement in prediction...

25 Plan A more parsimonious model 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

26 A more parsimonious model A more parsimonious model (Observation equation: Y t = α 1 X t+1 + α 0 X t + α 1 X t 1 + η t, η t N K (0, Γ)) Gamma dlat = 1.5 dlat = 0.75 dlat = 0 dlat = 0.75 dlat = 1.5 Gamma dlat = 3.75 dlat = 3 dlat = 2.25 dlat = 1.5 dlat = 0.75 dlat = dlong dlat Figure : Estimated Γ against differences of longitude (left) and latitude (right), solid lines : mean value

27 A more parsimonious model A more parsimonious model Spatial structure of covariance ([Cre], [HR89], [Abr]): Γ is fitted to parametric spatial covariance: ( )) Γ i,j = (σ i σ j exp( λ 1 di,j) 2 + λ 2 δ i,j or Γ i,j = ( σ i σ j ( sin(λ1 d i,j ) λ 1 d i,j + λ 2 δ i,j )) for for with (σ 1,..., σ K, λ 1, λ 2 ) strictly positive to be estimated. i, j {1,..., K}, i, j {1,..., K}, d: anisotropic distance defined as: d i,j = θ 1 Lat(i, j) 2 + θ 2 Long(i, j) 2 + θ 3 Lat(i, j) Long(i, j) with (θ 1, θ 2, θ 3 ) to be estimated for each spatial structure.

28 A more parsimonious model A more parsimonious model Gamma dlat = 1.5 dlat = 0.75 dlat = 0 Observed Estimated Gamma dlat = 1.5 dlat = 0.75 dlat = 0 Observed Estimated dlong dlong Figure : Estimated Γ against differences of longitude, left: Gaussian structure, right: sinus structure, solid lines: mean value, dashed line: estimated mean

29 A more parsimonious model How to select a model? Structure of Γ Nb of parameters Log-likelihood BIC Pas de structure Gaussienne Sinus X AR(2) VAR(1) Average RMSE (Standard deviation) Structure sur Γ GMM ML Pas de structure (0.19) (0.2) Gaussienne (0.16) (0.16) Sinus (0.16) (0.17) X AR(2) (0.18) (0.221) VAR(1) (0.17)

30 Plan Conclusion and extension of the model 1 Motivations 2 Context and goals 3 Wind data 4 Model Gaussian Linear State-Space Model Parameter Estimation Procedure 5 Validation of the model Validation by simulation Validation by prediction Improvement of prediction? 6 A more parsimonious model 7 Conclusion and extension of the model

31 Conclusion and extension of the model Conclusion Advantages of the model: Ease of interpretation of the parameters Linearity and Gaussian properties: ease of implementation of estimation procedure Some statistics are well reproduced by the model Drawbacks: Lack of flexibility of the model: it only catches average behaviors of wind speed in the area, does not account for the weather type Linearity of the model may not be appropriate to catch possible local effects Extensions: Improve the parameterization of the parameters Take into account wind direction

32 Conclusion and extension of the model P. Abrahamsen. A review of gaussian random fields and correlation functions. Peter J. Brockwell and Richard A. Davis. Introduction to time series and forecasting. Springer Texts in Statistics. Second edition. Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden Markov models. Springer Series in Statistics. Noel A. C. Cressie. Statistics for spatial data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. J. Durbin and S. J. Koopman. Time series analysis by state space methods, volume 24 of Oxford Statistical Science Series. Oxford University Press, Oxford, 2001.

33 Conclusion and extension of the model J. Haslett and A.E. Raftery. Space-time modelling with long-memory dependence: Assessing ireland s wind power ressource. Applied Statistics, 1989.

34 Conclusion and extension of the model correlation Observed Theoretical correlation dlat dlat Figure : Estimated Γ against differences of longitude. Solid lines: mean value

State Space Models for Wind Forecast Correction

State Space Models for Wind Forecast Correction for Wind Forecast Correction Valérie 1 Pierre Ailliot 2 Anne Cuzol 1 1 Université de Bretagne Sud 2 Université de Brest MAS - 2008/28/08 Outline 1 2 Linear Model : an adaptive bias correction Non Linear

More information

Hidden Markov Models for precipitation

Hidden Markov Models for precipitation Hidden Markov Models for precipitation Pierre Ailliot Université de Brest Joint work with Peter Thomson Statistics Research Associates (NZ) Page 1 Context Part of the project Climate-related risks for

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valrie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

Markov-switching autoregressive models for wind time series. Pierre Ailliot Valrie Monbet

Markov-switching autoregressive models for wind time series. Pierre Ailliot Valrie Monbet Markov-switching autoregressive models for wind time series. Pierre Ailliot Valrie Monbet Laboratoire de Mathématiques, UMR 6205, Université Européenne de Bretagne, Brest, France IRMAR, UMR 6625, Université

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Modelling Wind Farm Data and the Short Term Prediction of Wind Speeds

Modelling Wind Farm Data and the Short Term Prediction of Wind Speeds Modelling Wind Farm Data and the Short Term Prediction of Wind Speeds An Investigation into Wind Speed Data Sets Erin Mitchell Lancaster University 6th April 2011 Outline 1 Data Considerations Overview

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

Supplementary Information Dynamical proxies of North Atlantic predictability and extremes

Supplementary Information Dynamical proxies of North Atlantic predictability and extremes Supplementary Information Dynamical proxies of North Atlantic predictability and extremes Davide Faranda, Gabriele Messori 2 & Pascal Yiou Laboratoire des Sciences du Climat et de l Environnement, LSCE/IPSL,

More information

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University Seminar p.1/28 Predictive spatio-temporal models for spatially sparse environmental data Xavier de Luna and Marc G. Genton xavier.deluna@stat.umu.se and genton@stat.ncsu.edu http://www.stat.umu.se/egna/xdl/index.html

More information

STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES. Richard W. Katz LECTURE 5

STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES. Richard W. Katz LECTURE 5 STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES Richard W Katz LECTURE 5 (1) Hidden Markov Models: Applications (2) Hidden Markov Models: Viterbi Algorithm (3) Non-Homogeneous Hidden Markov Model (1)

More information

An autoregressive model with time-varying coefficients for wind fields

An autoregressive model with time-varying coefficients for wind fields An autoregressive model with time-varying coefficients for wind fields Pierre Ailliot, Valérie Monbet, Marc Prevosto IFREMER/Metocean, Brest, France UBS/SABRES, Vannes, France pierre.ailliot@univ-ubs.fr,

More information

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Matthias Katzfuß Advisor: Dr. Noel Cressie Department of Statistics The Ohio State University

More information

Model error and parameter estimation

Model error and parameter estimation Model error and parameter estimation Chiara Piccolo and Mike Cullen ECMWF Annual Seminar, 11 September 2018 Summary The application of interest is atmospheric data assimilation focus on EDA; A good ensemble

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Quantitative Trendspotting. Rex Yuxing Du and Wagner A. Kamakura. Web Appendix A Inferring and Projecting the Latent Dynamic Factors

Quantitative Trendspotting. Rex Yuxing Du and Wagner A. Kamakura. Web Appendix A Inferring and Projecting the Latent Dynamic Factors 1 Quantitative Trendspotting Rex Yuxing Du and Wagner A. Kamakura Web Appendix A Inferring and Projecting the Latent Dynamic Factors The procedure for inferring the latent state variables (i.e., [ ] ),

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Space-time models for moving fields with an application to significant wave height fields

Space-time models for moving fields with an application to significant wave height fields 1 Environmetrics May 211, Volume 22 Issue 3 Pages 354-369 http://dx.doi.org/1.12/env.161 http://archimer.ifremer.fr/doc/363/47443/ 21 John Wiley & Sons, Ltd. Achimer http://archimer.ifremer.fr Space-time

More information

EM-algorithm for Training of State-space Models with Application to Time Series Prediction

EM-algorithm for Training of State-space Models with Application to Time Series Prediction EM-algorithm for Training of State-space Models with Application to Time Series Prediction Elia Liitiäinen, Nima Reyhani and Amaury Lendasse Helsinki University of Technology - Neural Networks Research

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Forecasting Wind Ramps

Forecasting Wind Ramps Forecasting Wind Ramps Erin Summers and Anand Subramanian Jan 5, 20 Introduction The recent increase in the number of wind power producers has necessitated changes in the methods power system operators

More information

Modeling conditional distributions with mixture models: Theory and Inference

Modeling conditional distributions with mixture models: Theory and Inference Modeling conditional distributions with mixture models: Theory and Inference John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università di Venezia Italia June 2, 2005

More information

Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic

Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic Comparison of hidden and observed regime-switching autoregressive models for (u,v)-components of wind fields in the Northeast Atlantic Julie Bessac, Pierre Ailliot, Julien Cattiaux, Valérie Monbet To cite

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

Gaussian processes. Basic Properties VAG002-

Gaussian processes. Basic Properties VAG002- Gaussian processes The class of Gaussian processes is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space, or time and space. The popularity

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION ABSTRACT Presented in this paper is an approach to fault diagnosis based on a unifying review of linear Gaussian models. The unifying review draws together different algorithms such as PCA, factor analysis,

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

NRCSE. Misalignment and use of deterministic models

NRCSE. Misalignment and use of deterministic models NRCSE Misalignment and use of deterministic models Work with Veronica Berrocal Peter Craigmile Wendy Meiring Paul Sampson Gregory Nikulin The choice of spatial scale some questions 1. Which spatial scale

More information

Exploring and extending the limits of weather predictability? Antje Weisheimer

Exploring and extending the limits of weather predictability? Antje Weisheimer Exploring and extending the limits of weather predictability? Antje Weisheimer Arnt Eliassen s legacy for NWP ECMWF is an independent intergovernmental organisation supported by 34 states. ECMWF produces

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Cross-covariance Functions for Tangent Vector Fields on the Sphere

Cross-covariance Functions for Tangent Vector Fields on the Sphere Cross-covariance Functions for Tangent Vector Fields on the Sphere Minjie Fan 1 Tomoko Matsuo 2 1 Department of Statistics University of California, Davis 2 Cooperative Institute for Research in Environmental

More information

Modelling trends in the ocean wave climate for dimensioning of ships

Modelling trends in the ocean wave climate for dimensioning of ships Modelling trends in the ocean wave climate for dimensioning of ships STK1100 lecture, University of Oslo Erik Vanem Motivation and background 2 Ocean waves and maritime safety Ships and other marine structures

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Gaussian Copula Regression Application

Gaussian Copula Regression Application International Mathematical Forum, Vol. 11, 2016, no. 22, 1053-1065 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.68118 Gaussian Copula Regression Application Samia A. Adham Department

More information

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication G. S. Maddala Kajal Lahiri WILEY A John Wiley and Sons, Ltd., Publication TEMT Foreword Preface to the Fourth Edition xvii xix Part I Introduction and the Linear Regression Model 1 CHAPTER 1 What is Econometrics?

More information

Spatial Dynamic Factor Analysis

Spatial Dynamic Factor Analysis Spatial Dynamic Factor Analysis Esther Salazar Federal University of Rio de Janeiro Department of Statistical Methods Sixth Workshop on BAYESIAN INFERENCE IN STOCHASTIC PROCESSES Bressanone/Brixen, Italy

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Estimation methods Review of last class Restrict to basically linear estimation problems (also non-linear problems that are nearly linear) Restrict to parametric,

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Modeling daily precipitation in Space and Time

Modeling daily precipitation in Space and Time Space and Time SWGen - Hydro Berlin 20 September 2017 temporal - dependence Outline temporal - dependence temporal - dependence Stochastic Weather Generator Stochastic Weather Generator (SWG) is a stochastic

More information

Key Words: first-order stationary autoregressive process, autocorrelation, entropy loss function,

Key Words: first-order stationary autoregressive process, autocorrelation, entropy loss function, ESTIMATING AR(1) WITH ENTROPY LOSS FUNCTION Małgorzata Schroeder 1 Institute of Mathematics University of Białystok Akademicka, 15-67 Białystok, Poland mszuli@mathuwbedupl Ryszard Zieliński Department

More information

Estimation by direct maximization of the likelihood

Estimation by direct maximization of the likelihood CHAPTER 3 Estimation by direct maximization of the likelihood 3.1 Introduction We saw in Equation (2.12) that the likelihood of an HMM is given by ( L T =Pr X (T ) = x (T )) = δp(x 1 )ΓP(x 2 ) ΓP(x T )1,

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

A nonparametric test for seasonal unit roots

A nonparametric test for seasonal unit roots Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna To be presented in Innsbruck November 7, 2007 Abstract We consider a nonparametric test for the

More information

Ch.10 Autocorrelated Disturbances (June 15, 2016)

Ch.10 Autocorrelated Disturbances (June 15, 2016) Ch10 Autocorrelated Disturbances (June 15, 2016) In a time-series linear regression model setting, Y t = x tβ + u t, t = 1, 2,, T, (10-1) a common problem is autocorrelation, or serial correlation of the

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Weather generators for studying climate change

Weather generators for studying climate change Weather generators for studying climate change Assessing climate impacts Generating Weather (WGEN) Conditional models for precip Douglas Nychka, Sarah Streett Geophysical Statistics Project, National Center

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Monitoring Wafer Geometric Quality using Additive Gaussian Process

Monitoring Wafer Geometric Quality using Additive Gaussian Process Monitoring Wafer Geometric Quality using Additive Gaussian Process Linmiao Zhang 1 Kaibo Wang 2 Nan Chen 1 1 Department of Industrial and Systems Engineering, National University of Singapore 2 Department

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

University of Athens School of Physics Atmospheric Modeling and Weather Forecasting Group

University of Athens School of Physics Atmospheric Modeling and Weather Forecasting Group University of Athens School of Physics Atmospheric Modeling and Weather Forecasting Group http://forecast.uoa.gr Data Assimilation in WAM System operations and validation G. Kallos, G. Galanis and G. Emmanouil

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Estimating the intermonth covariance between rainfall and the atmospheric circulation

Estimating the intermonth covariance between rainfall and the atmospheric circulation ANZIAM J. 52 (CTAC2010) pp.c190 C205, 2011 C190 Estimating the intermonth covariance between rainfall and the atmospheric circulation C. S. Frederiksen 1 X. Zheng 2 S. Grainger 3 (Received 27 January 2011;

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

Nonparametric inference in hidden Markov and related models

Nonparametric inference in hidden Markov and related models Nonparametric inference in hidden Markov and related models Roland Langrock, Bielefeld University Roland Langrock Bielefeld University 1 / 47 Introduction and motivation Roland Langrock Bielefeld University

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Bayesian spatial hierarchical modeling for temperature extremes

Bayesian spatial hierarchical modeling for temperature extremes Bayesian spatial hierarchical modeling for temperature extremes Indriati Bisono Dr. Andrew Robinson Dr. Aloke Phatak Mathematics and Statistics Department The University of Melbourne Maths, Informatics

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Estimation, Detection, and Identification

Estimation, Detection, and Identification Estimation, Detection, and Identification Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Chapter 5 Best Linear Unbiased Estimators Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

A one-dimensional Kalman filter for the correction of near surface temperature forecasts

A one-dimensional Kalman filter for the correction of near surface temperature forecasts Meteorol. Appl. 9, 437 441 (2002) DOI:10.1017/S135048270200401 A one-dimensional Kalman filter for the correction of near surface temperature forecasts George Galanis 1 & Manolis Anadranistakis 2 1 Greek

More information

CONTROL AND OPTIMIZATION IN SMART-GRIDS

CONTROL AND OPTIMIZATION IN SMART-GRIDS CONTROL AND OPTIMIZATION IN SMART-GRIDS Fredy Ruiz Ph.D. Pontificia Universidad Javeriana, Colombia Visiting Profesor - ruizf@javeriana.edu.co May, 2018 Course topics Session 1: Introduction to Power systems

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Introduction to Eco n o m et rics

Introduction to Eco n o m et rics 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Introduction to Eco n o m et rics Third Edition G.S. Maddala Formerly

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

Spatio-temporal precipitation modeling based on time-varying regressions

Spatio-temporal precipitation modeling based on time-varying regressions Spatio-temporal precipitation modeling based on time-varying regressions Oleg Makhnin Department of Mathematics New Mexico Tech Socorro, NM 87801 January 19, 2007 1 Abstract: A time-varying regression

More information

DRAFT NON LINEAR SIMULATION OF MULTIVARIATE SEA STATE TIME SERIES

DRAFT NON LINEAR SIMULATION OF MULTIVARIATE SEA STATE TIME SERIES Proceedings of OMAE25 25 24th International Conference on Offshore and Artic Engineering Halkidiki, Greece, June 2-7, 25 OMAE25-6749 DRAFT NON LINEAR SIMULATION OF MULTIVARIATE SEA STATE TIME SERIES Valérie

More information

DSGE Methods. Estimation of DSGE models: GMM and Indirect Inference. Willi Mutschler, M.Sc.

DSGE Methods. Estimation of DSGE models: GMM and Indirect Inference. Willi Mutschler, M.Sc. DSGE Methods Estimation of DSGE models: GMM and Indirect Inference Willi Mutschler, M.Sc. Institute of Econometrics and Economic Statistics University of Münster willi.mutschler@wiwi.uni-muenster.de Summer

More information

A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED

A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED A TIME SERIES PARADOX: UNIT ROOT TESTS PERFORM POORLY WHEN DATA ARE COINTEGRATED by W. Robert Reed Department of Economics and Finance University of Canterbury, New Zealand Email: bob.reed@canterbury.ac.nz

More information

Irregularity and Predictability of ENSO

Irregularity and Predictability of ENSO Irregularity and Predictability of ENSO Richard Kleeman Courant Institute of Mathematical Sciences New York Main Reference R. Kleeman. Stochastic theories for the irregularity of ENSO. Phil. Trans. Roy.

More information

The minimisation gives a set of linear equations for optimal weights w:

The minimisation gives a set of linear equations for optimal weights w: 4. Interpolation onto a regular grid 4.1 Optimal interpolation method The optimal interpolation method was used to compute climatological property distributions of the selected standard levels on a regular

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

Ocean data assimilation for reanalysis

Ocean data assimilation for reanalysis Ocean data assimilation for reanalysis Matt Martin. ERA-CLIM2 Symposium, University of Bern, 14 th December 2017. Contents Introduction. On-going developments to improve ocean data assimilation for reanalysis.

More information