Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Size: px
Start display at page:

Download "Hilbert Space Methods for Reduced-Rank Gaussian Process Regression"

Transcription

1 Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

2 Contents 1 Problem formulation 2 Covariance and Laplacian operators 3 Hilbert-space approximation 4 Application to GP regression 5 Experimental results 6 Summary Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

3 Problem formulation Gaussian process (GP) regression problem: f GP(0, k(x, x )), y i = f (x i ) + ε i. The GP-regression has cubic computational complexity O(n 3 ) in the number of measurements. This results from the inversion of an n n matrix: µ(x ) = k(x, x 1:n ) (k(x 1:n, x 1:n ) + σ 2 ni) 1 y V (x ) = k(x, x ) k(x, x 1:n ) (k(x 1:n, x 1:n ) + σ 2 ni) 1 k(x 1:n, x ). In practice, we use Cholesky factorization and do not invert explicitly but still the O(n 3 ) problem remains. Various sparse, reduced-rank, and related approximations have been developed for mitigating this problem. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

4 Covariance operator For covariance function k(x, x ) we can define covariance operator: K φ = k(, x ) φ(x ) dx. For stationary covariance function k(x, x ) k( r ); r = x x we get S(ω) = k(r) e i ωtr dr. The transfer function corresponding to the operator K is S(ω) = F [K]. The spectral density S(ω) also gives the approximate eigenvalues of the operator K. We can now represent the operator K as a series of Laplace operators. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

5 Laplacian operator series In isotropic case S(ω) S( ω ), and we can expand S( ω ) = a 0 + a 1 ω 2 + a 2 ( ω 2 ) 2 + a 3 ( ω 2 ) 3 +. The Fourier transform of the Laplace operator 2 is ω 2, i.e., K = a 0 + a 1 ( 2 ) + a 2 ( 2 ) 2 + a 3 ( 2 ) 3 +. Defines a pseudo-differential operator as a series of differential operators. Let us now approximate the Laplacian operators with a Hilbert method... Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

6 Background: series expansions of GPs Assume a covariance function k(x, x ) and an inner product, say, f, g = f (x) g(x) w(x) dx. Ω The inner product induces a Hilbert-space of (random) functions. If we fix a basis {φ j (x)}, a Gaussian process f (x) can be expanded into a series f (x) = f j φ j (x), where f j are jointly Gaussian. j=1 If we select φ j to be the eigenfunctions of k(x, x ) w.r.t.,, then this becomes the Karhunen Loève series. In the Karhunen Loève case the coefficients f j are independent Gaussian. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

7 Hilbert-space approximation of Laplacian Consider the eigenvalue problem for the Laplacian operators: { 2 φ j (x) = λ j φ j (x), x Ω, φ j (x) = 0, x Ω. The eigenfunctions φ j ( ) are orthonormal w.r.t. inner product f, g = f (x) g(x) dx, Ω φ i (x) φ j (x) dx = δ ij. Ω The negative Laplacian has the formal kernel l(x, x ) = j λ j φ j (x) φ j (x ) in the sense that 2 f (x) = l(x, x ) f (x ) dx. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

8 Hilbert-space approximation of covariance function Recall that we have the expansion K = a 0 + a 1 ( 2 ) + a 2 ( 2 ) 2 + a 3 ( 2 ) 3 +. Substituting the formal kernel gives k(x, x ) a 0 + a 1 l 1 (x, x ) + a 2 l 2 (x, x ) + a 3 l 3 (x, x ) + = [ a0 + a 1 λ 1 j + a 2 λ 2 j + a 3 λ 3 j + ] φ j (x) φ j (x ). j Evaluating the spectral density series at ω 2 = λ j gives S( λ j ) = a 0 + a 1 λ 1 j + a 2 λ 2 j + a 3 λ 3 j +. This leads to the final approximation k(x, x ) j S( λ j ) φ j (x) φ j (x ). Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

9 Accuracy of the approximation ν = 1 2 ν = 3 2 ν = 5 2 ν = 7 2 ν Exact m = 12 m = 32 m = 64 m = l Approximations to covariance functions of the Matérn class of various degrees of smoothness; ν = 1/2 corresponds to the exponential Ornstein Uhlenbeck covariance function, and ν to the squared exponential (exponentiated quadratic) covariance function. Approximations are shown for 12, 32, 64, and 128 eigenfunctions. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

10 Reduced-rank method for GP regression Recall the GP-regression problem f GP(0, k(x, x )) y i = f (x i ) + ε i. Let us now approximate f (x) m f j φ j (x), j=1 where f j N (0, S( λ j )). The approximating GP f m (x) now approximately has the desired covariance function. Via the matrix inversion lemma we then get µ φ T (Φ T Φ + σ 2 nλ 1 ) 1 Φ T y, V σ 2 nφ T (Φ T Φ + σ 2 nλ 1 ) 1 φ. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

11 Computational complexity The computation of Φ T Φ takes O(nm 2 ) operations. The covariance function parameters do not enter Φ and we need to evaluate Φ T Φ only once (nice in parameter estimation). If the observations are on a grid, we can use FFT-kind of methods. The scaling in input dimensionality can be quite bad but depends on the chosen domain. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

12 Convergence analysis Theorem There exists a constant C d such that k(x, x ) k m (x, x ) C d L + 1 π d ω π ˆm 2L S(ω) dω, where L = min k L k, which in turn implies that uniformly [ ] lim lim k m (x, x ) = k(x, x ). L 1,...,L d m Corollary The uniform convergence of the prior covariance function also implies uniform convergence of the posterior mean and covariance in the limit m, L 1,..., L d. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

13 Toy example 2 Observations Mean 95% region Exact interval True curve Approximation True value Output, y σ 2 = 1 2 l = Input, x σ 2 n = SMSE m MSLL FULL NEW SOR DTC VAR FIC SSGP m Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

14 Correlation contours in two-dimensions (m = 16) L FIC (grid) L FIC (random) Sparse spectrum (random) L x2 0 x2 0 x2 0 L L 0 L x1 L L 0 L x1 L L 0 L x1 L Laplacian (Cartesian) Laplacian (Cartesian extended) L L Laplacian (polar) x2 0 x2 0 x2 0 L L 0 L x1 L L 0 L x1 L L 0 L Correlation contours computed for three locations corresponding to the squared exponential covariance function (exact contours dashed). x1 Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

15 Precipitation data Interpolation of yearly precipitation (n = 5776) using a full GP and the Laplacian GP mm Evaluation time (s) Solin & Sa rkka (Aalto University, Finland) MSLL SMSE Hilbert Space Methods for GPs Evaluation time (s) May, / 24

16 Surface temperature of the globe Random draws (Mate rn, ν = {1/2, 3/2, }) in a spherical domain. 20 C 0 C 30 C 0 C 2 C 4 C 6 C 8 C GP regression (mean and standard deviation) of temperature data (n = 11028). Solin & Sa rkka (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

17 Summary Hilbert-space method for reduced-rank Gaussian process regression. The covariance function is approximated by eigenfunctions of the Laplace operator. The eigenvalues are approximated by spectral density values. The approximation converges to exact limit in well-defined conditions. Experimental results show that the method works well in practice. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

18 Related and future work Spatio-temporal Gaussian processes combination with Kalman filtering and smoothing. Periodic covariance functions and other specific classes of covariances. Static and spatio-temporal inverse problems. Non-Gaussian processes. Optimization for high-dimensional inputs. Solin & Särkkä (Aalto University, Finland) Hilbert Space Methods for GPs May, / 24

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

arxiv: v1 [stat.ml] 21 Jan 2014

arxiv: v1 [stat.ml] 21 Jan 2014 Hilbert pace Methods for Reduced-Rank Gaussian Process Regression arxiv:4.558v [stat.ml] 2 Jan 24 Arno olin arno.solin@aalto.fi imo ärkkä simo.sarkka@aalto.fi Department of Biomedical Engineering and Computational

More information

Pose tracking of magnetic objects

Pose tracking of magnetic objects Pose tracking of magnetic objects Niklas Wahlström Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 niklas.wahlstrom@it.uu.se Seminar Vi2 Short about me 2005-2010: Applied

More information

SPATIO-temporal Gaussian processes, or Gaussian fields,

SPATIO-temporal Gaussian processes, or Gaussian fields, TO APPEAR IN SPECIAL ISSUE: ADVANCES IN KERNEL-BASED LEARNING FOR SIGNAL PROCESSING IN THE IEEE SIGNAL PROCESSING MAGAZINE Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016

Spatial Statistics with Image Analysis. Lecture L08. Computer exercise 3. Lecture 8. Johan Lindström. November 25, 2016 C3 Repetition Creating Q Spectral Non-grid Spatial Statistics with Image Analysis Lecture 8 Johan Lindström November 25, 216 Johan Lindström - johanl@maths.lth.se FMSN2/MASM25L8 1/39 Lecture L8 C3 Repetition

More information

LA Support for Scalable Kernel Methods. David Bindel 29 Sep 2018

LA Support for Scalable Kernel Methods. David Bindel 29 Sep 2018 LA Support for Scalable Kernel Methods David Bindel 29 Sep 2018 Collaborators Kun Dong (Cornell CAM) David Eriksson (Cornell CAM) Jake Gardner (Cornell CS) Eric Lee (Cornell CS) Hannes Nickisch (Phillips

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Approximations Simo Särkkä Aalto University, Finland November 18, 2014 Simo Särkkä (Aalto) Lecture 4: Numerical Solution of SDEs November

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

State Space Gaussian Processes with Non-Gaussian Likelihoods

State Space Gaussian Processes with Non-Gaussian Likelihoods State Space Gaussian Processes with Non-Gaussian Likelihoods Hannes Nickisch 1 Arno Solin 2 Alexander Grigorievskiy 2,3 1 Philips Research, 2 Aalto University, 3 Silo.AI ICML2018 July 13, 2018 Outline

More information

Multivariate Gaussian Random Fields with SPDEs

Multivariate Gaussian Random Fields with SPDEs Multivariate Gaussian Random Fields with SPDEs Xiangping Hu Daniel Simpson, Finn Lindgren and Håvard Rue Department of Mathematics, University of Oslo PASI, 214 Outline The Matérn covariance function and

More information

arxiv: v2 [cs.sy] 13 Aug 2018

arxiv: v2 [cs.sy] 13 Aug 2018 TO APPEAR IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 21X 1 Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems Simo Särkkä, Senior Member,

More information

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets The spatial model Solving linear systems Matrix multiplication Creating sparsity Doug Nychka National Center for Atmospheric Research Sparsity,

More information

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations

Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations Lecture 4: Numerical Solution of SDEs, Itô Taylor Series, Gaussian Process Approximations Simo Särkkä Aalto University Tampere University of Technology Lappeenranta University of Technology Finland November

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

arxiv: v2 [math.pr] 27 Oct 2015

arxiv: v2 [math.pr] 27 Oct 2015 A brief note on the Karhunen-Loève expansion Alen Alexanderian arxiv:1509.07526v2 [math.pr] 27 Oct 2015 October 28, 2015 Abstract We provide a detailed derivation of the Karhunen Loève expansion of a stochastic

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Karhunen-Loève decomposition of Gaussian measures on Banach spaces Karhunen-Loève decomposition of Gaussian measures on Banach spaces Jean-Charles Croix jean-charles.croix@emse.fr Génie Mathématique et Industriel (GMI) First workshop on Gaussian processes at Saint-Etienne

More information

Gaussian Fields and Percolation

Gaussian Fields and Percolation Gaussian Fields and Percolation Dmitry Beliaev Mathematical Institute University of Oxford RANDOM WAVES IN OXFORD 18 June 2018 Berry s conjecture In 1977 M. Berry conjectured that high energy eigenfunctions

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes Liverpool, UK, 4 5 November 3 Aki Vehtari Department of Biomedical Engineering and Computational Science (BECS) Outline Example: Alcohol related deaths in Finland Spatial priors and benefits of GP prior

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

Midterm Solution

Midterm Solution 18303 Midterm Solution Problem 1: SLP with mixed boundary conditions Consider the following regular) Sturm-Liouville eigenvalue problem consisting in finding scalars λ and functions v : [0, b] R b > 0),

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Efficient State-Space Inference of Periodic Latent Force Models

Efficient State-Space Inference of Periodic Latent Force Models Journal of Machine Learning Research 15 (214) 2337-2397 Submitted 1/12; Revised 2/14; Published 7/14 Efficient State-Space Inference of Periodic Latent Force Models Steven Reece Department of Engineering

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Kernel-Based Contrast Functions for Sufficient Dimension Reduction

Kernel-Based Contrast Functions for Sufficient Dimension Reduction Kernel-Based Contrast Functions for Sufficient Dimension Reduction Michael I. Jordan Departments of Statistics and EECS University of California, Berkeley Joint work with Kenji Fukumizu and Francis Bach

More information

9.2 Support Vector Machines 159

9.2 Support Vector Machines 159 9.2 Support Vector Machines 159 9.2.3 Kernel Methods We have all the tools together now to make an exciting step. Let us summarize our findings. We are interested in regularized estimation problems of

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

The spectral zeta function

The spectral zeta function The spectral zeta function Bernd Ammann June 4, 215 Abstract In this talk we introduce spectral zeta functions. The spectral zeta function of the Laplace-Beltrami operator was already introduced by Minakshisundaram

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Fixed-domain Asymptotics of Covariance Matrices and Preconditioning

Fixed-domain Asymptotics of Covariance Matrices and Preconditioning Fixed-domain Asymptotics of Covariance Matrices and Preconditioning Jie Chen IBM Thomas J. Watson Research Center Presented at Preconditioning Conference, August 1, 2017 Jie Chen (IBM Research) Covariance

More information

Simulation of stationary fractional Ornstein-Uhlenbeck process and application to turbulence

Simulation of stationary fractional Ornstein-Uhlenbeck process and application to turbulence Simulation of stationary fractional Ornstein-Uhlenbeck process and application to turbulence Georg Schoechtel TU Darmstadt, IRTG 1529 Japanese-German International Workshop on Mathematical Fluid Dynamics,

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information

A Hilbert Space for Random Processes

A Hilbert Space for Random Processes Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts A Hilbert Space for Random Processes I A vector space for random processes X t that is analogous to L 2 (a, b) is of

More information

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets Doug Nychka National Center for Atmospheric Research The spatial model Solving linear systems Matrix multiplication Creating sparsity Sparsity,

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay A Statistical Look at Spectral Graph Analysis Deep Mukhopadhyay Department of Statistics, Temple University Office: Speakman 335 deep@temple.edu http://sites.temple.edu/deepstat/ Graph Signal Processing

More information

Groundwater permeability

Groundwater permeability Groundwater permeability Easy to solve the forward problem: flow of groundwater given permeability of aquifer Inverse problem: determine permeability from flow (usually of tracers With some models enough

More information

Student-t Process as Alternative to Gaussian Processes Discussion

Student-t Process as Alternative to Gaussian Processes Discussion Student-t Process as Alternative to Gaussian Processes Discussion A. Shah, A. G. Wilson and Z. Gharamani Discussion by: R. Henao Duke University June 20, 2014 Contributions The paper is concerned about

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

arxiv: v4 [stat.ml] 28 Sep 2017

arxiv: v4 [stat.ml] 28 Sep 2017 Parallelizable sparse inverse formulation Gaussian processes (SpInGP) Alexander Grigorievskiy Aalto University, Finland Neil Lawrence University of Sheffield Amazon Research, Cambridge, UK Simo Särkkä

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Gaussian process regression for Sensitivity analysis

Gaussian process regression for Sensitivity analysis Gaussian process regression for Sensitivity analysis GPSS Workshop on UQ, Sheffield, September 2016 Nicolas Durrande, Mines St-Étienne, durrande@emse.fr GPSS workshop on UQ GPs for sensitivity analysis

More information

Kernels A Machine Learning Overview

Kernels A Machine Learning Overview Kernels A Machine Learning Overview S.V.N. Vishy Vishwanathan vishy@axiom.anu.edu.au National ICT of Australia and Australian National University Thanks to Alex Smola, Stéphane Canu, Mike Jordan and Peter

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

MATH 126 FINAL EXAM. Name:

MATH 126 FINAL EXAM. Name: MATH 126 FINAL EXAM Name: Exam policies: Closed book, closed notes, no external resources, individual work. Please write your name on the exam and on each page you detach. Unless stated otherwise, you

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation:

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: Chapter 7 Heat Equation Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: u t = ku x x, x, t > (7.1) Here k is a constant

More information

Solving Boundary Value Problems (with Gaussians)

Solving Boundary Value Problems (with Gaussians) What is a boundary value problem? Solving Boundary Value Problems (with Gaussians) Definition A differential equation with constraints on the boundary Michael McCourt Division Argonne National Laboratory

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

The Gaussian free field, Gibbs measures and NLS on planar domains

The Gaussian free field, Gibbs measures and NLS on planar domains The Gaussian free field, Gibbs measures and on planar domains N. Burq, joint with L. Thomann (Nantes) and N. Tzvetkov (Cergy) Université Paris Sud, Laboratoire de Mathématiques d Orsay, CNRS UMR 8628 LAGA,

More information

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up!

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up! Feature Mapping Consider the following mapping φ for an example x = {x 1,...,x D } φ : x {x1,x 2 2,...,x 2 D,,x 2 1 x 2,x 1 x 2,...,x 1 x D,...,x D 1 x D } It s an example of a quadratic mapping Each new

More information

Overview of Spatial Statistics with Applications to fmri

Overview of Spatial Statistics with Applications to fmri with Applications to fmri School of Mathematics & Statistics Newcastle University April 8 th, 2016 Outline Why spatial statistics? Basic results Nonstationary models Inference for large data sets An example

More information

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space Robert Jenssen, Deniz Erdogmus 2, Jose Principe 2, Torbjørn Eltoft Department of Physics, University of Tromsø, Norway

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Worst-Case Bounds for Gaussian Process Models

Worst-Case Bounds for Gaussian Process Models Worst-Case Bounds for Gaussian Process Models Sham M. Kakade University of Pennsylvania Matthias W. Seeger UC Berkeley Abstract Dean P. Foster University of Pennsylvania We present a competitive analysis

More information

Nonparametric Bayesian Methods

Nonparametric Bayesian Methods Nonparametric Bayesian Methods Debdeep Pati Florida State University October 2, 2014 Large spatial datasets (Problem of big n) Large observational and computer-generated datasets: Often have spatial and

More information

Computer Emulation With Density Estimation

Computer Emulation With Density Estimation Computer Emulation With Density Estimation Jake Coleman, Robert Wolpert May 8, 2017 Jake Coleman, Robert Wolpert Emulation and Density Estimation May 8, 2017 1 / 17 Computer Emulation Motivation Expensive

More information

Nodal Sets of High-Energy Arithmetic Random Waves

Nodal Sets of High-Energy Arithmetic Random Waves Nodal Sets of High-Energy Arithmetic Random Waves Maurizia Rossi UR Mathématiques, Université du Luxembourg Probabilistic Methods in Spectral Geometry and PDE Montréal August 22-26, 2016 M. Rossi (Université

More information

«Random Vectors» Lecture #2: Introduction Andreas Polydoros

«Random Vectors» Lecture #2: Introduction Andreas Polydoros «Random Vectors» Lecture #2: Introduction Andreas Polydoros Introduction Contents: Definitions: Correlation and Covariance matrix Linear transformations: Spectral shaping and factorization he whitening

More information

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Statistical regularity Properties of relative frequency

More information

Background error modelling: climatological flow-dependence

Background error modelling: climatological flow-dependence Background error modelling: climatological flow-dependence Yann MICHEL NCAR/MMM/B Meeting 16 th April 2009 1 Introduction 2 A new estimate of lengthscales 3 Climatological flow-dependence Yann MICHEL B

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Radial Basis Functions I

Radial Basis Functions I Radial Basis Functions I Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 14, 2008 Today Reformulation of natural cubic spline interpolation Scattered

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003

CITY UNIVERSITY LONDON. BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION. ENGINEERING MATHEMATICS 2 (resit) EX2003 No: CITY UNIVERSITY LONDON BEng (Hons) in Electrical and Electronic Engineering PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2003 Date: August 2004 Time: 3 hours Attempt Five out of EIGHT questions

More information

Variational Fourier Features for Gaussian Processes

Variational Fourier Features for Gaussian Processes Journal of Machine Learning Research 18 (18) 1-5 Submitted 11/16; Revised 11/17; Published 4/18 Variational Fourier Features for Gaussian Processes James Hensman Nicolas Durrande PROWLER.io 66-68 Hills

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

arxiv: v2 [stat.ml] 29 May 2014

arxiv: v2 [stat.ml] 29 May 2014 Journal of Machine Learning Research 1 (2) 1-48 Submitted 4/; Published 1/ Efficient State-Space Inference of Periodic Latent Force Models arxiv:131.6319v2 [stat.ml] 29 May 214 Steven Reece Stephen Roberts

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information