Gaussian with mean ( µ ) and standard deviation ( σ)

Size: px
Start display at page:

Download "Gaussian with mean ( µ ) and standard deviation ( σ)"

Transcription

1

2 Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics

3 X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b

4 , ~ ) ( ) ( ), ( ~ ), ( ~ σ σ µ σ σ σ µ σ σ σ σ µ σ µ N X p X p N X N X

5 Picture from [Bishop: Pattern Recognition and Machine Learning, 006] p(x) = Ν(µ,Σ) x b x = Σ = x a x b, µ = µ a µ b Σ aa Σ ab Σ ba Σ bb 1 p(x) = (π ) d/ Σ 1 (x µ)t Σ 1 (x µ) e 1/ x a 10/6/16 CSE-571: Robotics 5

6 Slide from Pieter Abbeel " µ = [1; 0] " Σ = [1 0; 0 1] " µ = [-.5; 0] " Σ = [1 0; 0 1] " µ = [-1; -1.5] " Σ = [1 0; 0 1] 10/6/16 CSE-571: Robotics 6

7 Slide from Pieter Abbeel! µ = [0; 0]! Σ = [1 0 ; 0 1] " µ = [0; 0] " Σ = [.6 0 ; 0.6] " µ = [0; 0] " Σ = [ 0 ; 0 ] 10/6/16 CSE-571: Robotics 7

8 Slide from Pieter Abbeel " µ = [0; 0] " Σ = [1 0; 0 1] " µ = [0; 0] " Σ = [1 0.5; 0.5 1] " µ = [0; 0] " Σ = [1 0.8; 0.8 1] 10/6/16 CSE-571: Robotics 8

9 Slide from Pieter Abbeel " µ = [0; 0] " Σ = [1-0.5 ; ] " µ = [0; 0] " Σ = [1-0.8 ; ] " µ = [0; 0] " Σ = [ ; ] 10/6/16 CSE-571: Robotics 9

10 Pictures from [Bishop: PRML, 006] p Marginalizing joint distribution results in a Gaussian x a x b = Ν µ a µ b, Σ aa Σ ba Σ ab Σ bb p(x a ) = p( x a, x b )dx b ( ) p(x a ) = Ν µ a, Σ aa Conditioning also leads to a Gaussian ( ) p(x a x b ) = Ν µ a b, Σ a b µ a b = µ a + Σ ab Σ 1 bb (x b µ b ) Cross co-variance Prior Variance (b) Σ a b = Σ aa Σ ab Σ 1 bb Σ ba Observed value Prior mean (b) Prior Variance (a) Shrink term (>= 0) 10/6/16 CSE-571: Robotics 10

11 10/6/16 CSE-571: Robotics 11

12 Modeling the relationship between real-valued variables in data Sensor models, dynamics models, stock market etc Two broad classes of models: Parametric: Learn a model of the data, use model to make new predictions Eg: Linear, Non-linear, Neural Networks etc. Non-Parametric: Keep the data around and use it to make new predictions Eg: Nearest Neighbor methods, Locally Weighted Regression, Gaussian Processes etc. 10/6/16 CSE-571: Robotics 1

13 Idea: Summarize data using a learned model: Linear, Polynomial Neural Networks etc y 1 0 Parametric models Computationally efficient, tradeoff complexity vs generalization 1 3 Training set Linear Polynomial 4 Polynomial x 10/6/16 CSE-571: Robotics 13

14 Idea: Use nearest neighbor s prediction (with some interpolation) Non-parametric, keeps all data Ex: 1-NN, NN with linear interpolation Easy. Needs lot of data Best you can do in limit of infinite data Computationally expensive in high dimensions Y Non Parametric models Training set 1 NN NN Linear X 10/6/16 CSE-571: Robotics 14

15 Idea: Interpolate based on close training data Closeness defined using a kernel function Test output is a weighted interpolation of training outputs Locally Weighted Regression, Gaussian Processes Can model arbitrary (smooth) functions Need to keep around some (maybe all) training data Y Smooth Non Parametric models Training set LWR NN GP GP Var X 10/6/16 CSE-571: Robotics 15

16 10/6/16 CSE-571: Robotics 16

17 Non-parametric regression model Distribution over functions Fully specified by training data, mean and covariance functions Covariance given by kernel which measures distance of inputs in kernel space 10/6/16 CSE-571: Robotics 17

18 Given, inputs (x) and targets(y): D= {( x, y ),( x, y ),,( x, y )} = ( X, y) 1 1 GPs model the targets as a noisy function of the inputs: y i = f (x i ) +ε; ε ~ N (0,σ n ) Formally, a GP is a collection of random variables, any finite number of which have a joint Gaussian distribution: f (x) ~ GP(m(x), k(x, x')) m(x) = E[ f (x)] k(x, x') = E[( f (x) m(x))( f (x') m(x'))] 10/6/16 CSE-571: Robotics 18 n n

19 Given a (finite) set of inputs (X), GP models the outputs (y) as jointly Gaussian: m(x 1 ) m(x ) m =! K = m(x n ) P( y X ) = N (m(x ), K(X, X ) +σ n I) k(x 1, x 1 ) k(x 1, x n ) k(x, x 1 )! k(x i, x i )! k(x n, x 1 ) k(x n, x n ) Usually, we assume zero-mean prior Noise Can define other mean functions (constant, polynomials etc) 10/6/16 CSE-571: Robotics 19

20 Covariance matrix (K) is defined through the kernel function: Specifies covariance of the outputs as the function of inputs Example: Squared Exponential Kernel Covariance proportional to distance in input space Similar input points will have similar outputs k(x, x ʹ) = σ f e 1 ( x ʹ x )W ( x x ʹ )T 10/6/16 CSE-571: Robotics 0

21 Pictures from [Bishop: PRML, 006] GP prior: Outputs jointly zero-mean Gaussian: P(y X) = Ν(0, K +σ n I) 10/6/16 CSE-571: Robotics 1

22 Training data: 1 1 Test pair (y unknown): {x *, y * } GP outputs are jointly Gaussian: Conditioning on y: ( ) P( y * x *,y,x) = N µ *,σ * µ * = k * T σ * = k ** k * T ( K +σ n I) 1 y ( K +σ n I) 1 k * k * [i] = k(x *,x i ); k ** = k(x *,x * ) D= {( x, y ),( x, y ),,( x, y )} = ( X, y) P(y, y * X, x * ) = N(µ, Σ); P(y X) = N(0, Κ +σ n I) 10/6/16 CSE-571: Robotics n n p(x a x b ) = Ν ( µ a b, Σ ) a b µ a b = µ a + Σ ab Σ 1 bb (x b µ b ) Σ a b = Σ aa Σ ab Σ 1 bb Σ ba Recall conditional

23 10/6/16 CSE-571: Robotics 3

24 Noise Standard deviation ( σ n) Affects how likely a new observation changes predictions (and covariance) Kernel (choose based on data) SE, Exponential, Matern etc. Kernel hyperparameters: SE kernel: k(x, x ʹ) = σ f e 1 ( x ʹ Length scale (how fast the function changes) Scale factor (how large the function variance is) x )W ( x x ʹ )T 10/6/16 CSE-571: Robotics 4

25 Pictures from [Bishop: PRML, 006] k(x, x ) = θ 0 exp θ 1 x x +θ +θ 3 xt x' 10/6/16 CSE-571: Robotics 5

26 Maximize data log likelihood: θ * = arg max θ p(y X,θ) log p(y X,θ) = 1 yt ( K + σ n I) 1 y 1 log K + σ n ( I) n log π Compute derivatives wrt. params n l Optimize using conjugate gradient descent θ = σ,, σ f 10/6/16 CSE-571: Robotics 6

27 10/6/16 CSE-571: Robotics 7

28 Learn hyperparameters via numerical methods Learn noise model at the same time 10/6/16 CSE-571: Robotics 8

29 System: Commercial blimp envelope with custom gondola XScale based computer with Bluetooth connectivity Two main motors with tail motor (3D control) Ground truth obtained via VICON motion capture system 10/6/16 CSE-571: Robotics 9

30 1-D state=[pos,rot,transvel,rotvel] Describes evolution of state as ODE Forces / torques considered: buoyancy, gravity, drag, thrust 16 parameters are learned by optimization on ground truth motion capture data = = ) * ( ) * ( ) ( 1 1 ω ω ω ξ ω ξ J Torques J Mv Forces M H v R v p dt d s e b! 10/6/16 CSE-571: Robotics 30

31 c Δs o c 1 Δs 1 s s 3 o 3 s 1 Use ground truth state to extract: Dynamics data D S = [ s1, c1 ], Δs1, [ s, c], Δs Learn model using Gaussian process regression Learn process noise inherent in system 10/6/16 CSE-571: Robotics 31

32 c 1 Δs 1 s1 Combine GP model with parametric model D X = f ([ s 1, c1 ]) [ s1, c1 ], Δs1 f ([ s1, c1 ]) Advantages Captures aspects of system not considered by parametric model Learns noise model in same way as GP-only models Higher accuracy for same amount of training data s 10/6/16 CSE-571: Robotics 3

33 Dynamics model error Propagation method pos(mm) rot(deg) vel(mm/s) rotvel(deg/s) Param GPonly EGP training points, mean error over 900 test points For dynamics model, 0.5 sec predictions 10/6/16 CSE-571: Robotics 33

34 Heteroscedastic (state dependent) noise Non-stationary GPs Coupled outputs Sparse GPs Online: Decide whether or not to accept new point Remove points Optimize small set of points Classification Laplace approximation No closed-form solution, sampling 10/6/16 CSE-571: Robotics 34

35 GPs provide flexible modeling framework Take data noise and uncertainty due to data sparsity into account Combination with parametric models increases accuracy and reduces need for training data Computational complexity is a key problem 10/6/16 CSE-571: Robotics 35

36 Website: GP book: GPLVM: GPDM: Bishop book: 10/6/16 CSE-571: Robotics 36

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods Pattern Recognition and Machine Learning Chapter 6: Kernel Methods Vasil Khalidov Alex Kläser December 13, 2007 Training Data: Keep or Discard? Parametric methods (linear/nonlinear) so far: learn parameter

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling

Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling Nakul Gopalan IAS, TU Darmstadt nakul.gopalan@stud.tu-darmstadt.de Abstract Time series data of high dimensions

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Bayesian Methods Machine Learning CSE546 Kevin Jamieson University of Washington November 1, 2018 2018 Kevin Jamieson 2 MLE Recap - coin flips Data:

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation COMP 55 Applied Machine Learning Lecture 2: Bayesian optimisation Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp55 Unless otherwise noted, all material posted

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Machine Learning Srihari. Gaussian Processes. Sargur Srihari

Machine Learning Srihari. Gaussian Processes. Sargur Srihari Gaussian Processes Sargur Srihari 1 Topics in Gaussian Processes 1. Examples of use of GP 2. Duality: From Basis Functions to Kernel Functions 3. GP Definition and Intuition 4. Linear regression revisited

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes Roger Grosse Roger Grosse CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes 1 / 55 Adminis-Trivia Did everyone get my e-mail

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

9.2 Support Vector Machines 159

9.2 Support Vector Machines 159 9.2 Support Vector Machines 159 9.2.3 Kernel Methods We have all the tools together now to make an exciting step. Let us summarize our findings. We are interested in regularized estimation problems of

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen

Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary. Kernel Methods. Henrik I Christensen Kernel Methods Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Kernel Methods 1 / 37 Outline

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Machine Learning Torsten Möller Möller/Mori 1 Reading Chapter 3 of Pattern Recognition and Machine Learning by Bishop Chapter 3+5+6+7 of The Elements of Statistical Learning

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 1, 2011 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Gaussian Process Dynamical Models Jack M Wang, David J Fleet, Aaron Hertzmann, NIPS 2005

Gaussian Process Dynamical Models Jack M Wang, David J Fleet, Aaron Hertzmann, NIPS 2005 Gaussian Process Dynamical Models Jack M Wang, David J Fleet, Aaron Hertzmann, NIPS 2005 Presented by Piotr Mirowski CBLL meeting, May 6, 2009 Courant Institute of Mathematical Sciences, New York University

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 4, 2015 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Gaussians Linear Regression Bias-Variance Tradeoff

Gaussians Linear Regression Bias-Variance Tradeoff Readings listed in class website Gaussians Linear Regression Bias-Variance Tradeoff Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University January 22 nd, 2007 Maximum Likelihood Estimation

More information

ECE521 Tutorial 2. Regression, GPs, Assignment 1. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides.

ECE521 Tutorial 2. Regression, GPs, Assignment 1. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides. ECE521 Tutorial 2 Regression, GPs, Assignment 1 ECE521 Winter 2016 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides. ECE521 Tutorial 2 ECE521 Winter 2016 Credits to Alireza / 3 Outline

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference

COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference COMP 551 Applied Machine Learning Lecture 19: Bayesian Inference Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Support Vector Machines

Support Vector Machines Support Vector Machines INFO-4604, Applied Machine Learning University of Colorado Boulder September 28, 2017 Prof. Michael Paul Today Two important concepts: Margins Kernels Large Margin Classification

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Multiple-step Time Series Forecasting with Sparse Gaussian Processes Multiple-step Time Series Forecasting with Sparse Gaussian Processes Perry Groot ab Peter Lucas a Paul van den Bosch b a Radboud University, Model-Based Systems Development, Heyendaalseweg 135, 6525 AJ

More information

Tokamak profile database construction incorporating Gaussian process regression

Tokamak profile database construction incorporating Gaussian process regression Tokamak profile database construction incorporating Gaussian process regression A. Ho 1, J. Citrin 1, C. Bourdelle 2, Y. Camenen 3, F. Felici 4, M. Maslov 5, K.L. van de Plassche 1,4, H. Weisen 6 and JET

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Knowledge

More information

The Variational Gaussian Approximation Revisited

The Variational Gaussian Approximation Revisited The Variational Gaussian Approximation Revisited Manfred Opper Cédric Archambeau March 16, 2009 Abstract The variational approximation of posterior distributions by multivariate Gaussians has been much

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray School of Informatics, University of Edinburgh The problem Learn scalar function of vector values f(x).5.5 f(x) y i.5.2.4.6.8 x f 5 5.5 x x 2.5 We have (possibly

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

The Multivariate Gaussian Distribution [DRAFT]

The Multivariate Gaussian Distribution [DRAFT] The Multivariate Gaussian Distribution DRAFT David S. Rosenberg Abstract This is a collection of a few key and standard results about multivariate Gaussian distributions. I have not included many proofs,

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Learning Non-stationary System Dynamics Online using Gaussian Processes

Learning Non-stationary System Dynamics Online using Gaussian Processes Learning Non-stationary System Dynamics Online using Gaussian Processes Axel Rottmann and Wolfram Burgard Department of Computer Science, University of Freiburg, Germany Abstract. Gaussian processes are

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Multi-task Learning with Gaussian Processes, with Applications to Robot Inverse Dynamics

Multi-task Learning with Gaussian Processes, with Applications to Robot Inverse Dynamics 1 / 38 Multi-task Learning with Gaussian Processes, with Applications to Robot Inverse Dynamics Chris Williams with Kian Ming A. Chai, Stefan Klanke, Sethu Vijayakumar December 2009 Motivation 2 / 38 Examples

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Regressione. Ruggero Donida Labati

SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA. Sistemi di Elaborazione dell Informazione. Regressione. Ruggero Donida Labati SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA Sistemi di Elaborazione dell Informazione Regressione Ruggero Donida Labati Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy http://homes.di.unimi.it/donida

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information