Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Size: px
Start display at page:

Download "Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression"

Transcription

1 Group Prof. Daniel Cremers 9. Gaussian Processes - Regression

2 Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step: Matrix inversion lemma Group

3 Thus, we have: Kernelized Regression w =( I D + T ) 1 T t = T ( I N + T ) 1 t by defining: K = T a =( I N + K) 1 t we get: y(x) = (x) T w = (x) T T a = k(x) T (K + I N ) 1 t (same result as last lecture) This means that the predicted output is a linear combination of the training outputs, where the coefficients depend on the similarities to the training input. 3 Group

4 Motivation We have found a way to predict function values of y for new input points x As we used regularized regression, we can equivalently find the predictive distribution by marginalizing out the parameters w Can we find a closed form for that distribution? How can we model the uncertainty of our prediction? Can we use that for classification? 4 Group

5 Gaussian Marginals and Conditionals Before we start, we need some formulae: Assume we have two variables and that are jointly Gaussian distributed, i.e. x a x b N (x µ, ) with x = xa x b µ = µa µ b = aa ab Then the cond. distribution where and The marginal is µ a b = µ a + ab 1 bb (x b µ b ) a b = aa ab 1 bb ba p(x a )=N (x a µ a, aa ) p(x a x b )=N (x µ a b, a b ) Schur Complement 5 Group

6 Gaussian Marginals and Conditionals Main idea of the proof for the conditional (using inverse of block matrices): aa ba ab bb 1 = I 0 1 bb ba I ( / bb ) bb I ab 1 bb 0 I The lower line corresponds to a quadratic form that is only dependent on p(x b ), i.e. the rest can be identified with the conditional Normal distribution p(x a x b ). (for details see, e.g. Bishop or Murphy) 6 Group

7 Definition Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution. The number of random variables can be infinite! This means: a GP is a Gaussian distribution over functions! To specify a GP we need: mean function: m(x) =E[y(x)] covariance function: k(x 1, x )=E[y(x 1 ) m(x 1 )y(x ) m(x )] 7 Group

8 Example green line: sinusoidal data source blue circles: data points with Gaussian noise red line: mean function of the Gaussian process 8 Group

9 How Can We Handle Infinity? Idea: split the (infinite) number of random variables into a finite and an infinite subset. x = xf x i N µf µ i, f fi T fi i finite part infinite part From the marginalization property we get: Z p(x f )= p(x f, x i )dx i = N (x f µ f, f ) This means we can use finite vectors. 9 Group

10 A Simple Example In Bayesian linear regression, we had y(x) = (x) T w with prior probability w N (0, p ). This means: E[y(x)] = (x) T E[w] =0 E[y(x 1 )y(x ))] = (x 1 ) T E[ww T ] (x )= (x 1 ) T p (x ) Any number of function values y(x 1 ),...,y(x N ) is jointly Gaussian with zero mean. The covariance function of this process is k(x 1, x )= (x 1 ) T p (x ) In general, any valid kernel function can be used. 10 Group

11 The Covariance Function The most used covariance function (kernel) is: k(x p, x q )= f exp( 1 l (x p x q ) )+ n pq signal variance length scale noise variance It is known as squared exponential, radial basis function or Gaussian kernel. Other possibilities exist, e.g. the exponential kernel: k(x p, x q )=exp( x p x q ) This is used in the Ornstein-Uhlenbeck process. 11 Group

12 Sampling from a GP Just as we can sample from a Gaussian distribution, we can also generate samples from a GP. Every sample will then be a function! Process: 1.Choose a number of input points x 1,...,x M.Compute the covariance matrix K where K ij = k(x i, x j ) 3.Generate a random Gaussian vector from y N (0,K) 4.Plot the values x 1,...,x M versus y 1,...,y M 1 Group

13 Sampling from a GP Squared exponential kernel Exponential kernel 13 Group

14 Prediction with a Gaussian Process Most often we are more interested in predicting new function values for given input data. We have: training data test input x 1,...,x N x 1,...,x M y 1,...,y N And we want test outputs y 1,...,y M The joint probability is y y K(X, X) K(X, X ) N 0, K(X,X) K(X,X ) and we need to compute p(y x,x,y). 14 Group

15 Prediction with a Gaussian Process In the case of only one test point we have Now we compute the conditional distribution where K(X, x )= 0 k(x 1, x )... k(x N, x ) 1 x C A = k p(y x,x,y) =N (y µ, ) µ = k T K 1 t = k(x, x ) k T K 1 k This defines the predictive distribution. 15 Group

16 Example Functions sampled from a Gaussian Process prior Functions sampled from the predictive distribution The predictive distribution is itself a Gaussian process. It represents the posterior after observing the data. The covariance is low in the vicinity of data points. 16 Group

17 Varying the Hyperparameters l = f =1, n = l =0.3, f =1.08, n = data samples GP prediction with different kernel hyper parameters l =3 f =1.16 n = Group

18 Varying the Hyperparameters The squared exponential covariance function can be generalized to k(x p, x q )= f exp( 1 (x p x q ) T M(x p x q )) + n pq where M can be: I M = l : this is equal to the above case : every feature dimension has its own length scale parameter M = diag(l 1,...,l D ) : here Λ has less than M = T + diag(l 1,...,l D ) D columns 18 Group

19 Varying the Hyperparameters 1 1 output y 0 1 output y input x 0 input x1 0 input x 0 input x1 M = I 1 M = diag(1, 3) output y 0 1 M = input x 0 input x1 + diag(6, 6) 19 Group

20 Implementation Algorithm 1: GP regression Data: training data (X, y), test data x Input: Hyper parameters K ij k(x i, x j ) f, l, n L cholesky(k + yi) n L T \(L\y) E[f ] k T v L\k var[f ] k(x, x ) v T v log p(y X) 1 yt P i log L ii Training Phase N log( ) Test Phase Cholesky decomposition is numerically stable Can be used to compute inverse efficiently 0 Group

21 Estimating the Hyperparameters To find optimal hyper parameters we need the marginal likelihood: p(y X) = Z p(y f,x)p(f X)df This expression implicitly depends on the hyper parameters, but y and X are given from the training data. It can be computed in closed form, as all terms are Gaussians. We take the logarithm, compute the derivative and set it to 0. This is the training step. 1 Group

22 Estimating the Hyperparameters noise standard deviation output, y characteristic lengthscale input, x The log marginal likelihood is not necessarily concave, i.e. it can have local maxima. The local maxima can correspond to sub-optimal solutions. output, y input, x Group

23 Automatic Relevance Determination We have seen how the covariance function can be generalized using a matrix M If M is diagonal this results in the kernel function k(x, x 0 )= f exp 1 DX i=1 i (x i x 0 i)! We can interpret the feature dimension i as weights for each Thus, if the length scale l i =1/ i of an input dimension is large, the input is less relevant During training this is done automatically 3 Group

24 Automatic Relevance Determination 3-dimensional data, parameters 1 3 as they evolve during training 1 3 During the optimization process to learn the hyper-parameters, the reciprocal length scale for one parameter decreases, i.e.: This hyper parameter is not very relevant! 4 Group

25 Group Prof. Daniel Cremers Gaussian Processes - Classification

26 Gaussian Processes For Classification In regression we have classification we have y R y { 1; 1}, in binary To use a GP for classification, we can apply a sigmoid function to the posterior obtained from the GP and compute the class probability as: p(y =+1 x) = (f(x)) If the sigmoid function is symmetric: then we have p(y x) = (yf(x)). ( z) =1 (z) A typical type of sigmoid function is the logistic sigmoid: 1 (z) = 1 + exp( z) 6 Group

27 Application of the Sigmoid Function Function sampled from a Gaussian Process Sigmoid function applied to the GP function Another symmetric sigmoid function is the cumulative Gaussian: (z) = Z z 1 N (x 0, 1)dx 7 Group

28 Visualization of Sigmoid Functions The cumulative Gaussian is slightly steeper than the logistic sigmoid 8 Group

29 The Latent Variables In regression, we directly estimated f as f(x) GP(m(x),k(x, x 0 )) and values of f where observed in the training data. Now only labels +1 or -1 are observed and f is treated as a set of latent variables. A major advantage of the Gaussian process classifier over other methods is that it marginalizes over all latent functions rather than maximizing some model parameters. 9 Group

30 Class Prediction with a GP The aim is to compute the predictive distribution Z p(y =+1 X, y, x )= p(y f )p(f X, y, x )df (f ) 30 Group

31 Class Prediction with a GP The aim is to compute the predictive distribution Z p(y =+1 X, y, x )= p(y f )p(f X, y, x )df we marginalize over the latent variables from the training data: p(f X, y, x )= Z p(f X, x, f)p(f X, y)df predictive distribution of the latent variable (from regression) 31 Group

32 Class Prediction with a GP The aim is to compute the predictive distribution Z p(y =+1 X, y, x )= p(y f )p(f X, y, x )df we marginalize over the latent variables from the training data: p(f X, y, x )= Z p(f X, x, f)p(f X, y)df we need the posterior over the latent variables: likelihood (sigmoid) p(f X, y) = p(y f)p(f X) p(y X) prior normalizer 3 Group

33 A Simple Example Red: Two-class training data Green: mean function of p(f X, y) Light blue: sigmoid of the mean function 33 Group

34 But There Is A Problem... p(f X, y) = p(y f)p(f X) p(y X) The likelihood term is not a Gaussian! This means, we can not compute the posterior in closed form. There are several different solutions in the literature, e.g.: Laplace approximation Expectation Propagation Variational methods 34 Group

35 Laplace Approximation p(f X, y) q(f X, y) =N (f ˆf,A 1 ) where and ˆf = arg max p(f X, y) f A = rr log p(f X, y) f=ˆf second-order Taylor expansion To compute ˆf an iterative approach using Newton s method has to be used. The Hessian matrix A can be computed as A = K 1 + W where W = rr log p(y f) is a diagonal matrix which depends on the sigmoid function. 35 Group

36 Laplace Approximation Yellow: a non-gaussian posterior Red: a Gaussian approximation, the mean is the mode of the posterior, the variance is the negative second derivative at the mode 36 Group

37 Predictions Now that we have p(f X, y, x )= p(f X, y) Z we can compute: p(f X, x, f)p(f X, y)df From the regression case we have: p(f X, x, f) =N (f µ, ) where µ = k T K 1 f = k(x, x ) k T K 1 k Linear in f This reminds us of a property of Gaussians that we saw earlier! 37 Group

38 Gaussian Properties (Rep.) If we are given this: I. II. p(x) =N (x µ, 1 ) p(y x) =N (y Ax + b, ) Then it follows (properties of Gaussians): III. IV. p(y) =N (y Aµ + b, + A 1 A T ) p(x y) =N (x (A T 1 (y b)+ 1 y), ) 1 where =( A T 1 s A) 1 38 Group

39 Applying this to Laplace E[f X, y, x ]=k(x ) T K 1ˆf V[f X, y, x ]=k(x, x ) k T (K + W 1 ) 1 k It remains to compute p(y =+1 X, y, x )= Z p(y f )p(f X, y, x )df Depending on the kind of sigmoid function we can compute this in closed form (cumulative Gaussian sigmoid) have to use sampling methods or analytical approximations (logistic sigmoid) 39 Group

40 A Simple Example Two-class problem (training data in red and blue) Green line: optimal decision boundary Black line: GP classifier decision boundary Right: posterior probability 40 Group

41 Summary Gaussian Processes are Normal distributions over functions To specify a GP we need a covariance function (kernel) and a mean function For regression we can compute the predictive distribution in closed form For classification, we use a sigmoid and have to approximate the latent posterior More on Gaussian Processes: 41 Group

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods Pattern Recognition and Machine Learning Chapter 6: Kernel Methods Vasil Khalidov Alex Kläser December 13, 2007 Training Data: Keep or Discard? Parametric methods (linear/nonlinear) so far: learn parameter

More information

Machine Learning Srihari. Gaussian Processes. Sargur Srihari

Machine Learning Srihari. Gaussian Processes. Sargur Srihari Gaussian Processes Sargur Srihari 1 Topics in Gaussian Processes 1. Examples of use of GP 2. Duality: From Basis Functions to Kernel Functions 3. GP Definition and Intuition 4. Linear regression revisited

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 305 Part VII

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Joint Emotion Analysis via Multi-task Gaussian Processes

Joint Emotion Analysis via Multi-task Gaussian Processes Joint Emotion Analysis via Multi-task Gaussian Processes Daniel Beck, Trevor Cohn, Lucia Specia October 28, 2014 1 Introduction 2 Multi-task Gaussian Process Regression 3 Experiments and Discussion 4 Conclusions

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Non-Gaussian likelihoods for Gaussian Processes

Non-Gaussian likelihoods for Gaussian Processes Non-Gaussian likelihoods for Gaussian Processes Alan Saul University of Sheffield Outline Motivation Laplace approximation KL method Expectation Propagation Comparing approximations GP regression Model

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Midterm. Introduction to Machine Learning. CS 189 Spring You have 1 hour 20 minutes for the exam.

Midterm. Introduction to Machine Learning. CS 189 Spring You have 1 hour 20 minutes for the exam. CS 189 Spring 2013 Introduction to Machine Learning Midterm You have 1 hour 20 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. Please use non-programmable calculators

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Relevance Vector Machines

Relevance Vector Machines LUT February 21, 2011 Support Vector Machines Model / Regression Marginal Likelihood Regression Relevance vector machines Exercise Support Vector Machines The relevance vector machine (RVM) is a bayesian

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 12. Gaussian Processes Alex Smola Carnegie Mellon University http://alex.smola.org/teaching/cmu2013-10-701 10-701 The Normal Distribution http://www.gaussianprocess.org/gpml/chapters/

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Machine Learning - Waseda University Logistic Regression

Machine Learning - Waseda University Logistic Regression Machine Learning - Waseda University Logistic Regression AD June AD ) June / 9 Introduction Assume you are given some training data { x i, y i } i= where xi R d and y i can take C different values. Given

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes 1 Objectives to express prior knowledge/beliefs about model outputs using Gaussian process (GP) to sample functions from the probability measure defined by GP to build

More information

CS 7140: Advanced Machine Learning

CS 7140: Advanced Machine Learning Instructor CS 714: Advanced Machine Learning Lecture 3: Gaussian Processes (17 Jan, 218) Jan-Willem van de Meent (j.vandemeent@northeastern.edu) Scribes Mo Han (han.m@husky.neu.edu) Guillem Reus Muns (reusmuns.g@husky.neu.edu)

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Multiple-step Time Series Forecasting with Sparse Gaussian Processes Multiple-step Time Series Forecasting with Sparse Gaussian Processes Perry Groot ab Peter Lucas a Paul van den Bosch b a Radboud University, Model-Based Systems Development, Heyendaalseweg 135, 6525 AJ

More information

Supervised Learning Coursework

Supervised Learning Coursework Supervised Learning Coursework John Shawe-Taylor Tom Diethe Dorota Glowacka November 30, 2009; submission date: noon December 18, 2009 Abstract Using a series of synthetic examples, in this exercise session

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group Nonparmeteric Bayes & Gaussian Processes Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group Outline Bayesian Inference Hierarchical Models Model Selection Parametric vs. Nonparametric Gaussian

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes Roger Grosse Roger Grosse CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes 1 / 55 Adminis-Trivia Did everyone get my e-mail

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray School of Informatics, University of Edinburgh The problem Learn scalar function of vector values f(x).5.5 f(x) y i.5.2.4.6.8 x f 5 5.5 x x 2.5 We have (possibly

More information

Gaussian discriminant analysis Naive Bayes

Gaussian discriminant analysis Naive Bayes DM825 Introduction to Machine Learning Lecture 7 Gaussian discriminant analysis Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. is 2. Multi-variate

More information

Introduction to Machine Learning Spring 2018 Note 18

Introduction to Machine Learning Spring 2018 Note 18 CS 189 Introduction to Machine Learning Spring 2018 Note 18 1 Gaussian Discriminant Analysis Recall the idea of generative models: we classify an arbitrary datapoint x with the class label that maximizes

More information