A Process over all Stationary Covariance Kernels

Size: px
Start display at page:

Download "A Process over all Stationary Covariance Kernels"

Transcription

1 A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that scales as O(nm ) in a GP regression model using this process as a prior over the covariance kernel, with n datapoints and m < n. I also show how the stationarity assumption can be relaxed. Introduction Gaussian process regression models in machine learning (Rasmussen and Williams, 006) are considered to be Bayesian nonparametric models. However, at the heart of every Gaussian process regression model controlling all the modelling power is a parametrised covariance kernel, greatly restricting the flexibility of the corresponding Gaussian process. One would almost never believe that the true process underlying real data has a parametrised kernel used in Gaussian process regression. A fully Bayesian nonparametric treatment of regression would place a nonparametric prior over the Gaussian process covariance kernel, to represent uncertainty over the values of the kernel function, and to reflect the belief that the kernel does not have a simple parametric form. However, typically we only have access to a single realisation of a stochastic process, and therefore it is difficult to extract useful information about the covariance structure of that process if we make no assumptions about the covariance kernel; for example, to estimate cov(f(x i ), f(x j )) we could only use the single pair (f(x i ), f(x j )). On the other hand, if we were to assume the process f(x) is stationary, we could estimate cov(f(x i ), f(x j )), by considering the function f(x) evaluated at all pairs of points (x a, x w ) such that x a x w = x i x j. In this paper, I define a process over all stationary kernels, and use it as a prior over the covariance kernel in a Gaussian process regression (or classification) model. With this process, interesting covariance structures periodicity, Markovian dynamics, etc. and mixtures of covariance structures can be discovered without having to a priori hard-code these structures into a (sum of) parametric covariance kernels. Moreover, in typical Gaussian process regression or classification, with a parametrised kernel, inference is O(n 3 ), where n is the number of datapoints. In this process, inference could possibly be O(m n), where m < n. I also show how the stationarity assumption can be relaxed.

2 Prior over Stationary Kernels Bochner s theorem says that any stationary kernel can be expressed as k(x i, x j ) = exp(πis (x i x j ))dµ(s), () where µ is a positive finite measure, and x i, x j are p vector valued inputs. If µ has a density S(s), we can write Bochner s theorem as k(x i, x j ) = exp(πis (x i x j ))S(s)ds, () S(s) = k(x i, x j ) exp( πis (x i x j ))d(x i x j ). (3) Therefore there is some spectral density or power spectrum S(s) corresponding to any popular parametrised stationary covariance kernel. For example, consider the popular squared exponential covariance kernel, k SE (x i, x j ) = a 0 exp( 0.5(x i x j ) R (x i x j )), (4) where R = diag(l,..., l p). Then using (3), S(s) = a 0 πr exp( π s Rs) (5) The normalised spectral density p(s) = S(s)/k(0, 0). Since mixtures of Gaussian are dense in the set of distribution functions, Bochner s theorem says that if our spectral density is an infinite mixture of Gaussians, then the induced process will have support for any stationary kernel functions. First, let us consider S(s) when it is a single Gaussian, and integrate (), assuming x i, x j, s are scalars: k(x i, x j ) = exp(πis(x i x j )) exp( πσ σ (s µ) )ds (6) let m = x i x j = = πσ πσ exp[πim σ (s µs + µ )]ds (7) exp[ σ s + (πim + µ σ µ )s ]ds (8) σ let a = σ, b = πim + µ σ, c = µ σ = exp( a(s b πσ a ) ) exp( b + c)ds (9) 4a = exp[(πim + µ σ ) σ µ σ ] (0) = exp[( 4π m + 4πim µ σ + µ σ 4 )σ µ σ ] () = exp[ π (x i x j ) σ ][cos(π(x i x j )µ) + i sin(π(x i x j )µ))]. ()

3 Therefore if S(s) = Q q= w q exp( σ (s µ q q ) ), then the integral () is analytic, and will be a sum of Q terms of the form (). This result easily generalises to the case where x i, x j, s are p-dimensional vectors, and S(s) is a sum of p variate Gaussians with axis aligned covariance matrices; the integral in () becomes a product of integrals like (6). Notice that when µ = 0 the imaginary part of () disappears. Indeed, the spectral density S(s) should be symmetric about the origin s = 0. Therefore we can let S(s) = [p(s) + p( s)]/, where p(s) is an infinite mixture of Gaussians, and still have coverage of all stationary kernels. To derive () we let S(s) = exp( πσ σ (s µ) ). If we instead follow the same derivation, but using S( s) as the spectral density, the final result is k(x i, x j ) = exp[ π (x i x j ) σ ][cos(π(x i x j )µ) i sin(π(x i x j )µ))]. (3) Therefore if p(s) is a Gaussian, then a spectral density S(s) = p(s) + p( s) will be real with kernel k(x i, x j ) = exp[ π (x i x j ) σ ][cos(π(x i x j )µ)]. (4) So if p(s) is an infinite mixture of univariate Gaussians, then the kernel for S(s) = p(s) + p( s) is k(x i, x j ) = lim Q q= Q w q exp[ π (x i x j ) σq][cos(π(x i x j )µ q )] (5) Supposing p(s) is an infinite mixture of p-dimensional axis aligned Gaussians, where the q th component has mean vector µ q = (µ () q,..., µ (p) q ) and covariance matrix M = diag(v q (),..., v q (p) ), and m j is the jth component of the p dimensional vector x i x j, and S(s) = p(s) + p( s), k(x i, x j ) = lim 3 Inference Q p w q Q q= a= We let S(s) = [p(s) + p( s)]/, where p(s) = lim Q q q= exp[ π m av q (a) ][cos(πm a µ (a) q )] (6) w q πσq exp[ (s µ q) σq ]. (7) w q GEM(α), and we can put Gaussian and inverse Gamma priors on µ q and σ q respectively. The observations y(x) N (f(x), ), where f(x) GP(0, k). For any set of observations y = (y (x ),..., y n (x n )) we wish to perform inference over f = (f (x ),..., f n (x n )). Every pair of function values f(x i ), f(x j ) is assigned to a cluster with mean and variance µ zij and σ z ij where z ij is a cluster assignment variable. Given cluster assignments means, and variances, γ = {z ij }, {µ q }, {σ q}, p(f y, γ) is Gaussian. We can infer posteriors over γ and f using a CRP Gibbs 3

4 sampling procedure, with slice sampling or HMC for non-conjugate updates. However, based on my experience Gibbs sampling hyperparameters of GP regression models, I think this would mix very poorly. It would be preferable to do VB inference, and consider the GP function values and DPM components jointly, using the stick breaking construction? Although bookkeeping would be more painful, it would probably also be better to immediately work with multivariate axis aligned Gaussians. Or it may be a lot better to work with isotropic covariance functions, and only use D Gaussians in our DPM mixture (see the next section). By calculating the spectral density of a particular covariance function (e.g. see (5)) we can set the means on our prior mixture components so that the expected kernel for our process is that covariance function. This way our process can use that parametrized kernel as a base kernel. I suspect this could be valuable for good performance and reasonable inference and it will let one incorporate more intuition into our process. 4 Isotropic Covariance Function It may be advantageous to further restrict our covariance functions to be isotropic, and not just stationary. I think the covariance function for most stationary processes will be isotropic to a good approximation, and this assumption will allow us to extract yet more signal from the data for learning the covariance function. The other major benefit is we can use univariate Gaussians in our DPM for the kernel function, regardless of the dimensionality of the input space. The drawback is we have to evaluate a Bessel function. If the covariance function is isotropic it can be proven that the spectral density S(s) is a function of s only e.g. we can henceforth treat s as one dimensional. Supposing the input space is p dimensional, and we let r = x i x j, then switching to spherical coordinates, k(r) = S(s) = π r p/ 0 π s p/ 0 S(s)J p/ (πrs)s p/ ds, (8) k(r)j p/ (πrs)r p/ dr, (9) where J p/ is a Bessel function of order p/. A Bessel function of order α is ( ) m ( J α (x) = m! Γ(m + α + ) x) m+α (0) m=0 We can analytically integrate a product of a Gaussian S(s) and a polynomial J p/ (πrs)s p/ quite easily. The spectral density S(s) for a Matern covariance function is given in equation 4.5 of Rasmussen and Williams (006). 4

5 5 Efficient Inference Lázaro-Gredilla et al. (00) evaluate () by re-writing it as k(x i, x j ) = exp(πis (x i x j ))S(s)ds () = exp(πis x i ) exp(πis x j ) S(s)ds. () () is just E S(s) [exp(πis x i ) exp(πis x j ) ], (3) where is a complex conjugate operator. They estimate (3) using a simple Monte Carlo sum, noting that it is valid to sample pairs s r, s r, since the spectral density is symmetric about the origin. By sampling in this way, the complex part of the simple Monte carlo sum is eliminated: E S(s) [exp(πis x i ) exp(πis x j ) ] m cos(πs r (x i x j )) = k(x i, x j ). m r= (4) This is exactly the same covariance function as in Bayesian linear regression with trigonometric basis functions. The marginal likelihood is in equation 8 of Lázaro-Gredilla et al. (00) and can be evaluated in O(nm ) operations, where m is the number of basis functions, and n is the number of observations. In their paper they determine the values of the points {s,..., s m } (called spectral frequencies in the Bayesian linear regression model) by maximizing the Bayesian linear regression marginal likelihood. Sometimes this model works well, but sometimes it severely overfits: see figures 7 and 8 in Lázaro-Gredilla et al. (00). They are basically just doing Bayesian linear regression with trigonometric basis functions and maximum likelihood for setting the parameters of the basis functions. The only relation it has to typical Bayesian nonparametric Gaussian process regression is that as the number of trinogometric basis functions, they can, in principle, approximate any GP with any stationary kernel arbitrarily well; however, in practice, they won t be able to do this too well (at all?) with maximum likelihood estimation of the s r. They would need to be able to estimate the real spectral density of whatever covariance function they want arbitrarily well (given the data), and to sample the spectral frequencies from that spectral density to do their simple Monte Carlo sum. But to do that, they would need to use our DPM mixture model to estimate the spectral density of the true process. We could possibly exploit the connection between our kernel function in (5) and the kernel function for a Bayesian linear regression model with a finite number of basis functions (for a choice of basis functions that gives us the same form for the covariance kernel as in (5)). Although we are using an infinite mixture of Gaussians, we can truncate the mixture at e.g. m = 00 Gaussians. Our model would be more flexible and would not suffer from the overfitting and performance problems in Lázaro-Gredilla et al. (00). For instance, we can naturally incorporate a base kernel, and will not overfit. Our process could also be used as a general prior over covariance kernels in any GP regression model. 5

6 6 Non-stationarity We can allow for some nonstationarity by instead using a dependent Dirichlet process mixture. We can let the mixing weights {w q } be input dependent, such that e.g.w q = w q (a, b). If w i (a, b) has support for any continuous function of two inputs, then we can essentially have support for any covariance function. We can construct a dependent dirichlet process with such support by using the stick breaking construction, and generating w i (a, b) by transforming a Gaussian process (with two inputs) such that it has beta marginals (e.g. (Wilson and Ghahramani, 00)). References Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C., and Figueiras- Vidal, A. (00). Sparse spectrum gaussian process regression. The Journal of Machine Learning Research, : Rasmussen, C. E. and Williams, C. K. (006). Gaussian processes for Machine Learning. The MIT Press. Wilson, A. G. and Ghahramani, Z. (00). Copula processes. In NIPS. 6

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group Nonparmeteric Bayes & Gaussian Processes Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group Outline Bayesian Inference Hierarchical Models Model Selection Parametric vs. Nonparametric Gaussian

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

An Introduction to Gaussian Processes for Spatial Data (Predictions!)

An Introduction to Gaussian Processes for Spatial Data (Predictions!) An Introduction to Gaussian Processes for Spatial Data (Predictions!) Matthew Kupilik College of Engineering Seminar Series Nov 216 Matthew Kupilik UAA GP for Spatial Data Nov 216 1 / 35 Why? When evidence

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo

Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Probabilistic Graphical Models Lecture 17: Markov chain Monte Carlo Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 18, 2015 1 / 45 Resources and Attribution Image credits,

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Sparse Spectrum Gaussian Process Regression

Sparse Spectrum Gaussian Process Regression Journal of Machine Learning Research 11 (2010) 1865-1881 Submitted 2/08; Revised 2/10; Published 6/10 Sparse Spectrum Gaussian Process Regression Miguel Lázaro-Gredilla Departamento de Teoría de la Señal

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Lorenzo Rosasco 9.520 Class 18 April 11, 2011 About this class Goal To give an overview of some of the basic concepts in Bayesian Nonparametrics. In particular, to discuss Dirichelet

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

CS 7140: Advanced Machine Learning

CS 7140: Advanced Machine Learning Instructor CS 714: Advanced Machine Learning Lecture 3: Gaussian Processes (17 Jan, 218) Jan-Willem van de Meent (j.vandemeent@northeastern.edu) Scribes Mo Han (han.m@husky.neu.edu) Guillem Reus Muns (reusmuns.g@husky.neu.edu)

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Stochastic Processes, Kernel Regression, Infinite Mixture Models

Stochastic Processes, Kernel Regression, Infinite Mixture Models Stochastic Processes, Kernel Regression, Infinite Mixture Models Gabriel Huang (TA for Simon Lacoste-Julien) IFT 6269 : Probabilistic Graphical Models - Fall 2018 Stochastic Process = Random Function 2

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

The Automatic Statistician

The Automatic Statistician The Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ James Lloyd, David Duvenaud (Cambridge) and

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Sparse Spectral Sampling Gaussian Processes

Sparse Spectral Sampling Gaussian Processes Sparse Spectral Sampling Gaussian Processes Miguel Lázaro-Gredilla Department of Signal Processing & Communications Universidad Carlos III de Madrid, Spain miguel@tsc.uc3m.es Joaquin Quiñonero-Candela

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process 10-708: Probabilistic Graphical Models, Spring 2015 19 : Bayesian Nonparametrics: The Indian Buffet Process Lecturer: Avinava Dubey Scribes: Rishav Das, Adam Brodie, and Hemank Lamba 1 Latent Variable

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Gaussian Process Regression Networks

Gaussian Process Regression Networks Gaussian Process Regression Networks Andrew Gordon Wilson agw38@camacuk mlgengcamacuk/andrew University of Cambridge Joint work with David A Knowles and Zoubin Ghahramani June 27, 2012 ICML, Edinburgh

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Multiple-step Time Series Forecasting with Sparse Gaussian Processes Multiple-step Time Series Forecasting with Sparse Gaussian Processes Perry Groot ab Peter Lucas a Paul van den Bosch b a Radboud University, Model-Based Systems Development, Heyendaalseweg 135, 6525 AJ

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources th International Conference on Information Fusion Chicago, Illinois, USA, July -8, Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources Priyadip Ray Department of Electrical

More information

Linear regression example Simple linear regression: f(x) = ϕ(x)t w w ~ N(0, ) The mean and covariance are given by E[f(x)] = ϕ(x)e[w] = 0.

Linear regression example Simple linear regression: f(x) = ϕ(x)t w w ~ N(0, ) The mean and covariance are given by E[f(x)] = ϕ(x)e[w] = 0. Gaussian Processes Gaussian Process Stochastic process: basically, a set of random variables. may be infinite. usually related in some way. Gaussian process: each variable has a Gaussian distribution every

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES

INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES SHILIANG SUN Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai 20024, China E-MAIL: slsun@cs.ecnu.edu.cn,

More information

Gaussian process for nonstationary time series prediction

Gaussian process for nonstationary time series prediction Computational Statistics & Data Analysis 47 (2004) 705 712 www.elsevier.com/locate/csda Gaussian process for nonstationary time series prediction Soane Brahim-Belhouari, Amine Bermak EEE Department, Hong

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Kernel Methods for Large Scale Representation Learning

Kernel Methods for Large Scale Representation Learning Kernel Methods for Large Scale Representation Learning Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University November, 2014 University of Oxford 1 / 70 Themes and Conclusions (High Level)

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes

CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes Roger Grosse Roger Grosse CSC2541 Lecture 2 Bayesian Occam s Razor and Gaussian Processes 1 / 55 Adminis-Trivia Did everyone get my e-mail

More information

Nonparametric Bayesian inference on multivariate exponential families

Nonparametric Bayesian inference on multivariate exponential families Nonparametric Bayesian inference on multivariate exponential families William Vega-Brown, Marek Doniec, and Nicholas Roy Massachusetts Institute of Technology Cambridge, MA 2139 {wrvb, doniec, nickroy}@csail.mit.edu

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray School of Informatics, University of Edinburgh The problem Learn scalar function of vector values f(x).5.5 f(x) y i.5.2.4.6.8 x f 5 5.5 x x 2.5 We have (possibly

More information

More Spectral Clustering and an Introduction to Conjugacy

More Spectral Clustering and an Introduction to Conjugacy CS8B/Stat4B: Advanced Topics in Learning & Decision Making More Spectral Clustering and an Introduction to Conjugacy Lecturer: Michael I. Jordan Scribe: Marco Barreno Monday, April 5, 004. Back to spectral

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 4 Problem: Density Estimation We have observed data, y 1,..., y n, drawn independently from some unknown

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Deep learning with differential Gaussian process flows

Deep learning with differential Gaussian process flows Deep learning with differential Gaussian process flows Pashupati Hegde Markus Heinonen Harri Lähdesmäki Samuel Kaski Helsinki Institute for Information Technology HIIT Department of Computer Science, Aalto

More information

CMPE 58K Bayesian Statistics and Machine Learning Lecture 5

CMPE 58K Bayesian Statistics and Machine Learning Lecture 5 CMPE 58K Bayesian Statistics and Machine Learning Lecture 5 Multivariate distributions: Gaussian, Bernoulli, Probability tables Department of Computer Engineering, Boğaziçi University, Istanbul, Turkey

More information

Bayesian Linear Regression. Sargur Srihari

Bayesian Linear Regression. Sargur Srihari Bayesian Linear Regression Sargur srihari@cedar.buffalo.edu Topics in Bayesian Regression Recall Max Likelihood Linear Regression Parameter Distribution Predictive Distribution Equivalent Kernel 2 Linear

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Gaussian Process Kernels for Pattern Discovery and Extrapolation

Gaussian Process Kernels for Pattern Discovery and Extrapolation Andrew Gordon Wilson Department of Engineering, University of Cambridge, Cambridge, UK Ryan Prescott Adams School of Engineering and Applied Sciences, Harvard University, Cambridge, USA agw38@cam.ac.uk

More information

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures 17th Europ. Conf. on Machine Learning, Berlin, Germany, 2006. Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures Shipeng Yu 1,2, Kai Yu 2, Volker Tresp 2, and Hans-Peter

More information

Time-Sensitive Dirichlet Process Mixture Models

Time-Sensitive Dirichlet Process Mixture Models Time-Sensitive Dirichlet Process Mixture Models Xiaojin Zhu Zoubin Ghahramani John Lafferty May 25 CMU-CALD-5-4 School of Computer Science Carnegie Mellon University Pittsburgh, PA 523 Abstract We introduce

More information

Explicit Rates of Convergence for Sparse Variational Inference in Gaussian Process Regression

Explicit Rates of Convergence for Sparse Variational Inference in Gaussian Process Regression JMLR: Workshop and Conference Proceedings : 9, 08. Symposium on Advances in Approximate Bayesian Inference Explicit Rates of Convergence for Sparse Variational Inference in Gaussian Process Regression

More information

FastGP: an R package for Gaussian processes

FastGP: an R package for Gaussian processes FastGP: an R package for Gaussian processes Giri Gopalan Harvard University Luke Bornn Harvard University Many methodologies involving a Gaussian process rely heavily on computationally expensive functions

More information