Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Size: px
Start display at page:

Download "Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation"

Transcription

1 Variations ECE 6540, Lecture 10

2 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2

3 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator For a multi parameter estimator 3

4 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator For a multi parameter estimator Question: What is the variance / covariance of each of these for any random variable? 4

5 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator For a multi parameter estimator Question: What is the variance / covariance of each of these for any random variable? 5

6 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator (assuming an unbiased estimator) var Covariance matrix 6

7 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator (assuming an unbiased estimator) 1 Note that it s not necessarily true that for all Unbiased assumption 7

8 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator (assuming an unbiased estimator) arg min subject to 1 8

9 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator (assuming an unbiased estimator) arg min 1 Lagrange Multiplier 9

10 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator (assuming an unbiased estimator) arg min

11 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator (assuming an unbiased estimator) The Estimator: The Expected Value: E The Variance: var E 11

12 The BLUE Compute the BLUE for such that, is white noise with variance (not necessarily Gaussian) Question: What is BLUE for the above problem? 12

13 The BLUE Compute the BLUE for such that, is white noise with variance (not necessarily Gaussian) Question: What is BLUE for the above problem? The Estimator: The Expected Value: E Determination of The Variance: var 13

14 The BLUE Compute the BLUE for such that, is white noise with variance (not necessarily Gaussian) 1 The Estimator: The Expected Value: E The Variance: var E Question: Where have we seen this before? 14

15 The BLUE A simplification Assume the estimator is a linear system For a single parameter estimator For a multi parameter estimator Question: What is the variance / covariance of each of these for any random variable? 15

16 The BLUE A simplification Assume the estimator is a linear system For a multi parameter estimator (assuming an unbiased estimator) cov Covariance matrix 16

17 The BLUE A simplification Assume the estimator is a linear system For a multi parameter estimator (assuming an unbiased estimator) What is the estimator? What is the expected value of the estimator? What is the variance of the estimator? 17

18 The BLUE A simplification Assume the estimator is a linear system For a multi parameter estimator (assuming an unbiased estimator) The S matrix: The Estimator: The Expected Value: E E The Variance: cov Question: Where have we seen this before? 18

19 The BLUE Gauss Markov Theorem Consider the following expression with unknown and known, is noise with covariance (any distribution) Then the best linear unbiased estimator (BLUE) is The PDF of w is arbitrary. (note: this is not necessarily the MVU estimate). Question: Why is this powerful? 19

20 The BLUE What are the advantages of BLUE? What are the disadvantages of BLUE? 20

21 What have we learned about so far? 21

22 Minimum Variance Unbiased Estimators (MVU Estimators) Neyman Fischer Factorization & Rao Blackwell Lehmann Scheffé Cramer Rao Lower Bounds Approximate MVU Estimators BLUE 22

23 Consider this problem (DC Offset problem): is white, Gaussian noise with variances 1.Estimate. What is the MVU Estimator? What is the BLUE? 23

24 Consider this problem (DC Offset problem): is white, Gaussian noise with variances 1.Estimate. What is the MVU Estimator? What is the BLUE? 24

25 Consider this problem ( Gain problem): is white, Gaussian noise with variances 1.Estimate. What is the MVU Estimator? What is the BLUE? 25

26 Consider this problem ( Gain problem): is white, Gaussian noise with variances 1.Estimate. What is the MVU Estimator? What is the BLUE? 26

27 Consider this problem ( Gain problem): is white, Gaussian noise with variances 1.Estimate. S vector:???? The Estimator: The Expected Value: E The Variance: var 27

28 Consider this problem ( Gain problem): is white, Gaussian noise with variances 1.Estimate. S vector: 1 The Estimator: The Expected Value: E The Variance: var Result: Same as the DC Offset problem [suboptimal] 28

29 Consider this problem ( Gain problem): is white, Gaussian noise with variances 1.Estimate. What is the MVU Estimator? What is the BLUE? 29

30 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Neyman Fischer Approach: Find a sufficient statistic. ; / /exp 2 30

31 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Neyman Fischer Approach: Find a sufficient statistic. 1 1 ; 2 / /exp ; 2 / /exp 2 2 ; 1 2 / /exp ; 1 2 / /exp ; ; 31

32 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Neyman Fischer Approach: Find a sufficient statistic. Is this a complete, sufficient statistic? Sufficient Statistic: 32

33 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Neyman Fischer Approach: Find a sufficient statistic. Sufficient Statistic: Is this a complete, sufficient statistic? Can I find an unbiased estimator using this sufficient statistic? 33

34 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Neyman Fischer Approach: Find a sufficient statistic. Sufficient Statistic: Is this a complete, sufficient statistic? Can I find an unbiased estimator using this sufficient statistic? Can apply for any unbiased? 34

35 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Neyman Fischer Approach: Find a sufficient statistic. Sufficient Statistic: Is this a complete, sufficient statistic? Can I find an unbiased estimator using this sufficient statistic? Can apply for any unbiased? 35

36 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Cramer Rao Lower Bound Approach: Find the Cramer Rao lower bound. ; / /exp 2 36

37 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Cramer Rao Lower Bound Approach: Find the Cramer Rao lower bound. ; /exp / ln ; ln 2 ln ln ; ln 2 ln ; ; 37

38 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Cramer Rao Lower Bound Approach: Find the Cramer Rao lower bound. ln ;

39 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Cramer Rao Lower Bound Approach: Find the Cramer Rao lower bound. ln ; var 1 3 Potentially up to 3 times improvement over the BLUE 39

40 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Cramer Rao Lower Bound Approach: Find the MVU Estimator. ;? I Is it possible to find? 40

41 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Cramer Rao Lower Bound Approach: Find the MVU Estimator. ;? I Is it possible to find? 41

42 Where do we go now!? 42

43 Where do we go now!? We go to The most used classical statistical estimator 43

44 argmax ; Note that this is equivalent to argmax ln ; Since ln is a monotonically increasing function. Question: How do I interpret this? Why is this useful? 44

45 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Maximum Likelihood Approach ; /exp / ln ; ln 2 ln ln ; ln 2 ln ; 0 45

46 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Maximum Likelihood Approach Choose + to keep answer positive

47 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Maximum Likelihood Approach 2 2 Is this estimator unbiased? Is this estimator minimum variance? 47

48 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Maximum Likelihood Approach 2 2 Is this estimator unbiased? Nope Is this estimator minimum variance? Nope 48

49 Consider this problem ( Gain problem) [slightly different than problem in the book]: is white, Gaussian noise with variances 1.Estimate. Maximum Likelihood Approach Estimator variance Cramer-Rao Lower Bound BLUE variance 9 Variance Estimator mean True value Number of samples [N] Number of samples [N] 49

50 Properties of the MLE 50

51 Properties of Maximum Likelihood Estimators Property 1) The Maximum Likelihood Estimator will always be a function of only sufficient statistics Proof: argmax argmax argmax argmax argmax ; ln ; ln ; ln ; ln ln ; 51

52 Properties of Maximum Likelihood Estimators Property 2) Assuming the derivative of the log likelihood exists and the Fisher Information is non zero, the Maximum Likelihood Estimator converges to as In other words: E This property is known as consistency 52

53 Properties of Maximum Likelihood Estimators Property 3) Assuming the derivative of the log likelihood exists and the Fisher Information is non zero, the Maximum Likelihood Estimator converges to an efficient estimator as In other words: var This property is known as asymptotic efficiency 53

54 Properties of Maximum Likelihood Estimators Property 4) Assuming the derivative of the log likelihood exists and the Fisher Information is non zero, the Maximum Likelihood Estimator converges to a normal distribution as In other words: ~, 54

55 Properties of Maximum Likelihood Estimators Property 5) Assume is the MLE for. Now consider the one to one parameter transformation,. The MLE for the new parameter is now defined by Of the transformation is not one to one (i.e., invertible), then arg max : ; This property is known as invariance 55

56 Multi parameter MLE 56

57 argmax ; Note that this is equivalent to argmax ln ; Since ln is a monotonically increasing function. 57

58 Consider the DC offset problem is white, Gaussian noise with variances.estimate and. Maximum Likelihood Approach ; /exp / 58

59 Consider the DC offset problem is white, Gaussian noise with variances.estimate and. Maximum Likelihood Approach ; /exp / ln ; ln 2 ln ln ; ln 2 ln 2 ;

60 Consider the DC offset problem is white, Gaussian noise with variances.estimate and. Maximum Likelihood Approach ; /exp / ln ; ln 2 ln ; 0 0 let 1 60

61 Consider the DC offset problem is white, Gaussian noise with variances.estimate and. Maximum Likelihood Approach 1 Question: Is this different than the MVU estimator? 61

62 Consider the DC offset problem is white, Gaussian noise with variances.estimate exp. 62

63 Consider the DC offset problem is white, Gaussian noise with variances.estimate exp. Maximum Likelihood Approach 1 exp exp 63

64 Consider the energy estimation problem is white, Gaussian noise with variances. Estimate the signal. Maximum Likelihood Approach ; /exp / 64

65 Consider the energy estimation problem is white, Gaussian noise with variances. Estimate the signal. Maximum Likelihood Approach ; /exp / ln ; ln 2 ln ln ; ln 2 ln 2 ;

66 Consider the energy estimation problem is white, Gaussian noise with variances. Estimate the signal. Maximum Likelihood Approach ; /exp / 66

67 Consider the energy estimation problem is white, Gaussian noise with variances. Estimate the signal. Maximum Likelihood Approach ; /exp / ln ; ln 2 ln ln ; ln 2 ln 2 ;

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Estimation Theory Fredrik Rusek. Chapters 6-7

Estimation Theory Fredrik Rusek. Chapters 6-7 Estimation Theory Fredrik Rusek Chapters 6-7 All estimation problems Summary All estimation problems Summary Efficient estimator exists All estimation problems Summary MVU estimator exists Efficient estimator

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

Detection Theory. Composite tests

Detection Theory. Composite tests Composite tests Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Thu Chapter 5: Correction Thu I claimed that the above, which is the most general

More information

Estimation and Detection

Estimation and Detection stimation and Detection Lecture 2: Cramér-Rao Lower Bound Dr. ir. Richard C. Hendriks & Dr. Sundeep P. Chepuri 7//207 Remember: Introductory xample Given a process (DC in noise): x[n]=a + w[n], n=0,,n,

More information

Basic concepts in estimation

Basic concepts in estimation Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

ECE531 Lecture 8: Non-Random Parameter Estimation

ECE531 Lecture 8: Non-Random Parameter Estimation ECE531 Lecture 8: Non-Random Parameter Estimation D. Richard Brown III Worcester Polytechnic Institute 19-March-2009 Worcester Polytechnic Institute D. Richard Brown III 19-March-2009 1 / 25 Introduction

More information

Estimation, Detection, and Identification

Estimation, Detection, and Identification Estimation, Detection, and Identification Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Chapter 5 Best Linear Unbiased Estimators Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations Last Time Minimum Variance Unbiased Estimators Sufficient Statistics Proving t = T(x) is sufficient Neyman-Fischer Factorization

More information

Estimation Theory Fredrik Rusek. Chapters

Estimation Theory Fredrik Rusek. Chapters Estimation Theory Fredrik Rusek Chapters 3.5-3.10 Recap We deal with unbiased estimators of deterministic parameters Performance of an estimator is measured by the variance of the estimate (due to the

More information

Proof In the CR proof. and

Proof In the CR proof. and Question Under what conditions will we be able to attain the Cramér-Rao bound and find a MVUE? Lecture 4 - Consequences of the Cramér-Rao Lower Bound. Searching for a MVUE. Rao-Blackwell Theorem, Lehmann-Scheffé

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Chapter 8: Least squares (beginning of chapter)

Chapter 8: Least squares (beginning of chapter) Chapter 8: Least squares (beginning of chapter) Least Squares So far, we have been trying to determine an estimator which was unbiased and had minimum variance. Next we ll consider a class of estimators

More information

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 2: Estimation Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Classical Estimation

More information

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE)

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) 1 ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Minimum Variance Unbiased Estimators (MVUE)

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation

Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 9: Asymptotics III(MLE) 1 / 20 Jensen

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Take-home final examination February 1 st -February 8 th, 019 Instructions You do not need to edit the solutions Just make sure the handwriting is legible The final solutions should

More information

Signal detection theory

Signal detection theory Signal detection theory z p[r -] p[r +] - + Role of priors: Find z by maximizing P[correct] = p[+] b(z) + p[-](1 a(z)) Is there a better test to use than r? z p[r -] p[r +] - + The optimal

More information

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Review Quiz 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Cramér Rao lower bound (CRLB). That is, if where { } and are scalars, then

More information

Rowan University Department of Electrical and Computer Engineering

Rowan University Department of Electrical and Computer Engineering Rowan University Department of Electrical and Computer Engineering Estimation and Detection Theory Fall 2013 to Practice Exam II This is a closed book exam. There are 8 problems in the exam. The problems

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

ECE 275A Homework 6 Solutions

ECE 275A Homework 6 Solutions ECE 275A Homework 6 Solutions. The notation used in the solutions for the concentration (hyper) ellipsoid problems is defined in the lecture supplement on concentration ellipsoids. Note that θ T Σ θ =

More information

Lecture 4: UMVUE and unbiased estimators of 0

Lecture 4: UMVUE and unbiased estimators of 0 Lecture 4: UMVUE and unbiased estimators of Problems of approach 1. Approach 1 has the following two main shortcomings. Even if Theorem 7.3.9 or its extension is applicable, there is no guarantee that

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

A Few Notes on Fisher Information (WIP)

A Few Notes on Fisher Information (WIP) A Few Notes on Fisher Information (WIP) David Meyer dmm@{-4-5.net,uoregon.edu} Last update: April 30, 208 Definitions There are so many interesting things about Fisher Information and its theoretical properties

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

ECE 275A Homework 7 Solutions

ECE 275A Homework 7 Solutions ECE 275A Homework 7 Solutions Solutions 1. For the same specification as in Homework Problem 6.11 we want to determine an estimator for θ using the Method of Moments (MOM). In general, the MOM estimator

More information

Regression #4: Properties of OLS Estimator (Part 2)

Regression #4: Properties of OLS Estimator (Part 2) Regression #4: Properties of OLS Estimator (Part 2) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #4 1 / 24 Introduction In this lecture, we continue investigating properties associated

More information

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That Statistics Lecture 2 August 7, 2000 Frank Porter Caltech The plan for these lectures: The Fundamentals; Point Estimation Maximum Likelihood, Least Squares and All That What is a Confidence Interval? Interval

More information

Advanced Signal Processing Introduction to Estimation Theory

Advanced Signal Processing Introduction to Estimation Theory Advanced Signal Processing Introduction to Estimation Theory Danilo Mandic, room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

Haruhiko Ogasawara. This article gives the first half of an expository supplement to Ogasawara (2015).

Haruhiko Ogasawara. This article gives the first half of an expository supplement to Ogasawara (2015). Economic Review (Otaru University of Commerce, Vol.66, No. & 3, 9-58. December, 5. Expository supplement I to the paper Asymptotic expansions for the estimators of Lagrange multipliers and associated parameters

More information

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur Module Random Processes Version, ECE IIT, Kharagpur Lesson 9 Introduction to Statistical Signal Processing Version, ECE IIT, Kharagpur After reading this lesson, you will learn about Hypotheses testing

More information

Chapter 3. Point Estimation. 3.1 Introduction

Chapter 3. Point Estimation. 3.1 Introduction Chapter 3 Point Estimation Let (Ω, A, P θ ), P θ P = {P θ θ Θ}be probability space, X 1, X 2,..., X n : (Ω, A) (IR k, B k ) random variables (X, B X ) sample space γ : Θ IR k measurable function, i.e.

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1 Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maximum likelihood Consistency Confidence intervals Properties of the mean estimator Properties of the

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Connexions module: m11446 1 Maximum Likelihood Estimation Clayton Scott Robert Nowak This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY THE PARAMETER ESTIMATION PROBLEM

ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY THE PARAMETER ESTIMATION PROBLEM c 2007-2016 by Armand M. Makowski 1 ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY THE PARAMETER ESTIMATION PROBLEM 1 The basic setting Throughout, p, q and k are positive integers. The setup With

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIc (19.11.07) Contents: Maximum Likelihood Fit Maximum Likelihood (I) Assume N measurements of a random variable Assume them to be independent and distributed according

More information

Econometrics II - EXAM Answer each question in separate sheets in three hours

Econometrics II - EXAM Answer each question in separate sheets in three hours Econometrics II - EXAM Answer each question in separate sheets in three hours. Let u and u be jointly Gaussian and independent of z in all the equations. a Investigate the identification of the following

More information

Define characteristic function. State its properties. State and prove inversion theorem.

Define characteristic function. State its properties. State and prove inversion theorem. ASSIGNMENT - 1, MAY 013. Paper I PROBABILITY AND DISTRIBUTION THEORY (DMSTT 01) 1. (a) Give the Kolmogorov definition of probability. State and prove Borel cantelli lemma. Define : (i) distribution function

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015 EECS564 Estimation, Filtering, and Detection Exam Week of April 0, 015 This is an open book takehome exam. You have 48 hours to complete the exam. All work on the exam should be your own. problems have

More information

Classical Estimation Topics

Classical Estimation Topics Classical Estimation Topics Namrata Vaswani, Iowa State University February 25, 2014 This note fills in the gaps in the notes already provided (l0.pdf, l1.pdf, l2.pdf, l3.pdf, LeastSquares.pdf). 1 Min

More information

10. Linear Models and Maximum Likelihood Estimation

10. Linear Models and Maximum Likelihood Estimation 10. Linear Models and Maximum Likelihood Estimation ECE 830, Spring 2017 Rebecca Willett 1 / 34 Primary Goal General problem statement: We observe y i iid pθ, θ Θ and the goal is to determine the θ that

More information

All other items including (and especially) CELL PHONES must be left at the front of the room.

All other items including (and especially) CELL PHONES must be left at the front of the room. TEST #2 / STA 5327 (Inference) / Spring 2017 (April 24, 2017) Name: Directions This exam is closed book and closed notes. You will be supplied with scratch paper, and a copy of the Table of Common Distributions

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU)

Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU) Advanced Signal Processing Minimum Variance Unbiased Estimation (MVU) Danilo Mandic room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

557: MATHEMATICAL STATISTICS II BIAS AND VARIANCE

557: MATHEMATICAL STATISTICS II BIAS AND VARIANCE 557: MATHEMATICAL STATISTICS II BIAS AND VARIANCE An estimator, T (X), of θ can be evaluated via its statistical properties. Typically, two aspects are considered: Expectation Variance either in terms

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

A Course in Statistical Theory

A Course in Statistical Theory A Course in Statistical Theory David J. Olive Southern Illinois University Department of Mathematics Mailcode 4408 Carbondale, IL 62901-4408 dolive@.siu.edu January 2008, notes September 29, 2013 Contents

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Asymptotics Asymptotics Multiple Linear Regression: Assumptions Assumption MLR. (Linearity in parameters) Assumption MLR. (Random Sampling from the population) We have a random

More information

Estimators as Random Variables

Estimators as Random Variables Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maimum likelihood Consistency Confidence intervals Properties of the mean estimator Introduction Up until

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

Inferring from data. Theory of estimators

Inferring from data. Theory of estimators Inferring from data Theory of estimators 1 Estimators Estimator is any function of the data e(x) used to provide an estimate ( a measurement ) of an unknown parameter. Because estimators are functions

More information

Treatment and analysis of data Applied statistics Lecture 5: More on Maximum Likelihood

Treatment and analysis of data Applied statistics Lecture 5: More on Maximum Likelihood Treatment and analysis of data Applied statistics Lecture 5: More on Maximum Likelihood Topics covered: The multivariate Gaussian Ordinary Least Squares (OLS) Generalized Least Squares (GLS) Linear and

More information

Discrete Dependent Variable Models

Discrete Dependent Variable Models Discrete Dependent Variable Models James J. Heckman University of Chicago This draft, April 10, 2006 Here s the general approach of this lecture: Economic model Decision rule (e.g. utility maximization)

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume VI: Statistics PART A Edited by Emlyn Lloyd University of Lancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

EIE6207: Maximum-Likelihood and Bayesian Estimation

EIE6207: Maximum-Likelihood and Bayesian Estimation EIE6207: Maximum-Likelihood and Bayesian Estimation Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information