Detection Theory. Composite tests

Size: px
Start display at page:

Download "Detection Theory. Composite tests"

Transcription

1 Composite tests

2 Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Thu

3 Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Argument was Thu Thu

4 Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below This is not correct, since it is limited to the case that C 2 -C 1 is positive semi-definite Slides have been corrected Thu Thu

5 Chapter 6: UMP - Uniformly most powerful tests Thu Consider the case when the value of A is unknown, but assume A>0

6 Chapter 6: UMP - Uniformly most powerful tests Thu Consider the case when the value of A is unknown, but assume A>0 UMP: An optimal test no matter the Thu value of A similar concept to MVU

7 Chapter 6: UMP - Uniformly most powerful tests Thu Consider the case when the value of A is unknown, but assume A>0 UMP: An optimal test no matter the Thu value of A similar concept to MVU Strategy to get UMPs: 1. Design test as if A is known 2. Show that test does not need knowledge of the value A

8 Chapter 6: UMP - Uniformly most powerful tests Thu Step 1: Design test as if A is known

9 Chapter 6: UMP - Uniformly most powerful tests Step 1: Design test as if A is known

10 Chapter 6: UMP - Uniformly most powerful tests Step 1: Design test as if A is known Cancel multiplicative constants Remove exp by taking logarithm Cancel x 2 [n]

11 Chapter 6: UMP - Uniformly most powerful tests Step 1: Design test as if A is known Manipulate a bit.

12 Chapter 6: UMP - Uniformly most powerful tests Step 1: Design test as if A is known scale

13 Chapter 6: UMP - Uniformly most powerful tests Step 1: Design test as if A is known Test statistic is not dependent on A Threshold seems to be, but is not

14 Chapter 6: UMP - Uniformly most powerful tests Step 2: Show that test does not need knowledge of the value A

15 Chapter 6: UMP - Uniformly most powerful tests Step 2: Show that test does not need knowledge of the value A

16 Chapter 6: UMP - Uniformly most powerful tests Step 2: Show that test does not need knowledge of the value A

17 Chapter 6: UMP - Uniformly most powerful tests Step 2: Show that test does not need knowledge of the value A Threshold does not depend on P FA

18 Chapter 6: UMP - Uniformly most powerful tests Compute P D

19 Chapter 6: UMP - Uniformly most powerful tests Compute P D

20 Chapter 6: UMP - Uniformly most powerful tests Compute P D

21 Chapter 6: UMP - Uniformly most powerful tests Compute P D Performance depends on A

22 Chapter 6: UMP - Uniformly most powerful tests Recap A test is UMP if it, for all possible values of the unknown parameter(s), maximzes P D for given P FA

23 Chapter 6: One-sided vs. Two sided Consider now: A<0

24 Chapter 6: One-sided vs. Two sided Consider now: A<0 Same steps as before Step 1: Design test as if A is known

25 Chapter 6: One-sided vs. Two sided Consider now: A<0 Same steps as before Step 1: Design test as if A is known Next thing was to divide with A This changes inequality with A<0

26 Chapter 6: One-sided vs. Two sided Consider now: A<0 Same steps as before Step 1: Design test as if A is known Next thing was to divide with A This changes inequality with A<0 <

27 Chapter 6: One-sided vs. Two sided Consider now: A<0 <

28 Chapter 6: One-sided vs. Two sided Consider now: A<0 <

29 Chapter 6: One-sided vs. Two sided Consider now: A<0 <

30 Chapter 6: One-sided vs. Two sided Consider now: A<0 <

31 Chapter 6: One-sided vs. Two sided Consider now: A<0

32 Chapter 6: One-sided vs. Two sided This means problems, since test can not be implemented For A>0, decide H 1 if For A<0, decide H 1 if

33 Chapter 6: One-sided vs. Two sided This means problems, since test can not be implemented For A>0, decide H 1 if For A<0, decide H 1 if UMP exists (one sided) UMP does not exist (two sided)

34 Chapter 6: One-sided vs. Two sided This means problems, since test can not be implemented For A>0, decide H 1 if For A<0, decide H 1 if UMP exists (one sided) An educated guess would be to decide H 1 if UMP does not exist (two sided) This will turn out to be well motivated by the GLRT that comes shortly

35 Chapter 6: Karlin-Rubin Thm - A condition for UMP If the likelihood ratio is monotonic in the test T(x) and it is known that then Detect H 1, if T(x) > γ is UMP

36 Chapter 6: Karlin-Rubin Thm - A condition for UMP If the likelihood ratio is monotonic in the test T(x) and it is known that then Detect H 1, if T(x) > γ is UMP This follows directly from the Neyman-Pearson theorem

37 Chapter 6: Karlin-Rubin Thm - A condition for UMP Application: Exponential family

38 Chapter 6: Karlin-Rubin Thm - A condition for UMP Application: Exponential family Likelihood ratio 0

39 Chapter 6: Karlin-Rubin Thm - A condition for UMP Application: Exponential family Likelihood ratio: If p(θ) is increasing, then LLR is monotonic in 0

40 Chapter 6: Karlin-Rubin Thm - A condition for UMP Application: Exponential family Likelihood ratio: If p(θ) is increasing, then LLR is monotonic in 0 In our case (DC level), we have p(θ) = θ/σ 2

41 Chapter 6: Composite tesiting Bayesian approach With likelihoods containing unknown parameters, We can integrate away the unknown

42 Chapter 6: Composite tesiting Bayesian approach With likelihoods containing unknown parameters, We can integrate away the unknown A case that is very common and fully doable is x=hθ+w, with Gaussian matrix H

43 Chapter 6: Composite tesiting Bayesian approach With likelihoods containing unknown parameters, We can integrate away the unknown If prior is unknown, use a non-informative one (See Estimation theory book)

44 Chapter 6: GLRT Finite data records The Generalized Likelihood ratio test is heuristic for finite data records, but can be proven optimal asymptotically in the size of the data record A = πr 2 Where θ 1 is the MLE of θ under H 1, θ 0 is the MLE of θ under H 0

45 Chapter 6: GLRT Finite data records Example: Non-coherent detection A = πr 2

46 Chapter 6: GLRT Finite data records Example: Non-coherent detection A = πr 2 GLRT replaces H with its ML estimate

47 Chapter 6: GLRT Finite data records Example: Non-coherent detection A = πr 2

48 Chapter 6: GLRT Finite data records Example: Non-coherent detection A = πr 2

49 Chapter 6: GLRT Finite data records Example: A = πr 2 GRLT is A = πr 2

50 Chapter 6: GLRT Finite data records Example: A = πr 2 GRLT is A = πr 2 But from estimation theory, we have that the MLE of A is

51 Chapter 6: GLRT Finite data records Example: A = πr 2 GRLT is A = πr 2 But from estimation theory, we have that the MLE of A is Thus

52 Chapter 6: GLRT Finite data records Example: Taking logs, and simplification gives

53 Chapter 6: GLRT Finite data records Example: Taking logs, and simplification gives

54 Chapter 6: GLRT Finite data records Example: Taking logs, and simplification gives Thus,

55 Chapter 6: GLRT Large data records Large in this case does not mean that we use Szegö and the Fourier transform. In this case, we consider large N, but with independent measurements Two assumptions: 1. Signal is weak 2. MLE attains asymptotic form

56 Chapter 6: GLRT Large data records Large in this case does not mean that we use Szegö and the Fourier transform. In this case, we consider large N, but with independent measurements Two assumptions: 1. Signal is weak Means that A is not enormous. Reasonable, otherwise problem is simple 2. MLE attains asymptotic form

57 Chapter 6: GLRT Large data records Large in this case does not mean that we use Szegö and the Fourier transform. In this case, we consider large N, but with independent measurements Two assumptions: 1. Signal is weak Means that A is not enormous. Reasonable, otherwise problem is simple 2. MLE attains asymptotic form From Estimation theory

58 Chapter 6: GLRT Large data records Theorem Setup Differ for H 0 and H 1 Parameter vector to be detected Equal for H 0 and H 1 (e.g. noise variance)

59 Chapter 6: GLRT Large data records Theorem Setup Differ for H 0 and H 1 Parameter vector to be detected Equal for H 0 and H 1 (e.g. noise variance) Hypotheses to test for

60 Chapter 6: GLRT Large data records Theorem Setup Differ for H 0 and H 1 Parameter vector to be detected Equal for H 0 and H 1 (e.g. noise variance) Hypotheses to test for Definition of GLRT Note that MLEs of θ s differ under H 0 and H 1

61 Chapter 6: GLRT Large data records Theorem Statement A = πr 2

62 Chapter 6: GLRT Large data records Theorem Chi-2 variable, r DoF Statement A = πr 2

63 Chapter 6: GLRT Large data records Theorem Chi-2 variable, r DoF Statement Non-central Chi-2 variable, r DoF A = πr 2

64 Chapter 6: GLRT Large data records Theorem Chi-2 variable, r DoF Statement Non-central Chi-2 variable, r DoF True value of θ r under H 1 A = πr 2

65 Chapter 6: GLRT Large data records Theorem Chi-2 variable, r DoF Statement True value of θ s under H 1 / H 0 Non-central Chi-2 variable, r DoF True value of θ r under H 1 A = πr 2

66 Chapter 6: GLRT Large data records Theorem Chi-2 variable, r DoF Statement True value of θ s under H 1 / H 0 Non-central Chi-2 variable, r DoF True value of θ r under H 1 A = πr 2 Fisher Inform, Doesn t depend on H 1 or H 0

67 Chapter 6: GLRT Large data records Theorem Chi-2 variable, r DoF Statement True value of θ s under H 1 / H 0 True value of θ r under H 1 Fisher information matrix: one does not need to think about H 0 or H 1. Non-central Chi-2 variable, r DoF Think like this: Given x, what is the Fisher info for θ r,θ s A = πr 2 Fisher Inform, Doesn t depend on H 1 or H 0

68 Chapter 6: GLRT Large data records Theorem Statement Cancels with no nusiance parameters A = πr 2

69 Chapter 6: GLRT Large data records Theorem Statement A = πr 2 Since Fisher is pos. def., λ is degraded by nuisance Cancels with no nusiance parameters

70 Chapter 6: GLRT Large data records Theorem Larger λ separates the pdfs more, Thus better P D with larger λ Statement A = πr 2 Since Fisher is pos. def., λ is degraded by nuisance Cancels with no nusiance parameters

71 Chapter 6: GLRT Large data records Theorem Larger λ separates the pdfs more, Thus better P D with larger λ Statement A = πr 2 Since Fisher is pos. def., λ is degraded by nuisance Cancels with no nusiance parameters So, not surprisingly, nuisance degrades our detection capability

72 Chapter 6: GLRT Large data records Theorem Statement No nuisance A = πr Note: The test is still difficult, since 2 it is still given by and we need to find the MLEs

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Estimation Theory Fredrik Rusek. Chapters 6-7

Estimation Theory Fredrik Rusek. Chapters 6-7 Estimation Theory Fredrik Rusek Chapters 6-7 All estimation problems Summary All estimation problems Summary Efficient estimator exists All estimation problems Summary MVU estimator exists Efficient estimator

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Hypothesis Testing - Frequentist

Hypothesis Testing - Frequentist Frequentist Hypothesis Testing - Frequentist Compare two hypotheses to see which one better explains the data. Or, alternatively, what is the best way to separate events into two classes, those originating

More information

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80

The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 The University of Hong Kong Department of Statistics and Actuarial Science STAT2802 Statistical Models Tutorial Solutions Solutions to Problems 71-80 71. Decide in each case whether the hypothesis is simple

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Estimation and Detection

Estimation and Detection Estimation and Detection Lecture : Detection Theory Unknown Parameters Dr. ir. Richard C. Hendriks //05 Previous Lecture H 0 : T (x) < H : T (x) > Using detection theory, rules can be derived on how to

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1 Adaptive Filtering and Change Detection Bo Wahlberg (KTH and Fredrik Gustafsson (LiTH Course Organization Lectures and compendium: Theory, Algorithms, Applications, Evaluation Toolbox and manual: Algorithms,

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Estimation Theory Fredrik Rusek. Chapters

Estimation Theory Fredrik Rusek. Chapters Estimation Theory Fredrik Rusek Chapters 3.5-3.10 Recap We deal with unbiased estimators of deterministic parameters Performance of an estimator is measured by the variance of the estimate (due to the

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Estimation Theory Fredrik Rusek. Chapter 11

Estimation Theory Fredrik Rusek. Chapter 11 Estimation Theory Fredrik Rusek Chapter 11 Chapter 10 Bayesian Estimation Section 10.8 Bayesian estimators for deterministic parameters If no MVU estimator exists, or is very hard to find, we can apply

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015 EECS564 Estimation, Filtering, and Detection Exam Week of April 0, 015 This is an open book takehome exam. You have 48 hours to complete the exam. All work on the exam should be your own. problems have

More information

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES 557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES Example Suppose that X,..., X n N, ). To test H 0 : 0 H : the most powerful test at level α is based on the statistic λx) f π) X x ) n/ exp

More information

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis Lecture 3 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Statistics for the LHC Lecture 1: Introduction

Statistics for the LHC Lecture 1: Introduction Statistics for the LHC Lecture 1: Introduction Academic Training Lectures CERN, 14 17 June, 2010 indico.cern.ch/conferencedisplay.py?confid=77830 Glen Cowan Physics Department Royal Holloway, University

More information

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing Robert Vanderbei Fall 2014 Slides last edited on November 24, 2014 http://www.princeton.edu/ rvdb Coin Tossing Example Consider two coins.

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

HYPOTHESIS TESTING: FREQUENTIST APPROACH.

HYPOTHESIS TESTING: FREQUENTIST APPROACH. HYPOTHESIS TESTING: FREQUENTIST APPROACH. These notes summarize the lectures on (the frequentist approach to) hypothesis testing. You should be familiar with the standard hypothesis testing from previous

More information

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Review Quiz 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Cramér Rao lower bound (CRLB). That is, if where { } and are scalars, then

More information

Detection and Estimation Chapter 1. Hypothesis Testing

Detection and Estimation Chapter 1. Hypothesis Testing Detection and Estimation Chapter 1. Hypothesis Testing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2015 1/20 Syllabus Homework:

More information

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters D. Richard Brown III Worcester Polytechnic Institute 26-February-2009 Worcester Polytechnic Institute D. Richard Brown III 26-February-2009

More information

Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses

Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses Steven Bergner, Chris Demwell Lecture notes for Cmpt 882 Machine Learning February 19, 2004 Abstract In these notes, a

More information

Lecture 21. Hypothesis Testing II

Lecture 21. Hypothesis Testing II Lecture 21. Hypothesis Testing II December 7, 2011 In the previous lecture, we dened a few key concepts of hypothesis testing and introduced the framework for parametric hypothesis testing. In the parametric

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X).

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X). 4. Interval estimation The goal for interval estimation is to specify the accurary of an estimate. A 1 α confidence set for a parameter θ is a set C(X) in the parameter space Θ, depending only on X, such

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

ECE531 Lecture 8: Non-Random Parameter Estimation

ECE531 Lecture 8: Non-Random Parameter Estimation ECE531 Lecture 8: Non-Random Parameter Estimation D. Richard Brown III Worcester Polytechnic Institute 19-March-2009 Worcester Polytechnic Institute D. Richard Brown III 19-March-2009 1 / 25 Introduction

More information

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 STA 73: Inference Notes. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 1 Testing as a rule Fisher s quantification of extremeness of observed evidence clearly lacked rigorous mathematical interpretation.

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

Methods of evaluating tests

Methods of evaluating tests Methods of evaluating tests Let X,, 1 Xn be i.i.d. Bernoulli( p ). Then 5 j= 1 j ( 5, ) T = X Binomial p. We test 1 H : p vs. 1 1 H : p>. We saw that a LRT is 1 if t k* φ ( x ) =. otherwise (t is the observed

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Hypothesis testing is a statistical problem where you must choose, on the basis of data X, between two alternatives. We formalize this as the problem of choosing between two

More information

8: Hypothesis Testing

8: Hypothesis Testing Some definitions 8: Hypothesis Testing. Simple, compound, null and alternative hypotheses In test theory one distinguishes between simple hypotheses and compound hypotheses. A simple hypothesis Examples:

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Lecture 2 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and Estimation I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 22, 2015

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

Ch. 5 Hypothesis Testing

Ch. 5 Hypothesis Testing Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher s work on estimation. As in estimation,

More information

Recall the Basics of Hypothesis Testing

Recall the Basics of Hypothesis Testing Recall the Basics of Hypothesis Testing The level of significance α, (size of test) is defined as the probability of X falling in w (rejecting H 0 ) when H 0 is true: P(X w H 0 ) = α. H 0 TRUE H 1 TRUE

More information

Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods

Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics

More information

Statistical Methods for Particle Physics (I)

Statistical Methods for Particle Physics (I) Statistical Methods for Particle Physics (I) https://agenda.infn.it/conferencedisplay.py?confid=14407 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur

Module 2. Random Processes. Version 2, ECE IIT, Kharagpur Module Random Processes Version, ECE IIT, Kharagpur Lesson 9 Introduction to Statistical Signal Processing Version, ECE IIT, Kharagpur After reading this lesson, you will learn about Hypotheses testing

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

UNIFORMLY MOST POWERFUL CYCLIC PERMUTATION INVARIANT DETECTION FOR DISCRETE-TIME SIGNALS

UNIFORMLY MOST POWERFUL CYCLIC PERMUTATION INVARIANT DETECTION FOR DISCRETE-TIME SIGNALS UNIFORMLY MOST POWERFUL CYCLIC PERMUTATION INVARIANT DETECTION FOR DISCRETE-TIME SIGNALS F. C. Nicolls and G. de Jager Department of Electrical Engineering, University of Cape Town Rondebosch 77, South

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics Department

More information

STONY BROOK UNIVERSITY. CEAS Technical Report 829

STONY BROOK UNIVERSITY. CEAS Technical Report 829 1 STONY BROOK UNIVERSITY CEAS Technical Report 829 Variable and Multiple Target Tracking by Particle Filtering and Maximum Likelihood Monte Carlo Method Jaechan Lim January 4, 2006 2 Abstract In most applications

More information

Rowan University Department of Electrical and Computer Engineering

Rowan University Department of Electrical and Computer Engineering Rowan University Department of Electrical and Computer Engineering Estimation and Detection Theory Fall 2013 to Practice Exam II This is a closed book exam. There are 8 problems in the exam. The problems

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

A Few Notes on Fisher Information (WIP)

A Few Notes on Fisher Information (WIP) A Few Notes on Fisher Information (WIP) David Meyer dmm@{-4-5.net,uoregon.edu} Last update: April 30, 208 Definitions There are so many interesting things about Fisher Information and its theoretical properties

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Derivation of Monotone Likelihood Ratio Using Two Sided Uniformly Normal Distribution Techniques

Derivation of Monotone Likelihood Ratio Using Two Sided Uniformly Normal Distribution Techniques Vol:7, No:0, 203 Derivation of Monotone Likelihood Ratio Using Two Sided Uniformly Normal Distribution Techniques D. A. Farinde International Science Index, Mathematical and Computational Sciences Vol:7,

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

CONSIDER two companion problems: Separating Function Estimation Tests: A New Perspective on Binary Composite Hypothesis Testing

CONSIDER two companion problems: Separating Function Estimation Tests: A New Perspective on Binary Composite Hypothesis Testing TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING Separating Function Estimation Tests: A New Perspective on Binary Composite Hypothesis Testing Ali Ghobadzadeh, Student Member, IEEE, Saeed Gazor, Senior

More information

The loss function and estimating equations

The loss function and estimating equations Chapter 6 he loss function and estimating equations 6 Loss functions Up until now our main focus has been on parameter estimating via the maximum likelihood However, the negative maximum likelihood is

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Basic concepts in estimation

Basic concepts in estimation Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009 there were participants

Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009 there were participants 18.650 Statistics for Applications Chapter 5: Parametric hypothesis testing 1/37 Cherry Blossom run (1) The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C. In 2009

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Leture 5 for BST 63: Statistial Theory II Kui Zhang, Spring Chapter 8 Hypothesis Testing Setion 8 Introdution Definition 8 A hypothesis is a statement about a population parameter Definition 8 The two

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.0 Introduction to Statistical Methods in Economics Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information