Estimation and Detection

Size: px
Start display at page:

Download "Estimation and Detection"

Transcription

1 Estimation and Detection Lecture : Detection Theory Unknown Parameters Dr. ir. Richard C. Hendriks //05

2 Previous Lecture H 0 : T (x) < H : T (x) > Using detection theory, rules can be derived on how to chose and how to find T (x). Neyman-Pearson Theorem: L(x)= (x;h ) (x;h 0 ) >, where found from P FA = R {x:l(x)> } (x;h 0)dx = Minimum robability of error: (x H ) (x H 0 ) > P (H 0) P (H ) = Bayesian detector: (x H ) (x H 0 ) > C 0 C 00 C 0 C P (H 0 ) P (H ) =. Similar test statistic, different threshold.

3 Deterministic Signals - Interretation Interretation : The resulting T (x)= P N n=0 x[n]s[n] is a correlator. The received data is correlated with a relica of the signal. Interretation : The resulting T (x)= P N n=0 x[n]s[n] is a matched filter. Fig. 4. from Kay-II. 3

4 Deterministic Signals Summary Deterministic signals: T (x)=x T C s Notice that is C is ositive definite, C can be written as C = D T D, leading to T (x)=x T D T Ds Fig. 4.7 Kay-II. 4

5 Random Signals Estimator Correlator Hence, we decide for H if T (x)=x T ŝ > 00 with ŝ = ale C s + I C s x = C s (C s + I) x Fig. 5. Kay-II. 5

6 Hence, we decide for H if Random Signals Exercise with ŝ = T (x)=x T ŝ > 00 ale C s + I C s x = C s (C s + I) x Fig. 5. Kay-II. Problem Ch. 5 Kay-II. 6

7 Detection under NP: Today Deterministic signals: Random Signals: with ŝ = T (x)=x T C s T (x)=x T ŝ > 00 ale C s + I C s x = C s (C s + I) x NP requires erfect knowledge of (x;h 0 ) and (x;h ). (and thus s and/or C s and ) What if this information is unknown? 7

8 Comosite Hyothesis Testing Remember this examle H 0 : x[n]=w[n] n =0,,...,N H : x[n]=a + w[n] n =0,,...,N where A>0 and w[n] is WGN with variance. NP detector decides H if L(x)= (x;h ) (x;h 0 ) > 8

9 Comosite Hyothesis Testing We then have ( ) N ( ) N h ex h ex P N n=0 (x[n] A) i P N n=0 x [n] i > Taking the logarithm of both sides and simlification results in N NX n=0 x[n] > NA ln + A = 0 Where the threshold is found by P FA = Pr(T (x) > 0 ;H 0 )=Q 0 ) 0 = r N Q (P FA ) 9

10 Comosite Hyothesis Testing What if the value of A is unknown? H 0 : x[n]=w[n] n =0,,...,N H : x[n]=a + w[n] n =0,,...,N where A is unknown, but we know A>0. Further we know that w[n] is WGN with variance. NP detector decides H if L(x)= (x;a,h ) (x;a,h 0 ) > PDFs arameterized by A This is called: Comosite Hyothesis testing. 0

11 We now have Comosite Hyothesis Testing ( ) N ( ) N h ex h ex P N n=0 (x[n] A) i P N n=0 x [n] i > Taking the logarithm of both sides and simlification results in N NX n=0 x[n] > NA ln + A = 0 In this case, Both the test statistic T (x) and threshold deend on A. 0 do not Even though A is unknown, we can thus imlement this detector. (Although P D does deend on A) Where the threshold is found by 0 P FA = Pr(T (x) > 0 ;H 0 )=Q r NA P D = Q Q (P FA ) ) 0 = r N Q (P FA )

12 Comosite Hyothesis Testing - UMP The test N NX n=0 x[n] > NA ln + A = r N Q (P FA ), leads to the highest P D (remember NP maximises P D ) for any value A. (as long as A>0). Such a test is called a Uniformly Most Powerful (UMP) test. Any other test will have a oorer erformance. However...often an UMP does not exist.

13 Comosite Hyothesis Testing - UMP Consider the same examle: What if A is <A< instead of A>0? In that case we will have a different test for negative and ositive A: A>0: A<0: N N NX n=0 NX n=0 x[n] > x[n] < r N Q (P FA ) r N Q (P FA ) In this case, the UMP does not exist (as A can either be > 0 or < 0). Instead of en otimal test we will have to use a sub-otimal test. However, the unrealizable otimal test can be used for erformance comarison (such a test is called a clairvoyant detector). 3

14 Examle DC level in WGN unknown A Let us first calculate the clairvoyant detector for the case <A< For A>0 A>0: A<0: P FA = Pr{ x> N N NX n=0 NX n=0 0 +;H 0 } = Q x[n] > 0 + x[n] < For A<0 0 0 P FA = Pr{ x< 0 ;H 0 } = Q = Q 4

15 Examle DC level in WGN unknown A The detection erformance of the clairvoyant detector: 0 for A>0 P D = Pr{ x> +;H 0 + A } = Q = Q Q (P FA ) r NA for A<0 P D = Q 0 A = Q 0 + A = Q Q (P FA )+ A Fig. 6.3 Kay-II. 5

16 Examle DC level in WGN unknown A Instead of the clairvoyant detector, let s look at the realisable detector: N NX n=0 x[n] > 00, where A is now unknown and <A<. P FA = Pr{ x > 00 ;H 0 } =Pr{ x> 00 ;H 0 } =Q = Q (P FA /) P D = Pr{ x > 00 ;H } = Q Q (P FA /) r NA + Q Q (P FA /) + A 6

17 Examle DC level in WGN unknown A P D = Pr{ x > 00 ;H } = Q Q (P FA /) r NA + Q Q (P FA /) + A The erformance of this realisable detector is thus not otimal, but close to the otimal clairvoyant detector. Fig. 6.4 Kay-II. 7

18 Exercise Problems Ch. 6 Kay-II. 8

19 Aroaches for comosite Hy. testing Two aroaches: Bayesian aroach: Consider unknown arameters as realizations of random variables and assign a rior df. Generalized likelihood ratio: Estimate unknown arameters using MLEs. Bayesian aroach: Assign riors to unknown arameters 0 and under hyotheses H 0 and H, resectively: Z (x;h 0 )= (x 0;H 0 )( 0 )d 0 Z (x;h )= NP detector: (x;h ) (x;h 0 ) = R (x ;H )( )d R (x 0;H 0 )( 0 )d 0 > (x ;H )( )d Need to choose rior df. Integration can be difficult. 9

20 Exercise Bayesian Comosite NP Detector Examle Bayesian NP detector: We observe one samle x[0] having an exonential df NP detector: (x;h ) (x;h 0 ) = R (x ;H )( )d R (x 0;H 0 )( 0 )d 0 > (x[0]) = ex( x[0]), where is unknown. For the hyothesis testing roblem H 0 : = 0 H : 6= 0, Determine the Bayesian comosite NP detector if it is given that between 0 and C. is uniformly distributed 0

21 Generalized Likelihood Ratio Test GLRT: Relace unknown arameters by their MLEs. GLRT: L G (x)= (x; ˆ,H ) (x; ˆ0,H 0 ) > with (x; ˆi,H i ) given by (x; ˆi,H i ) = max(x; i,h i ) i

22 Examle: DC in WGN with Unknown Amlitude - GRLT Remember this examle H 0 : x[n]=w[n] n =0,,...,N H : x[n]=a + w[n] n =0,,...,N where <A< and w[n] is WGN with variance. NP detector decides H if the GLRT: L G (x)= (x; ˆ,H ) (x; ˆ0,H 0 ) > with (x; ˆi,H i ) given by (x; ˆi,H i ) = max(x; i,h i ) i

23 Examle: DC in WGN with Unknown Amlitude - GRLT MLE of A: This will lead to  = N = max A (x;â,h ) = max A (x;a,h ) ( ) N P x [n]= x. h ex X (x[n] A) i. N n=0 Thus, the GLRT L G (x)= ( ) N ( ) N h ex h ex P N n=0 (x[n] x) i P N n=0 x [n] i > Taking the logarithm of both sides we have lnl G (x)= ( N x + N x )= N x 3

24 Examle: DC in WGN with Unknown Amlitude - GRLT We decide thus for H if lnl G (x)= ( N x + N x )= N x x > 00. This detector is identical to realisable detector we looked at before. Remember: P FA = Pr{ x > 00 ;H 0 } =Pr{ x> 00 ;H 0 } = Q = Q (P FA /) P D = Pr{ x > 00 ;H } = Q Q (P FA /) r NA + Q Q (P FA /) + A 4

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

Detection Theory. Composite tests

Detection Theory. Composite tests Composite tests Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Thu Chapter 5: Correction Thu I claimed that the above, which is the most general

More information

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Thais Paiva STA 111 - Summer 2013 Term II August 7, 2013 1 / 31 Thais Paiva STA 111 - Summer 2013 Term II Lecture 23, 08/07/2013 Lecture

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Optimal Recognition Algorithm for Cameras of Lasers Evanescent

Optimal Recognition Algorithm for Cameras of Lasers Evanescent Otimal Recognition Algorithm for Cameras of Lasers Evanescent T. Gaudo * Abstract An algorithm based on the Bayesian aroach to detect and recognise off-axis ulse laser beams roagating in the atmoshere

More information

Estimation and Detection

Estimation and Detection stimation and Detection Lecture 2: Cramér-Rao Lower Bound Dr. ir. Richard C. Hendriks & Dr. Sundeep P. Chepuri 7//207 Remember: Introductory xample Given a process (DC in noise): x[n]=a + w[n], n=0,,n,

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Matched Filter Generalized Matched Filter Signal

More information

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

1 Extremum Estimators

1 Extremum Estimators FINC 9311-21 Financial Econometrics Handout Jialin Yu 1 Extremum Estimators Let θ 0 be a vector of k 1 unknown arameters. Extremum estimators: estimators obtained by maximizing or minimizing some objective

More information

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI **

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI ** Iranian Journal of Science & Technology, Transaction A, Vol 3, No A3 Printed in The Islamic Reublic of Iran, 26 Shiraz University Research Note REGRESSION ANALYSIS IN MARKOV HAIN * A Y ALAMUTI AND M R

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

Introduction to Detection Theory

Introduction to Detection Theory Introduction to Detection Theory Detection Theory (a.k.a. decision theory or hypothesis testing) is concerned with situations where we need to make a decision on whether an event (out of M possible events)

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

STK4900/ Lecture 7. Program

STK4900/ Lecture 7. Program STK4900/9900 - Lecture 7 Program 1. Logistic regression with one redictor 2. Maximum likelihood estimation 3. Logistic regression with several redictors 4. Deviance and likelihood ratio tests 5. A comment

More information

arxiv: v3 [physics.data-an] 23 May 2011

arxiv: v3 [physics.data-an] 23 May 2011 Date: October, 8 arxiv:.7v [hysics.data-an] May -values for Model Evaluation F. Beaujean, A. Caldwell, D. Kollár, K. Kröninger Max-Planck-Institut für Physik, München, Germany CERN, Geneva, Switzerland

More information

On split sample and randomized confidence intervals for binomial proportions

On split sample and randomized confidence intervals for binomial proportions On slit samle and randomized confidence intervals for binomial roortions Måns Thulin Deartment of Mathematics, Usala University arxiv:1402.6536v1 [stat.me] 26 Feb 2014 Abstract Slit samle methods have

More information

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters D. Richard Brown III Worcester Polytechnic Institute 26-February-2009 Worcester Polytechnic Institute D. Richard Brown III 26-February-2009

More information

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)]

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)] LECTURE 7 NOTES 1. Convergence of random variables. Before delving into the large samle roerties of the MLE, we review some concets from large samle theory. 1. Convergence in robability: x n x if, for

More information

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1 Adaptive Filtering and Change Detection Bo Wahlberg (KTH and Fredrik Gustafsson (LiTH Course Organization Lectures and compendium: Theory, Algorithms, Applications, Evaluation Toolbox and manual: Algorithms,

More information

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution Outline for today Maximum likelihood estimation Rasmus Waageetersen Deartment of Mathematics Aalborg University Denmark October 30, 2007 the multivariate normal distribution linear and linear mixed models

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit Chater 5 Statistical Inference 69 CHAPTER 5 STATISTICAL INFERENCE.0 Hyothesis Testing.0 Decision Errors 3.0 How a Hyothesis is Tested 4.0 Test for Goodness of Fit 5.0 Inferences about Two Means It ain't

More information

Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis

Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis HIPAD LAB: HIGH PERFORMANCE SYSTEMS LABORATORY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND EARTH SCIENCES Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis Why use metamodeling

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and Estimation I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 22, 2015

More information

tests 17.1 Simple versus compound

tests 17.1 Simple versus compound PAS204: Lecture 17. tests UMP ad asymtotic I this lecture, we will idetify UMP tests, wherever they exist, for comarig a simle ull hyothesis with a comoud alterative. We also look at costructig tests based

More information

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test)

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test) Chater 225 Tests for Two Proortions in a Stratified Design (Cochran/Mantel-Haenszel Test) Introduction In a stratified design, the subects are selected from two or more strata which are formed from imortant

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Exeriment-I MODULE II LECTURE -4 GENERAL LINEAR HPOTHESIS AND ANALSIS OF VARIANCE Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur

More information

HEC Lausanne - Advanced Econometrics

HEC Lausanne - Advanced Econometrics HEC Lausanne - Advanced Econometrics Christohe HURLI Correction Final Exam. January 4. C. Hurlin Exercise : MLE, arametric tests and the trilogy (3 oints) Part I: Maximum Likelihood Estimation (MLE) Question

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

The Poisson Regression Model

The Poisson Regression Model The Poisson Regression Model The Poisson regression model aims at modeling a counting variable Y, counting the number of times that a certain event occurs during a given time eriod. We observe a samle

More information

Combining Logistic Regression with Kriging for Mapping the Risk of Occurrence of Unexploded Ordnance (UXO)

Combining Logistic Regression with Kriging for Mapping the Risk of Occurrence of Unexploded Ordnance (UXO) Combining Logistic Regression with Kriging for Maing the Risk of Occurrence of Unexloded Ordnance (UXO) H. Saito (), P. Goovaerts (), S. A. McKenna (2) Environmental and Water Resources Engineering, Deartment

More information

Background. GLM with clustered data. The problem. Solutions. A fixed effects approach

Background. GLM with clustered data. The problem. Solutions. A fixed effects approach Background GLM with clustered data A fixed effects aroach Göran Broström Poisson or Binomial data with the following roerties A large data set, artitioned into many relatively small grous, and where members

More information

Outline. Detection Theory. NonGaussian NoiseCharacteristics. Example: Kurtosis: Chapter 10: NonGaussian Noise Reza Meraji Dec. 14, 2010.

Outline. Detection Theory. NonGaussian NoiseCharacteristics. Example: Kurtosis: Chapter 10: NonGaussian Noise Reza Meraji Dec. 14, 2010. Outline Detection Theory Chapter 10: NonGaussian Noise Reza Meraji Dec. 14, 2010 NonGuassian noise characteristics Kurtosis Laplacian pdf Generalized gaussian pdf Detection: Known deterministic signals

More information

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder Bayesian inference & Markov chain Monte Carlo Note 1: Many slides for this lecture were kindly rovided by Paul Lewis and Mark Holder Note 2: Paul Lewis has written nice software for demonstrating Markov

More information

Lecture: Condorcet s Theorem

Lecture: Condorcet s Theorem Social Networs and Social Choice Lecture Date: August 3, 00 Lecture: Condorcet s Theorem Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler Condorcet s theorem, the most basic jury

More information

ECE531 Lecture 4b: Composite Hypothesis Testing

ECE531 Lecture 4b: Composite Hypothesis Testing ECE531 Lecture 4b: Composite Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 16-February-2011 Worcester Polytechnic Institute D. Richard Brown III 16-February-2011 1 / 44 Introduction

More information

Supplementary Materials for Robust Estimation of the False Discovery Rate

Supplementary Materials for Robust Estimation of the False Discovery Rate Sulementary Materials for Robust Estimation of the False Discovery Rate Stan Pounds and Cheng Cheng This sulemental contains roofs regarding theoretical roerties of the roosed method (Section S1), rovides

More information

11.5 MAP Estimator MAP avoids this Computational Problem!

11.5 MAP Estimator MAP avoids this Computational Problem! .5 MAP timator ecall that the hit-or-mi cot function gave the MAP etimator it maimize the a oteriori PDF Q: Given that the MMS etimator i the mot natural one why would we conider the MAP etimator? A: If

More information

DEPARTMENT OF ECONOMICS ISSN DISCUSSION PAPER 20/07 TWO NEW EXPONENTIAL FAMILIES OF LORENZ CURVES

DEPARTMENT OF ECONOMICS ISSN DISCUSSION PAPER 20/07 TWO NEW EXPONENTIAL FAMILIES OF LORENZ CURVES DEPARTMENT OF ECONOMICS ISSN 1441-549 DISCUSSION PAPER /7 TWO NEW EXPONENTIAL FAMILIES OF LORENZ CURVES ZuXiang Wang * & Russell Smyth ABSTRACT We resent two new Lorenz curve families by using the basic

More information

Review of Probability Theory II

Review of Probability Theory II Review of Probability Theory II January 9-3, 008 Exectation If the samle sace Ω = {ω, ω,...} is countable and g is a real-valued function, then we define the exected value or the exectation of a function

More information

Math 152. Rumbos Fall Solutions to Assignment #12

Math 152. Rumbos Fall Solutions to Assignment #12 Math 52. umbos Fall 2009 Solutions to Assignment #2. Suppose that you observe n iid Bernoulli(p) random variables, denoted by X, X 2,..., X n. Find the LT rejection region for the test of H o : p p o versus

More information

{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}.

{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}. EM Solved roblems Lalace & Fourier transform c Habala 3 EM Solved roblems Lalace & Fourier transform Find the Lalace transform of the following functions: ft t sint; ft e 3t cos3t; 3 ft e 3s ds; { sint,

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2 STA 25: Statistics Notes 7. Bayesian Aroach to Statistics Book chaters: 7.2 1 From calibrating a rocedure to quantifying uncertainty We saw that the central idea of classical testing is to rovide a rigorous

More information

Lecture 21. Hypothesis Testing II

Lecture 21. Hypothesis Testing II Lecture 21. Hypothesis Testing II December 7, 2011 In the previous lecture, we dened a few key concepts of hypothesis testing and introduced the framework for parametric hypothesis testing. In the parametric

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

ESTIMATION OF THE RECIPROCAL OF THE MEAN OF THE INVERSE GAUSSIAN DISTRIBUTION WITH PRIOR INFORMATION

ESTIMATION OF THE RECIPROCAL OF THE MEAN OF THE INVERSE GAUSSIAN DISTRIBUTION WITH PRIOR INFORMATION STATISTICA, anno LXVIII, n., 008 ESTIMATION OF THE RECIPROCAL OF THE MEAN OF THE INVERSE GAUSSIAN DISTRIBUTION WITH PRIOR INFORMATION 1. INTRODUCTION The Inverse Gaussian distribution was first introduced

More information

Published: 14 October 2013

Published: 14 October 2013 Electronic Journal of Alied Statistical Analysis EJASA, Electron. J. A. Stat. Anal. htt://siba-ese.unisalento.it/index.h/ejasa/index e-issn: 27-5948 DOI: 1.1285/i275948v6n213 Estimation of Parameters of

More information

Estimating Time-Series Models

Estimating Time-Series Models Estimating ime-series Models he Box-Jenkins methodology for tting a model to a scalar time series fx t g consists of ve stes:. Decide on the order of di erencing d that is needed to roduce a stationary

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2016 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Spectral Analysis by Stationary Time Series Modeling

Spectral Analysis by Stationary Time Series Modeling Chater 6 Sectral Analysis by Stationary Time Series Modeling Choosing a arametric model among all the existing models is by itself a difficult roblem. Generally, this is a riori information about the signal

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

3. Show that if there are 23 people in a room, the probability is less than one half that no two of them share the same birthday.

3. Show that if there are 23 people in a room, the probability is less than one half that no two of them share the same birthday. N12c Natural Sciences Part IA Dr M. G. Worster Mathematics course B Examles Sheet 1 Lent erm 2005 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damt.cam.ac.uk. Note that there

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

EIE6207: Maximum-Likelihood and Bayesian Estimation

EIE6207: Maximum-Likelihood and Bayesian Estimation EIE6207: Maximum-Likelihood and Bayesian Estimation Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Distributed Rule-Based Inference in the Presence of Redundant Information

Distributed Rule-Based Inference in the Presence of Redundant Information istribution Statement : roved for ublic release; distribution is unlimited. istributed Rule-ased Inference in the Presence of Redundant Information June 8, 004 William J. Farrell III Lockheed Martin dvanced

More information

Sums of independent random variables

Sums of independent random variables 3 Sums of indeendent random variables This lecture collects a number of estimates for sums of indeendent random variables with values in a Banach sace E. We concentrate on sums of the form N γ nx n, where

More information

ECE531 Screencast 11.4: Composite Neyman-Pearson Hypothesis Testing

ECE531 Screencast 11.4: Composite Neyman-Pearson Hypothesis Testing ECE531 Screencast 11.4: Composite Neyman-Pearson Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute Worcester Polytechnic Institute D. Richard Brown III 1 / 8 Basics Hypotheses H 0

More information

The European Commission s science and knowledge service. Joint Research Centre

The European Commission s science and knowledge service. Joint Research Centre The Euroean Commission s science and knowledge service Joint Research Centre Ste 7: Statistical coherence (II) PCA, Exloratory Factor Analysis, Cronbach alha Hedvig Norlén COIN 2017-15th JRC Annual Training

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 379: Business and Economics Statistics Instructor: Yogesh Ual Email: yual@ysu.edu Chater 9, Part A: Hyothesis Tests Develoing Null and Alternative Hyotheses Tye I and Tye II Errors Poulation Mean:

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information

Using the Divergence Information Criterion for the Determination of the Order of an Autoregressive Process

Using the Divergence Information Criterion for the Determination of the Order of an Autoregressive Process Using the Divergence Information Criterion for the Determination of the Order of an Autoregressive Process P. Mantalos a1, K. Mattheou b, A. Karagrigoriou b a.deartment of Statistics University of Lund

More information

Estimation of Separable Representations in Psychophysical Experiments

Estimation of Separable Representations in Psychophysical Experiments Estimation of Searable Reresentations in Psychohysical Exeriments Michele Bernasconi (mbernasconi@eco.uninsubria.it) Christine Choirat (cchoirat@eco.uninsubria.it) Raffaello Seri (rseri@eco.uninsubria.it)

More information

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

A Unified Framework for GLRT-Based Spectrum Sensing of Signals with Covariance Matrices with Known Eigenvalue Multiplicities

A Unified Framework for GLRT-Based Spectrum Sensing of Signals with Covariance Matrices with Known Eigenvalue Multiplicities A Unified Framework for GLRT-Based Sectrum Sensing of Signals with Covariance Matrices with Known Eigenvalue Multilicities Erik Axell and Erik G. Larsson Linköing University Post Print N.B.: When citing

More information

A New Asymmetric Interaction Ridge (AIR) Regression Method

A New Asymmetric Interaction Ridge (AIR) Regression Method A New Asymmetric Interaction Ridge (AIR) Regression Method by Kristofer Månsson, Ghazi Shukur, and Pär Sölander The Swedish Retail Institute, HUI Research, Stockholm, Sweden. Deartment of Economics and

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

Finite Mixture EFA in Mplus

Finite Mixture EFA in Mplus Finite Mixture EFA in Mlus November 16, 2007 In this document we describe the Mixture EFA model estimated in Mlus. Four tyes of deendent variables are ossible in this model: normally distributed, ordered

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

i) the probability of type I error; ii) the 95% con dence interval; iii) the p value; iv) the probability of type II error; v) the power of a test.

i) the probability of type I error; ii) the 95% con dence interval; iii) the p value; iv) the probability of type II error; v) the power of a test. Problem Set 5. Questions:. Exlain what is: i) the robability of tye I error; ii) the 95% con dence interval; iii) the value; iv) the robability of tye II error; v) the ower of a test.. Solve exercise 3.

More information

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek Use of Transformations and the Reeated Statement in PROC GLM in SAS Ed Stanek Introduction We describe how the Reeated Statement in PROC GLM in SAS transforms the data to rovide tests of hyotheses of interest.

More information

Introduction to Probability and Statistics

Introduction to Probability and Statistics Introduction to Probability and Statistics Chater 8 Ammar M. Sarhan, asarhan@mathstat.dal.ca Deartment of Mathematics and Statistics, Dalhousie University Fall Semester 28 Chater 8 Tests of Hyotheses Based

More information

The Noise Power Ratio - Theory and ADC Testing

The Noise Power Ratio - Theory and ADC Testing The Noise Power Ratio - Theory and ADC Testing FH Irons, KJ Riley, and DM Hummels Abstract This aer develos theory behind the noise ower ratio (NPR) testing of ADCs. A mid-riser formulation is used for

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

1. Point Estimators, Review

1. Point Estimators, Review AMS571 Prof. Wei Zhu 1. Point Estimators, Review Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators.

More information

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015 EECS564 Estimation, Filtering, and Detection Exam Week of April 0, 015 This is an open book takehome exam. You have 48 hours to complete the exam. All work on the exam should be your own. problems have

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

FYST17 Lecture 8 Statistics and hypothesis testing. Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons

FYST17 Lecture 8 Statistics and hypothesis testing. Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons FYST17 Lecture 8 Statistics and hypothesis testing Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons 1 Plan for today: Introduction to concepts The Gaussian distribution Likelihood functions Hypothesis

More information

A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED LIFE TEST BASED ON THE WEIBULL DISTRIBUTION

A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED LIFE TEST BASED ON THE WEIBULL DISTRIBUTION O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S No. 27 DOI:.5277/ord73 Nasrullah KHAN Muhammad ASLAM 2 Kyung-Jun KIM 3 Chi-Hyuck JUN 4 A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED LIFE TEST

More information

Slides Prepared by JOHN S. LOUCKS St. Edward s s University Thomson/South-Western. Slide

Slides Prepared by JOHN S. LOUCKS St. Edward s s University Thomson/South-Western. Slide s Preared by JOHN S. LOUCKS St. Edward s s University 1 Chater 11 Comarisons Involving Proortions and a Test of Indeendence Inferences About the Difference Between Two Poulation Proortions Hyothesis Test

More information

ECON 4130 Supplementary Exercises 1-4

ECON 4130 Supplementary Exercises 1-4 HG Set. 0 ECON 430 Sulementary Exercises - 4 Exercise Quantiles (ercentiles). Let X be a continuous random variable (rv.) with df f( x ) and cdf F( x ). For 0< < we define -th quantile (or 00-th ercentile),

More information

Bayesian classification CISC 5800 Professor Daniel Leeds

Bayesian classification CISC 5800 Professor Daniel Leeds Bayesian classification CISC 5800 Professor Daniel Leeds Classifying with robabilities Examle goal: Determine is it cloudy out Available data: Light detector: x 0,25 Potential class (atmosheric states):

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Improved Capacity Bounds for the Binary Energy Harvesting Channel

Improved Capacity Bounds for the Binary Energy Harvesting Channel Imroved Caacity Bounds for the Binary Energy Harvesting Channel Kaya Tutuncuoglu 1, Omur Ozel 2, Aylin Yener 1, and Sennur Ulukus 2 1 Deartment of Electrical Engineering, The Pennsylvania State University,

More information

Machine Learning: Homework 4

Machine Learning: Homework 4 10-601 Machine Learning: Homework 4 Due 5.m. Monday, February 16, 2015 Instructions Late homework olicy: Homework is worth full credit if submitted before the due date, half credit during the next 48 hours,

More information

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III AI*IA 23 Fusion of Multile Pattern Classifiers PART III AI*IA 23 Tutorial on Fusion of Multile Pattern Classifiers by F. Roli 49 Methods for fusing multile classifiers Methods for fusing multile classifiers

More information

Monopolist s mark-up and the elasticity of substitution

Monopolist s mark-up and the elasticity of substitution Croatian Oerational Research Review 377 CRORR 8(7), 377 39 Monoolist s mark-u and the elasticity of substitution Ilko Vrankić, Mira Kran, and Tomislav Herceg Deartment of Economic Theory, Faculty of Economics

More information

CSE 599d - Quantum Computing When Quantum Computers Fall Apart

CSE 599d - Quantum Computing When Quantum Computers Fall Apart CSE 599d - Quantum Comuting When Quantum Comuters Fall Aart Dave Bacon Deartment of Comuter Science & Engineering, University of Washington In this lecture we are going to begin discussing what haens to

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Chapter 6. Hypothesis Tests Lecture 20: UMP tests and Neyman-Pearson lemma

Chapter 6. Hypothesis Tests Lecture 20: UMP tests and Neyman-Pearson lemma Chapter 6. Hypothesis Tests Lecture 20: UMP tests and Neyman-Pearson lemma Theory of testing hypotheses X: a sample from a population P in P, a family of populations. Based on the observed X, we test a

More information

Convex Optimization methods for Computing Channel Capacity

Convex Optimization methods for Computing Channel Capacity Convex Otimization methods for Comuting Channel Caacity Abhishek Sinha Laboratory for Information and Decision Systems (LIDS), MIT sinhaa@mit.edu May 15, 2014 We consider a classical comutational roblem

More information