{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}.

Size: px
Start display at page:

Download "{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}."

Transcription

1 EM Solved roblems Lalace & Fourier transform c Habala 3 EM Solved roblems Lalace & Fourier transform Find the Lalace transform of the following functions: ft t sint; ft e 3t cos3t; 3 ft e 3s ds; { sint, t,; ft t + t 3; 5 ft 6 ft sint, elsewhere; Find the inverse Lalace transform of the following functions: 8e 3 7 F ++ ; 8 F ++5 ; t 9 F e e + e, sketch the grah of this ft L {F Use the Lalace transform to solve the following roblems: y y x + e x, y 3 {, t,; ÿ + y y +, ẏ +, elsewhere, y t + ys ds 6, y + { sint, t, 3 y y ; y, elsewhere, { t, t,; ẋ x x+, elsewhere, 5 Use the Lalace transform to find the general solution of y + y 8e t sint { t, t,; 6 Consider the function ft, t, Find its Fourier series, its sine Fourier series, and its cosine Fourier series For each series determine its sum

2 EM Solved roblems Lalace & Fourier transform c Habala 3 Solutions We first use the rule for L{t ft to get rid of t: L{t sint d d L{sint ] + + We first use the rule for L{e at ft to get rid of the exonential: L{e 3t cos3t L{cos3t It is also ossible to first get rid of 3t, since it is everywhere in the function We use the choice ft e t cost, then f3t is the given function Using the aroriate formula we get rid of 3t, then we continue as above get rid of exonential, transform cosine When doing two oerations, one has to be careful about the roer order of grammar rules: L{e 3t cos3t 3 L{e t cost /3 3 L{cost /3 3 / /3 3 /3+ 3 We use the rule for integrals: { t L e 3s ds L{e3t / We have to use the shift rule There are two ways to do it: a We change the given function t+ to feature the exression t 3 just like the jum function, then use the shift rule: L{t + Ht 3 L{t 3] + 5 Ht 3 e 3 L{t + 5 Ht e b It is also ossible to use the shift rule and think of it as a substitution, for t 3 one uts, say, s, so t s + 3: L{t + Ht 3 e 3 L{s + 3] + Hs e 3 L{s + 5 Hs e There are two ossibilities First, one can use the definition: L{ft fte t dt sinte t dt This integral is standard two integrations by arts, then solving an equation, but it is a long calculation It might be easier to exress the given function as a roduct of sine and a discrete unit signal on the interval,]: ft sint Ht Ht ] sintht sintht Thus see the revious roblem L{ft L{sintHt sintht L{sintHt L{sintHt + e L{sins + Hs + e L{ sinshs + + e + e There is no rule for the absolute value One ossibility is to use the definition, but integrating absolute value is a roblem, such an integral would have to be slit deending on whether the sine is ositive or negative It will be therefore easier to think of f as a function that is eriodic with T, since indeed, when you draw the grah, you find out that the function f is actually just one hill of the sine reeated over and over In fact, the first eriod, f T, is exactly the function from art d By the theorem on eriodic functions and the revious art, L{ft L{f T e e + + e 7 To find the inverse, it is enough to decomose the fraction into artial fractions: L { + L { ++ L { L { + L { cost + sint e t

3 EM Solved roblems Lalace & Fourier transform c Habala 3 8 First we will use the aroriate rule to get rid of the exonential The inverse Lalace of the remaining fraction is done first by comleting a square, then by using the shift rule for the inverse Lalace and finally using the dictionary: L { 8e L { t 3 Ht 3 L { t 3 Ht 3 e t L { 8 t 3 + Ht 3 e t sint t 3 Ht 3 e 3 t sin t 3 {, t,3; Ht 3 e 3 t sin t 3, t 3 When rewriting the answer as a slit function, we used the fact that Ht 3 for t < 3 and Ht 3 for t 3 Note how t 3 was substituted back: It also became a art of the exonential, due to the order in which the rules were used It is ossible to also first handle the shift, then the rest: L { 8e 3++3 e t L { 8e 3+3 e t L { e 3 e 3 L { 8e e t e 3 L { e e 3 t L { + t 3 Ht 3 + e 3 t sint t 3 Ht 3 e 3 t sin t 3 Ht 3 Now the substitution of t 3 alied only to the sine art itself, because e 3 t was already done, it was not a art of the inverse Lalace when the get rid of exonential rule was alied 9 We just have to use the rule for getting rid of exonential and then the dictionary: L { e e + e L { L { e + t L { + t Ht t t + e t t Ht y t t ] + e t Ht t + e t t Ht, t < ; t, t,; e t, t x We aly the Lalace transform to both sides of the equation, denoting Y L{y: L{y y L{x + e x L{y L{y L{x + L{y y + ] L{y + Y 3 Y + Y Therefore Y To find yt we use the inverse Lalace transform First we need to relace the rational functions in Y with artial fractions:

4 EM Solved roblems Lalace & Fourier transform c Habala 3 Thus Y + + Consequently + yt L { + + L { + L { + L { e t + e t + e t L { e t + e t + e t t, t Since the equation and the solution exist on the whole real line, it is very likely that the solution actually works on IR This would have to be checked by substituting y into the equation and indeed it works We aly the Lalace transform to both sides It might be a good idea to first figure out the Lalace transform on the right We can do it by definition, since this should be easy: L{ft e t dt ] e t e Alternative: L{ft L{Ht Ht e L{Ht e The left hand-side transforms denoting Y L{y like this: L{ÿ + y Y ] + Y Y + Therefore the equation becomes Y e Y e + Thus yt L { e + The inverse Lalace of the first two terms is easy, for the other two we use the artial fractions decomosition: Y e e + Thus yt L { e + sint + cost L { + + t Ht + sint + cost cost t Ht + sint + cost cost Ht + sint + cost + cost Ht { + sint + cost, t,; sint, t We again surrise surrise! use the Lalace transform denoting Y L{y: L { t y + ys ds L{6 L{y + L { t ys ds 6L{ Y + Y 6 Y + Y 6 Thus Y and therefore Y Consequently yt L { { { + 3L + + L + 3sint + cost, t Again, the solution robably works for all t IR 3 How do we transform the right-hand side denoted by ft? By definition: L{ft / sinte t dt This is not an easy integral We try another way and write ft sint Ht H ] t Then

5 EM Solved roblems Lalace & Fourier transform c Habala 3 L{ft L{sintHt L { sinth t + e L { sin s + Hs + e L{cossHs Thus the whole equation transforms as Y Y + e + Y Partial fractions decomosition yields Thus Consqeuently yt L { , + e e Y e e 9 et cost sint L { t / H t 9 et cost sint e t cos t + sin t H t 9 et cost sint e t sint cost H t { 9 et cost sint, t, ; 9 e e t, t We denote the function on the right by ft and first calculate its Lalace transform One ossibility is the definition, using integration by arts: ] L{f te t dt t e t e t dt e e + + Alternatively, one can write ft t Ht t Ht and use the grammar: L{f L{t L{tHt e L{s + Hs e + Either way, alying the Lalace transform to both sides of the given equations and denoting L{x X we get X + ] X e e X e + e + Partial fractions decomosition yields + + and We substitute into X and get X e Thus using the inverse Lalace transform and a bit of grammar xt t L { t Ht t t Ht { t, t,];, elsewhere 5 Since we want a general solution, we need to introduce arameters, namely we need two, a and b On the other hand, we need to know two initial conditions to be able to aly LT to y Thus we decide to set y + a, y + b Transforming the equation and using L{e t sint L{sint leads to 8 Y a b] + Y + Y a We aly artial fractions: A+B + + C+D +5 Thus yt L { a + + L { a+ + + b+ + b b A, B, C, D a + cost + b + sint e t L { + + e t L { + Acost + B sint e t cost + e t sint, t We check that this solution in fact works on IR For solutions using classical aroach see Solved roblems ODE of order

6 EM Solved roblems Lalace & Fourier transform c Habala 3 6 a The Fourier series: T, ω T a T ft dt t dt + dt 3 ; a k T ft coskωt dt t cost dt + cost dt ] ] t sint sint dt + sint sin + ] cost + sin sin k cos cos + k k b k T ft sinkωt dt t sint dt + sint dt ] ] t cost + cost dt + cost cos cos cos + k + Thus f 3 + ] sint k sin sin k k k k cost sint] On the left: Periodic extension of f On the right: The sum of this series by the Jordan criterion b The sine Fourier series: T, ω T a a n ; b k T ft sinkωt dt t sin k t dt + sin k t dt t cos k t] + cos k t dt + cos k t] cos k + sin k t] cos cos k cos k + k sin k Thus f k sin k k sin k] sin k t k cos k k sin k k On the left: Odd eriodic extension of f On the right: The sum of this series by the Jordan criterion b The cosine Fourier series: T, ω T b n ; a T ft dt t dt + dt 3 ; a k T ft coskωt dt t cos k t dt + cos k t dt t sin k t] sin k t dt + sin k cos k t] + sin k t] sin sin k

7 EM Solved roblems Lalace & Fourier transform c Habala 3 sin k + k cos k cos sin k k cos k Thus f 3 + k k cos k ] cos k t Even eriodic extension of f, it is also the sum of this series by the Jordan criterion

Computing inverse Laplace Transforms.

Computing inverse Laplace Transforms. Review Exam 3. Sections 4.-4.5 in Lecture Notes. 60 minutes. 7 problems. 70 grade attempts. (0 attempts per problem. No partial grading. (Exceptions allowed, ask you TA. Integration table included. Complete

More information

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0. Page 5- Chater 5: Lalace Transforms The Lalace Transform is a useful tool that is used to solve many mathematical and alied roblems. In articular, the Lalace transform is a technique that can be used to

More information

The Laplace Transform and the IVP (Sect. 6.2).

The Laplace Transform and the IVP (Sect. 6.2). The Laplace Transform and the IVP (Sect..2). Solving differential equations using L ]. Homogeneous IVP. First, second, higher order equations. Non-homogeneous IVP. Recall: Partial fraction decompositions.

More information

ENGG 2420: Fourier series and partial differential equations

ENGG 2420: Fourier series and partial differential equations ENGG 2420: Fourier series and artial differential equations Prof. Thierry Blu e-mail: tblu@ee.cuhk.edu.hk web: www.ee.cuhk.edu.hk/~tblu/ Deartment of Electronic Engineering The Chinese University of Hong

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6. Introduction We extend the concet of a finite series, met in section, to the situation in which the number of terms increase without bound. We define what is meant by an infinite series

More information

Fourier Series Tutorial

Fourier Series Tutorial Fourier Series Tutorial INTRODUCTION This document is designed to overview the theory behind the Fourier series and its alications. It introduces the Fourier series and then demonstrates its use with a

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals J. Wong (Fall 217) October 7, 217 What did we cover this week? Introduction to the Laplace transform Basic theory Domain and range of L Key

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6.2 Introduction We extend the concet of a finite series, met in Section 6., to the situation in which the number of terms increase without bound. We define what is meant by an infinite

More information

Laplace Theory Examples

Laplace Theory Examples Laplace Theory Examples Harmonic oscillator s-differentiation Rule First shifting rule Trigonometric formulas Exponentials Hyperbolic functions s-differentiation Rule First Shifting Rule I and II Damped

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

The Arm Prime Factors Decomposition

The Arm Prime Factors Decomposition The Arm Prime Factors Decomosition Arm Boris Nima arm.boris@gmail.com Abstract We introduce the Arm rime factors decomosition which is the equivalent of the Taylor formula for decomosition of integers

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

Excerpt from "Intermediate Algebra" 2014 AoPS Inc.

Excerpt from Intermediate Algebra 2014 AoPS Inc. Ecert from "Intermediate Algebra" 04 AoPS Inc. www.artofroblemsolving.com for which our grah is below the -ais with the oints where the grah intersects the -ais (because the ineuality is nonstrict), we

More information

MA 201, Mathematics III, July-November 2016, Laplace Transform

MA 201, Mathematics III, July-November 2016, Laplace Transform MA 21, Mathematics III, July-November 216, Laplace Transform Lecture 18 Lecture 18 MA 21, PDE (216) 1 / 21 Laplace Transform Let F : [, ) R. If F(t) satisfies the following conditions: F(t) is piecewise

More information

Math 216 Second Midterm 19 March, 2018

Math 216 Second Midterm 19 March, 2018 Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 8.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE 20. TRANSFORM

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple

More information

Sample Quiz 8, Problem 1. Solving Higher Order Constant-Coefficient Equations

Sample Quiz 8, Problem 1. Solving Higher Order Constant-Coefficient Equations Sample Quiz 8 Sample Quiz 8, Problem. Solving Higher Order Constant-Coefficient Equations The Algorithm applies to constant-coefficient homogeneous linear differential equations of order N, for example

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

f ax ; a 0 is a periodic function b is a periodic function of x of p b. f which is assumed to have the period 2 π, where

f ax ; a 0 is a periodic function b is a periodic function of x of p b. f which is assumed to have the period 2 π, where (a) (b) If () Year - Tutorial: Toic: Fourier series Time: Two hours π π n Find the fundamental eriod of (i) cos (ii) cos k k f a ; a is a eriodic function b is a eriodic function of of b. f is a eriodic

More information

Solution: Homework 3 Biomedical Signal, Systems and Control (BME )

Solution: Homework 3 Biomedical Signal, Systems and Control (BME ) Solution: Homework Biomedical Signal, Systems and Control (BME 80.) Instructor: René Vidal, E-mail: rvidal@cis.jhu.edu TA: Donavan Cheng, E-mail: donavan.cheng@gmail.com TA: Ertan Cetingul, E-mail: ertan@cis.jhu.edu

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

FOURIER SERIES PART III: APPLICATIONS

FOURIER SERIES PART III: APPLICATIONS FOURIER SERIES PART III: APPLICATIONS We extend the construction of Fourier series to functions with arbitrary eriods, then we associate to functions defined on an interval [, L] Fourier sine and Fourier

More information

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999 Worksheet on Derivatives Dave L. Renfro Drake University November, 999 A. Fun With d d (n ) = n n : Find y In case you re interested, the rimary urose of these roblems (Section A) is to review roerties

More information

MathQuest: Differential Equations

MathQuest: Differential Equations MathQuest: Differential Equations Laplace Tranforms 1. True or False The Laplace transform method is the only way to solve some types of differential equations. (a) True, and I am very confident (b) True,

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions.

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. COLOR LAYER red LAPLACE TRANSFORM Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. + Differentiation of Transforms. F (s) e st f(t)

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE III. Wednesday, August 16, :30 to 11:30 a.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE III Wednesday, August 6, 000 8:0 to :0 a.m., only Notice... Scientific calculators

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

MODELING THE RELIABILITY OF C4ISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL

MODELING THE RELIABILITY OF C4ISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL Technical Sciences and Alied Mathematics MODELING THE RELIABILITY OF CISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL Cezar VASILESCU Regional Deartment of Defense Resources Management

More information

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix Third In-Class Exam Solutions Math 26, Professor David Levermore Thursday, December 2009 ) [6] Given that 2 is an eigenvalue of the matrix A 2, 0 find all the eigenvectors of A associated with 2. Solution.

More information

Chapter DEs with Discontinuous Force Functions

Chapter DEs with Discontinuous Force Functions Chapter 6 6.4 DEs with Discontinuous Force Functions Discontinuous Force Functions Using Laplace Transform, as in 6.2, we solve nonhomogeneous linear second order DEs with constant coefficients. The only

More information

Applications to stochastic PDE

Applications to stochastic PDE 15 Alications to stochastic PE In this final lecture we resent some alications of the theory develoed in this course to stochastic artial differential equations. We concentrate on two secific examles:

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

t 0 Xt sup X t p c p inf t 0

t 0 Xt sup X t p c p inf t 0 SHARP MAXIMAL L -ESTIMATES FOR MARTINGALES RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI ABSTRACT. Let X be a suermartingale starting from 0 which has only nonnegative jums. For each 0 < < we determine the best

More information

Review Sol. of More Long Answer Questions

Review Sol. of More Long Answer Questions Review Sol. of More Long Answer Questions 1. Solve the integro-differential equation t y (t) e t v y(v)dv = t; y()=. (1) Solution. The key is to recognize the convolution: t e t v y(v) dv = e t y. () Now

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Availability and Maintainability. Piero Baraldi

Availability and Maintainability. Piero Baraldi Availability and Maintainability 1 Introduction: reliability and availability System tyes Non maintained systems: they cannot be reaired after a failure (a telecommunication satellite, a F1 engine, a vessel

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

Trigonometric Identities

Trigonometric Identities Trigonometric Identities An identity is an equation that is satis ed by all the values of the variable(s) in the equation. We have already introduced the following: (a) tan x (b) sec x (c) csc x (d) cot

More information

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] =

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] = Chapter 3 The Laplace Transform 3. The Laplace Transform The Laplace transform of the function f(t) is defined L[f(t)] = e st f(t) dt, for all values of s for which the integral exists. The Laplace transform

More information

Further differentiation and integration

Further differentiation and integration 7 Toic Further differentiation and integration Contents. evision exercise................................... 8. Introduction...................................... 9. Differentiation of sin x and cos x..........................

More information

AMS10 HW1 Grading Rubric

AMS10 HW1 Grading Rubric AMS10 HW1 Grading Rubric Problem 1 (16ts- ts/each). Left hand side is shown to equal right hand side using examles with real vectors. A vector sace is a set V on which two oerations, vector addition and

More information

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is,

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is, .5. Convolutions and Solutions Solutions of initial value problems for linear nonhomogeneous differential equations can be decomposed in a nice way. The part of the solution coming from the initial data

More information

20.5. The Convolution Theorem. Introduction. Prerequisites. Learning Outcomes

20.5. The Convolution Theorem. Introduction. Prerequisites. Learning Outcomes The Convolution Theorem 2.5 Introduction In this Section we introduce the convolution of two functions f(t), g(t) which we denote by (f g)(t). The convolution is an important construct because of the convolution

More information

ECON Answers Homework #2

ECON Answers Homework #2 ECON 33 - Answers Homework #2 Exercise : Denote by x the number of containers of tye H roduced, y the number of containers of tye T and z the number of containers of tye I. There are 3 inut equations that

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

ISE I Brief Lecture Notes

ISE I Brief Lecture Notes ISE I Brief Lecture Notes 1 Partial Differentiation 1.1 Definitions Let f(x, y) be a function of two variables. The partial derivative f/ x is the function obtained by differentiating f with respect to

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

Some Results on the Generalized Gaussian Distribution

Some Results on the Generalized Gaussian Distribution Some Results on the Generalized Gaussian Distribution Alex Dytso, Ronit Bustin, H. Vincent Poor, Daniela Tuninetti 3, Natasha Devroye 3, and Shlomo Shamai (Shitz) Abstract The aer considers information-theoretic

More information

Elliptic Curves Spring 2015 Problem Set #1 Due: 02/13/2015

Elliptic Curves Spring 2015 Problem Set #1 Due: 02/13/2015 18.783 Ellitic Curves Sring 2015 Problem Set #1 Due: 02/13/2015 Descrition These roblems are related to the material covered in Lectures 1-2. Some of them require the use of Sage, and you will need to

More information

Mobius Functions, Legendre Symbols, and Discriminants

Mobius Functions, Legendre Symbols, and Discriminants Mobius Functions, Legendre Symbols, and Discriminants 1 Introduction Zev Chonoles, Erick Knight, Tim Kunisky Over the integers, there are two key number-theoretic functions that take on values of 1, 1,

More information

Laplace Transform Theory - 1

Laplace Transform Theory - 1 Laplace Transform Theory - 1 Existence of Laplace Transforms Before continuing our use of Laplace transforms for solving DEs, it is worth digressing through a quick investigation of which functions actually

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

10. Operators and the Exponential Response Formula

10. Operators and the Exponential Response Formula 52 10. Operators and the Exponential Response Formula 10.1. Operators. Operators are to functions as functions are to numbers. An operator takes a function, does something to it, and returns this modified

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Name: Solutions Exam 4

Name: Solutions Exam 4 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Math Laplace transform

Math Laplace transform 1 Math 371 - Laplace transform Erik Kjær Pedersen November 22, 2005 The functions we have treated with the power series method are called analytical functions y = a k t k The differential equations we

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

jf 00 (x)j ds (x) = [1 + (f 0 (x)) 2 ] 3=2 (t) = jjr0 (t) r 00 (t)jj jjr 0 (t)jj 3

jf 00 (x)j ds (x) = [1 + (f 0 (x)) 2 ] 3=2 (t) = jjr0 (t) r 00 (t)jj jjr 0 (t)jj 3 M73Q Multivariable Calculus Fall 7 Review Problems for Exam The formulas in the box will be rovided on the exam. (s) dt jf (x)j ds (x) [ + (f (x)) ] 3 (t) jjt (t)jj jjr (t)jj (t) jjr (t) r (t)jj jjr (t)jj

More information

Analysis of some entrance probabilities for killed birth-death processes

Analysis of some entrance probabilities for killed birth-death processes Analysis of some entrance robabilities for killed birth-death rocesses Master s Thesis O.J.G. van der Velde Suervisor: Dr. F.M. Sieksma July 5, 207 Mathematical Institute, Leiden University Contents Introduction

More information

Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22

Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22 Dr Mansoor Alshehri King Saud University MATH4-Differential Equations Center of Excellence in Learning and Teaching / Fourier Cosine and Sine Series Integrals The Complex Form of Fourier Integral MATH4-Differential

More information

Solutions to Assignment 7

Solutions to Assignment 7 MTHE 237 Fall 215 Solutions to Assignment 7 Problem 1 Show that the Laplace transform of cos(αt) satisfies L{cosαt = s s 2 +α 2 L(cos αt) e st cos(αt)dt A s α e st sin(αt)dt e stsin(αt) α { e stsin(αt)

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

EKT103 ELECTRICAL ENGINEERING

EKT103 ELECTRICAL ENGINEERING EKT13 EECTRCA ENGNEERNG Chater 1 Three-Phase System 1 COURSE OUTCOME (CO) CO1: Ability to define and exlain the concet of single-hase and threehase system. 2 Revision A sinusoid is a signal that has the

More information

1-way quantum finite automata: strengths, weaknesses and generalizations

1-way quantum finite automata: strengths, weaknesses and generalizations 1-way quantum finite automata: strengths, weaknesses and generalizations arxiv:quant-h/9802062v3 30 Se 1998 Andris Ambainis UC Berkeley Abstract Rūsiņš Freivalds University of Latvia We study 1-way quantum

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

Math 181, Exam 1, Spring 2013 Problem 1 Solution. arctan xdx.

Math 181, Exam 1, Spring 2013 Problem 1 Solution. arctan xdx. Math, Exam, Sring 03 Problem Solution. Comute the integrals xe 4x and arctan x. Solution: We comute the first integral using Integration by Parts. The following table summarizes the elements that make

More information

Mersenne and Fermat Numbers

Mersenne and Fermat Numbers NUMBER THEORY CHARLES LEYTEM Mersenne and Fermat Numbers CONTENTS 1. The Little Fermat theorem 2 2. Mersenne numbers 2 3. Fermat numbers 4 4. An IMO roblem 5 1 2 CHARLES LEYTEM 1. THE LITTLE FERMAT THEOREM

More information

QUIZ ON CHAPTER 4 - SOLUTIONS APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ ON CHAPTER 4 - SOLUTIONS APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ ON CHAPTER - SOLUTIONS APPLICATIONS OF DERIVATIVES; MATH 150 FALL 016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% = x + 5 1) Consider f x and the grah of y = f x in the usual xy-lane in 16 x

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

A generalized Fucik type eigenvalue problem for p-laplacian

A generalized Fucik type eigenvalue problem for p-laplacian Electronic Journal of Qualitative Theory of Differential Equations 009, No. 18, 1-9; htt://www.math.u-szeged.hu/ejqtde/ A generalized Fucik tye eigenvalue roblem for -Lalacian Yuanji Cheng School of Technology

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

For q 0; 1; : : : ; `? 1, we have m 0; 1; : : : ; q? 1. The set fh j(x) : j 0; 1; ; : : : ; `? 1g forms a basis for the tness functions dened on the i

For q 0; 1; : : : ; `? 1, we have m 0; 1; : : : ; q? 1. The set fh j(x) : j 0; 1; ; : : : ; `? 1g forms a basis for the tness functions dened on the i Comuting with Haar Functions Sami Khuri Deartment of Mathematics and Comuter Science San Jose State University One Washington Square San Jose, CA 9519-0103, USA khuri@juiter.sjsu.edu Fax: (40)94-500 Keywords:

More information

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM JOHN BINDER Abstract. In this aer, we rove Dirichlet s theorem that, given any air h, k with h, k) =, there are infinitely many rime numbers congruent to

More information

Laplace Transform. Chapter 4

Laplace Transform. Chapter 4 Chapter 4 Laplace Transform It s time to stop guessing solutions and find a systematic way of finding solutions to non homogeneous linear ODEs. We define the Laplace transform of a function f in the following

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

Extension of Minimax to Infinite Matrices

Extension of Minimax to Infinite Matrices Extension of Minimax to Infinite Matrices Chris Calabro June 21, 2004 Abstract Von Neumann s minimax theorem is tyically alied to a finite ayoff matrix A R m n. Here we show that (i) if m, n are both inite,

More information

Using the MVT: Increasing and Decreasing Functions

Using the MVT: Increasing and Decreasing Functions Using the MVT: Increasing and Decreasing Functions F irst let s be clear on what and decreasing functions are DEFINITION 317 Assume f is defined on an interval I f is on I if whenever a and b are in I

More information

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts Introduction Math : Calculus - Fall 0/0 Review of Precalculus Concets Welcome to Math - Calculus, Fall 0/0! This roblems in this acket are designed to hel you review the toics from Algebra and Precalculus

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

Special Mathematics Laplace Transform

Special Mathematics Laplace Transform Special Mathematics Laplace Transform March 28 ii Nature laughs at the difficulties of integration. Pierre-Simon Laplace 4 Laplace Transform Motivation Properties of the Laplace transform the Laplace transform

More information

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK Comuter Modelling and ew Technologies, 5, Vol.9, o., 3-39 Transort and Telecommunication Institute, Lomonosov, LV-9, Riga, Latvia MATHEMATICAL MODELLIG OF THE WIRELESS COMMUICATIO ETWORK M. KOPEETSK Deartment

More information

CHAPTER 8 Laplace Transforms

CHAPTER 8 Laplace Transforms CHAPTER Laplace Transforms IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of the basic problem solving techniques in mathematics: transform a difficult problem into an

More information

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have Math 090 Midterm Exam Spring 07 S o l u t i o n s. Results of this problem will be used in other problems. Therefore do all calculations carefully and double check them. Find the inverse Laplace transform

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

APPM 2360: Midterm exam 3 April 19, 2017

APPM 2360: Midterm exam 3 April 19, 2017 APPM 36: Midterm exam 3 April 19, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your lecture section number and (4) a grading table. Text books, class notes, cell

More information

3. Show that if there are 23 people in a room, the probability is less than one half that no two of them share the same birthday.

3. Show that if there are 23 people in a room, the probability is less than one half that no two of them share the same birthday. N12c Natural Sciences Part IA Dr M. G. Worster Mathematics course B Examles Sheet 1 Lent erm 2005 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damt.cam.ac.uk. Note that there

More information

EECS 20N: Midterm 2 Solutions

EECS 20N: Midterm 2 Solutions EECS 0N: Midterm Solutions (a) The LTI system is not causal because its impulse response isn t zero for all time less than zero. See Figure. Figure : The system s impulse response in (a). (b) Recall that

More information

Week #9 : DEs with Non-Constant Coefficients, Laplace Resonance

Week #9 : DEs with Non-Constant Coefficients, Laplace Resonance Week #9 : DEs with Non-Constant Coefficients, Laplace Resonance Goals: Solving DEs with Non-Constant Coefficients Resonance with Laplace Laplace with Periodic Functions 1 Solving Equations with Non-Constant

More information

Solutions to Assignment #02 MATH u v p 59. p 72. h 3; 1; 2i h4; 2; 5i p 14. p 45. = cos 1 2 p!

Solutions to Assignment #02 MATH u v p 59. p 72. h 3; 1; 2i h4; 2; 5i p 14. p 45. = cos 1 2 p! Solutions to Assignment #0 MATH 41 Kawai/Arangno/Vecharynski Section 1. (I) Comlete Exercises #1cd on. 810. searation to TWO decimal laces. So do NOT leave the nal answer as cos 1 (something) : (c) The

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information