The Poisson Regression Model

Size: px
Start display at page:

Download "The Poisson Regression Model"

Transcription

1 The Poisson Regression Model The Poisson regression model aims at modeling a counting variable Y, counting the number of times that a certain event occurs during a given time eriod. We observe a samle Y 1,..., Y n. Here, Y i can stand for the number of car accidents that erson i has during the last 5 years; the number of children of family i; the number of stries in comany i over the last 3 years; the number of brevets deosed by firm i during the last year (as a measure of innovation);... The Poisson regression model wants to exlain this counting variable Y i using exlicative variables x i, for 1 i n. This -dimensional variable x i contains characteristics for the i th observation. 1 The Poisson distribution By definition, Y follows a Poisson distribution with arameter λ if and only if for = 0, 1, 2,..., We recall that for a Poisson variable: P (Y = ) = ex( λ)λ, (1)! E[Y ] = λ and Var[Y ] = λ. (2) The Poisson distribution is discrete distribution, and we see the shae of its distribution in Figure 1, for several values of λ. In Figure 1, the distribution is visualized by lotting P (Y = ) versus. For low values of λ, the distribution is highly sewed. For large values of λ, the distribution of Y loos more normal. In the examles given above, Y i counts rather rare event, so that the value of λ will be rather small. For examle, we have high robabilities of having no or one car accident, but the robabilities of having several car accidents decay exonentially fast. The Poisson distribution is the most simle distribution for modeling counting data, but it is not the only one. 2 The Poisson regression model Lie in a linear regression model, we will model the conditional mean function using a linear combination β t x i of the exlicative variables: E[Y i x i ] = ex(β t x i ). (3) The use of the exonential function in (3) assures that the right hand side in the above equation is always ositive, as is the exected value of the counting variable Y i in the left hand side of the above equation. The choice for this exonential lin function is mainly for reasons of simlicity. In rincile, other lin functions returning only ositive values could be used, but then we do not sea about a Poisson regression model anymore.

2 lambda=0.5 lambda= lambda=3 lambda= The Poisson distribution for different values of λ

3 Moreover, to be able to use the Maximum Lielihood framewor, we will secify a distribution for Y i, given the exlicative variables x i. We as that every Y i, conditional on x i, follows a Poisson distribution with arameter λ i. Equations (2) and (3) give E[Y i x i ] = λ i = ex(β t x i ). Aim is then to estimate β, the unnown arameter in the model. Note that estimation of β induces an estimate of the whole conditional distribution of Y i given x i. This will allow us to estimate quantities lie P (Y i = 0 x i ), P (Y i > 5 x i ),... So we will be able to answer to questions lie What is the robability that somebody will have no single car accidents during a 5 year eriod, given the ersons characteristics x i, What is the robability that a family, given its characteristics x i, has more than 5 children,... Interretation of the arameters: Knowledge about β allows us to now the influence of an exlicative variable on the exected value of Y i. Suose for examle that we have x i = (x i1, x i2, 1) t. Then the Poisson regression model gives E[Y i x i ] = ex(β 1 x i1 + β 2 x i2 + β 3 ). The marginal effect of the first exlicative variable on the exected value of Y i, eeing the other variables constant, is given by E[Y i x i ] x i1 = β 1 ex(β 1 x i1 + β 2 x i2 + β 3 ). We see that β 1 has the same sign as this marginal effect, but the numerical value of the effect deends on the value of x i. We could summarize the marginal effects by relacing in the above equation x i1 an x i2 by average values of the exlicative variables over the whole samle. It is also ossible to interret β 1 as a semi-elasticity: log E[Y i x i ] x i1 = β 1. 3 The Maximum Lielihood estimator We observe data {(x i, y i ) 1 i n}. The number y i is a realization of the random variable Y i. The total log-lielihood is, using indeendency, given by with, according to (1), n Log L(y 1,..., y n β, x 1,..., x n ) = log P (Y i = y i β, x i ), P (Y i = y i β, x i ) = ex( λ i)λ y i i y i! (4)

4 and λ i = ex(β t x i ). Write now Log L(β) as shorthand notation for the total lielihood. Then it follows n Log L(β) = { ex(β t x i ) + y i (β t x i ) log(y i!)}. (5) The maximum lielihood (ML) estimator is then of course defined as ˆβ ML = argmax Log L(β). β It is instructive to comute the first order condition that the ML-estimator needs to fulfill. Derivation of (5) yields n (y i ŷ i )x i = 0, with ŷ i = ex( ˆβ t MLx i ) the fitted value of y i. The redicted/fitted value has as usual been taen as the estimated value of E[Y i x i ]. This first order condition tells us that the vector of residual is orthogonal to the vectors of exlicative variables. The advantage of the Maximum Lielihood framewor is that a formula for cov( ˆβ ML ) is readily available: ( cov( ˆβ n ) 1 ML ) = x i x t iŷ i Also, Hyothesis tests can now be carried by Wald test, Lagrange Multilier test, or Lielihood Ratio tests. 4 Overdisersion and the Negative binomial model If we believe the Poisson regression model, then we have E[Y i x i ] = Var[Y i x i ], imlying that the conditional mean function equals the condition variance function. This is very restrictive. If E[Y i x i ] < Var[Y i x i ], resectively E[Y i x i ] > Var[Y i x i ], then we sea about overdisersion, resectively underdisersion. The Poisson model does not allow for over- or underdisersion. A richer model is obtained by using the negative binomial distribution instead of the Poisson distribution. Instead of (4), we then use P (Y i = y i β, x i ) = Γ(θ + y ( ) yi ( i) λi 1 λ ) θ i. Γ(y i + 1)Γ(θ) λ i + θ λ i + θ This negative binomial distribution can be shown to have conditional mean λ i and conditional variance λ i (1 + η 2 λ i ), with η 2 := 1/θ. Note that the arameter η 2 is not

5 allowed to vary over the observations. As before, the conditional mean function is modeled as E[Y i x i ] = λ i = ex(β t x i ). The conditional variance function is then given by Var[Y i x i ] = ex(β t x i )(1 + η 2 ex(β t x i )). Using maximum lielihood, we can then estimate the regression arameter β, and also the extra arameter η. The arameter η measures the degree of over (or under) disersion. The limit case η = 0 corresonds to the Poisson model. Aendix: The Gamma function The Gamma function is defined as Γ(x) = 0 s x 1 ex( s)dx for every x > 0. Its most imortant roerties are 1. Γ( + 1) =! for every = 0, 1, 2, 3, Γ(x + 1) = xγ(x) for every x > Γ(0.5) = π The Gamma function can be seen as an extension of the factorial function! = ( 1)( 2) to all real ositive numbers. The Gamma function is increasing faster to infinity than any olynomial function or even exonential function. 5 Homewor We are interested in the number of accidents er service month for a samle of shis. The data can be found in the file shis.wmf. The endogenous variable is called ACC. The exlicative variables are: TYPE: there are 5 shi tyes, labeled as A-B-C-D-E or TYPE is a categorical variable, and 5 dummy variables can be created: TA, TB, TC, TD, TE. CONSTRUCTION YEAR: the shis are constructed in one of four eriods, leading to the dummy variables T6064, T6569, T7074, and T7579. SERVICE: a measure for the amount of service that the shi has already carried out. Questions:

6 1. Mae an histogram of the variable ACC. Comment on its form. It this the histogram for the conditional of unconditional distribution of ACC? 2. Estimate the Poisson regression model, including all exlicative variables and a constant term. (Use estimation method: COUNT- integer counting data). 3. Comment on the coefficient for the variable SERVICE. Is it significant? 4. Perform a Wald test to test for the joint significance of the construction year dummy variables. 5. Given a shi of category A, constructed in the eriod 65-69, with SERVICE=1000. Predict the number of accidents er service month. Also estimate (a) the robability that no accident will occur for this shi, and (b) the robability that at most one accident will occur. 6. The comuter outut mentions: Convergence achieved after 9 iterations. What is this meaning? 7. What do we learn from the value of Probability(LR stat)? What is the corresonding null hyothesis? 8. Estimate now a Negative Binomial Model. EViews reorts the log(η 2 ) as the mixture arameter in the estimation outut. (a) Comare the estimates of β given by the two models. (b) Comare the seudo R 2 values of the two models. 9. Estimate now the Poisson model with only a constant term, so without exlicative variables (emty model). Derive mathematically a formula for this estimate of the constant term (in the emty model), using the first order condition of the ML-estimator.

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test)

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test) Chater 225 Tests for Two Proortions in a Stratified Design (Cochran/Mantel-Haenszel Test) Introduction In a stratified design, the subects are selected from two or more strata which are formed from imortant

More information

Finite Mixture EFA in Mplus

Finite Mixture EFA in Mplus Finite Mixture EFA in Mlus November 16, 2007 In this document we describe the Mixture EFA model estimated in Mlus. Four tyes of deendent variables are ossible in this model: normally distributed, ordered

More information

Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Response) Logistic Regression

Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Response) Logistic Regression Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Resonse) Logistic Regression Recall general χ 2 test setu: Y 0 1 Trt 0 a b Trt 1 c d I. Basic logistic regression Previously (Handout

More information

Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression

Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression Recall general χ 2 test setu: Y 0 1 Trt 0 a b Trt 1 c d I. Basic logistic regression Previously (Handout 4a): χ 2 test of

More information

A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED LIFE TEST BASED ON THE WEIBULL DISTRIBUTION

A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED LIFE TEST BASED ON THE WEIBULL DISTRIBUTION O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S No. 27 DOI:.5277/ord73 Nasrullah KHAN Muhammad ASLAM 2 Kyung-Jun KIM 3 Chi-Hyuck JUN 4 A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED LIFE TEST

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek Use of Transformations and the Reeated Statement in PROC GLM in SAS Ed Stanek Introduction We describe how the Reeated Statement in PROC GLM in SAS transforms the data to rovide tests of hyotheses of interest.

More information

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit Chater 5 Statistical Inference 69 CHAPTER 5 STATISTICAL INFERENCE.0 Hyothesis Testing.0 Decision Errors 3.0 How a Hyothesis is Tested 4.0 Test for Goodness of Fit 5.0 Inferences about Two Means It ain't

More information

Introduction to Probability and Statistics

Introduction to Probability and Statistics Introduction to Probability and Statistics Chater 8 Ammar M. Sarhan, asarhan@mathstat.dal.ca Deartment of Mathematics and Statistics, Dalhousie University Fall Semester 28 Chater 8 Tests of Hyotheses Based

More information

STK4900/ Lecture 7. Program

STK4900/ Lecture 7. Program STK4900/9900 - Lecture 7 Program 1. Logistic regression with one redictor 2. Maximum likelihood estimation 3. Logistic regression with several redictors 4. Deviance and likelihood ratio tests 5. A comment

More information

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution Outline for today Maximum likelihood estimation Rasmus Waageetersen Deartment of Mathematics Aalborg University Denmark October 30, 2007 the multivariate normal distribution linear and linear mixed models

More information

Introduction to Probability for Graphical Models

Introduction to Probability for Graphical Models Introduction to Probability for Grahical Models CSC 4 Kaustav Kundu Thursday January 4, 06 *Most slides based on Kevin Swersky s slides, Inmar Givoni s slides, Danny Tarlow s slides, Jaser Snoek s slides,

More information

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Ž. Ž. Ž. 2 QUADRATIC AND INVERSE REGRESSIONS FOR WISHART DISTRIBUTIONS 1

Ž. Ž. Ž. 2 QUADRATIC AND INVERSE REGRESSIONS FOR WISHART DISTRIBUTIONS 1 The Annals of Statistics 1998, Vol. 6, No., 573595 QUADRATIC AND INVERSE REGRESSIONS FOR WISHART DISTRIBUTIONS 1 BY GERARD LETAC AND HELENE ` MASSAM Universite Paul Sabatier and York University If U and

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information

Monte Carlo Studies. Monte Carlo Studies. Sampling Distribution

Monte Carlo Studies. Monte Carlo Studies. Sampling Distribution Monte Carlo Studies Do not let yourself be intimidated by the material in this lecture This lecture involves more theory but is meant to imrove your understanding of: Samling distributions and tests of

More information

Principal Components Analysis and Unsupervised Hebbian Learning

Principal Components Analysis and Unsupervised Hebbian Learning Princial Comonents Analysis and Unsuervised Hebbian Learning Robert Jacobs Deartment of Brain & Cognitive Sciences University of Rochester Rochester, NY 1467, USA August 8, 008 Reference: Much of the material

More information

6 Stationary Distributions

6 Stationary Distributions 6 Stationary Distributions 6. Definition and Examles Definition 6.. Let {X n } be a Markov chain on S with transition robability matrix P. A distribution π on S is called stationary (or invariant) if π

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

Estimating function analysis for a class of Tweedie regression models

Estimating function analysis for a class of Tweedie regression models Title Estimating function analysis for a class of Tweedie regression models Author Wagner Hugo Bonat Deartamento de Estatística - DEST, Laboratório de Estatística e Geoinformação - LEG, Universidade Federal

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

Statistics II Logistic Regression. So far... Two-way repeated measures ANOVA: an example. RM-ANOVA example: the data after log transform

Statistics II Logistic Regression. So far... Two-way repeated measures ANOVA: an example. RM-ANOVA example: the data after log transform Statistics II Logistic Regression Çağrı Çöltekin Exam date & time: June 21, 10:00 13:00 (The same day/time lanned at the beginning of the semester) University of Groningen, Det of Information Science May

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Exeriment-I MODULE II LECTURE -4 GENERAL LINEAR HPOTHESIS AND ANALSIS OF VARIANCE Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur

More information

CERIAS Tech Report The period of the Bell numbers modulo a prime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education

CERIAS Tech Report The period of the Bell numbers modulo a prime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education CERIAS Tech Reort 2010-01 The eriod of the Bell numbers modulo a rime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education and Research Information Assurance and Security Purdue University,

More information

Morten Frydenberg Section for Biostatistics Version :Friday, 05 September 2014

Morten Frydenberg Section for Biostatistics Version :Friday, 05 September 2014 Morten Frydenberg Section for Biostatistics Version :Friday, 05 Setember 204 All models are aroximations! The best model does not exist! Comlicated models needs a lot of data. lower your ambitions or get

More information

Notes on Instrumental Variables Methods

Notes on Instrumental Variables Methods Notes on Instrumental Variables Methods Michele Pellizzari IGIER-Bocconi, IZA and frdb 1 The Instrumental Variable Estimator Instrumental variable estimation is the classical solution to the roblem of

More information

Review of Probability Theory II

Review of Probability Theory II Review of Probability Theory II January 9-3, 008 Exectation If the samle sace Ω = {ω, ω,...} is countable and g is a real-valued function, then we define the exected value or the exectation of a function

More information

CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules

CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules. Introduction: The is widely used in industry to monitor the number of fraction nonconforming units. A nonconforming unit is

More information

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation Uniformly best wavenumber aroximations by satial central difference oerators: An initial investigation Vitor Linders and Jan Nordström Abstract A characterisation theorem for best uniform wavenumber aroximations

More information

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation Paer C Exact Volume Balance Versus Exact Mass Balance in Comositional Reservoir Simulation Submitted to Comutational Geosciences, December 2005. Exact Volume Balance Versus Exact Mass Balance in Comositional

More information

7.2 Inference for comparing means of two populations where the samples are independent

7.2 Inference for comparing means of two populations where the samples are independent Objectives 7.2 Inference for comaring means of two oulations where the samles are indeendent Two-samle t significance test (we give three examles) Two-samle t confidence interval htt://onlinestatbook.com/2/tests_of_means/difference_means.ht

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

Objectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI)

Objectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI) Objectives 6.1, 7.1 Estimating with confidence (CIS: Chater 10) Statistical confidence (CIS gives a good exlanation of a 95% CI) Confidence intervals. Further reading htt://onlinestatbook.com/2/estimation/confidence.html

More information

Objectives. Estimating with confidence Confidence intervals.

Objectives. Estimating with confidence Confidence intervals. Objectives Estimating with confidence Confidence intervals. Sections 6.1 and 7.1 in IPS. Page 174-180 OS3. Choosing the samle size t distributions. Further reading htt://onlinestatbook.com/2/estimation/t_distribution.html

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Chapter 3. GMM: Selected Topics

Chapter 3. GMM: Selected Topics Chater 3. GMM: Selected oics Contents Otimal Instruments. he issue of interest..............................2 Otimal Instruments under the i:i:d: assumtion..............2. he basic result............................2.2

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

Named Entity Recognition using Maximum Entropy Model SEEM5680

Named Entity Recognition using Maximum Entropy Model SEEM5680 Named Entity Recognition using Maximum Entroy Model SEEM5680 Named Entity Recognition System Named Entity Recognition (NER): Identifying certain hrases/word sequences in a free text. Generally it involves

More information

The one-sample t test for a population mean

The one-sample t test for a population mean Objectives Constructing and assessing hyotheses The t-statistic and the P-value Statistical significance The one-samle t test for a oulation mean One-sided versus two-sided tests Further reading: OS3,

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2 STA 25: Statistics Notes 7. Bayesian Aroach to Statistics Book chaters: 7.2 1 From calibrating a rocedure to quantifying uncertainty We saw that the central idea of classical testing is to rovide a rigorous

More information

COMMUNICATION BETWEEN SHAREHOLDERS 1

COMMUNICATION BETWEEN SHAREHOLDERS 1 COMMUNICATION BTWN SHARHOLDRS 1 A B. O A : A D Lemma B.1. U to µ Z r 2 σ2 Z + σ2 X 2r ω 2 an additive constant that does not deend on a or θ, the agents ayoffs can be written as: 2r rθa ω2 + θ µ Y rcov

More information

i) the probability of type I error; ii) the 95% con dence interval; iii) the p value; iv) the probability of type II error; v) the power of a test.

i) the probability of type I error; ii) the 95% con dence interval; iii) the p value; iv) the probability of type II error; v) the power of a test. Problem Set 5. Questions:. Exlain what is: i) the robability of tye I error; ii) the 95% con dence interval; iii) the value; iv) the robability of tye II error; v) the ower of a test.. Solve exercise 3.

More information

ute measures of uncertainty called standard errors for these b j estimates and the resulting forecasts if certain conditions are satis- ed. Note the e

ute measures of uncertainty called standard errors for these b j estimates and the resulting forecasts if certain conditions are satis- ed. Note the e Regression with Time Series Errors David A. Dickey, North Carolina State University Abstract: The basic assumtions of regression are reviewed. Grahical and statistical methods for checking the assumtions

More information

Solutions to exercises on delays. P (x = 0 θ = 1)P (θ = 1) P (x = 0) We can replace z in the first equation by its value in the second equation.

Solutions to exercises on delays. P (x = 0 θ = 1)P (θ = 1) P (x = 0) We can replace z in the first equation by its value in the second equation. Ec 517 Christohe Chamley Solutions to exercises on delays Ex 1: P (θ = 1 x = 0) = P (x = 0 θ = 1)P (θ = 1) P (x = 0) = 1 z)µ (1 z)µ + 1 µ. The value of z is solution of µ c = δµz(1 c). We can relace z

More information

AN OPTIMAL CONTROL CHART FOR NON-NORMAL PROCESSES

AN OPTIMAL CONTROL CHART FOR NON-NORMAL PROCESSES AN OPTIMAL CONTROL CHART FOR NON-NORMAL PROCESSES Emmanuel Duclos, Maurice Pillet To cite this version: Emmanuel Duclos, Maurice Pillet. AN OPTIMAL CONTROL CHART FOR NON-NORMAL PRO- CESSES. st IFAC Worsho

More information

Asymptotically Optimal Simulation Allocation under Dependent Sampling

Asymptotically Optimal Simulation Allocation under Dependent Sampling Asymtotically Otimal Simulation Allocation under Deendent Samling Xiaoing Xiong The Robert H. Smith School of Business, University of Maryland, College Park, MD 20742-1815, USA, xiaoingx@yahoo.com Sandee

More information

where x i is the ith coordinate of x R N. 1. Show that the following upper bound holds for the growth function of H:

where x i is the ith coordinate of x R N. 1. Show that the following upper bound holds for the growth function of H: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 2 October 25, 2017 Due: November 08, 2017 A. Growth function Growth function of stum functions.

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 379: Business and Economics Statistics Instructor: Yogesh Ual Email: yual@ysu.edu Chater 9, Part A: Hyothesis Tests Develoing Null and Alternative Hyotheses Tye I and Tye II Errors Poulation Mean:

More information

Collaborative Place Models Supplement 1

Collaborative Place Models Supplement 1 Collaborative Place Models Sulement Ber Kaicioglu Foursquare Labs ber.aicioglu@gmail.com Robert E. Schaire Princeton University schaire@cs.rinceton.edu David S. Rosenberg P Mobile Labs david.davidr@gmail.com

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 379: Business and Economics Statistics Instructor: Yogesh Ual Email: yual@ysu.edu Chater 9, Part A: Hyothesis Tests Develoing Null and Alternative Hyotheses Tye I and Tye II Errors Poulation Mean:

More information

Slash Distributions and Applications

Slash Distributions and Applications CHAPTER 2 Slash Distributions and Alications 2.1 Introduction The concet of slash distributions was introduced by Kafadar (1988) as a heavy tailed alternative to the normal distribution. Further literature

More information

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI **

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI ** Iranian Journal of Science & Technology, Transaction A, Vol 3, No A3 Printed in The Islamic Reublic of Iran, 26 Shiraz University Research Note REGRESSION ANALYSIS IN MARKOV HAIN * A Y ALAMUTI AND M R

More information

Exercises Econometric Models

Exercises Econometric Models Exercises Econometric Models. Let u t be a scalar random variable such that E(u t j I t ) =, t = ; ; ::::, where I t is the (stochastic) information set available at time t. Show that under the hyothesis

More information

Analysis of some entrance probabilities for killed birth-death processes

Analysis of some entrance probabilities for killed birth-death processes Analysis of some entrance robabilities for killed birth-death rocesses Master s Thesis O.J.G. van der Velde Suervisor: Dr. F.M. Sieksma July 5, 207 Mathematical Institute, Leiden University Contents Introduction

More information

Machine Learning: Homework 4

Machine Learning: Homework 4 10-601 Machine Learning: Homework 4 Due 5.m. Monday, February 16, 2015 Instructions Late homework olicy: Homework is worth full credit if submitted before the due date, half credit during the next 48 hours,

More information

ECON 4130 Supplementary Exercises 1-4

ECON 4130 Supplementary Exercises 1-4 HG Set. 0 ECON 430 Sulementary Exercises - 4 Exercise Quantiles (ercentiles). Let X be a continuous random variable (rv.) with df f( x ) and cdf F( x ). For 0< < we define -th quantile (or 00-th ercentile),

More information

Estimating Time-Series Models

Estimating Time-Series Models Estimating ime-series Models he Box-Jenkins methodology for tting a model to a scalar time series fx t g consists of ve stes:. Decide on the order of di erencing d that is needed to roduce a stationary

More information

SAS for Bayesian Mediation Analysis

SAS for Bayesian Mediation Analysis Paer 1569-2014 SAS for Bayesian Mediation Analysis Miočević Milica, Arizona State University; David P. MacKinnon, Arizona State University ABSTRACT Recent statistical mediation analysis research focuses

More information

On split sample and randomized confidence intervals for binomial proportions

On split sample and randomized confidence intervals for binomial proportions On slit samle and randomized confidence intervals for binomial roortions Måns Thulin Deartment of Mathematics, Usala University arxiv:1402.6536v1 [stat.me] 26 Feb 2014 Abstract Slit samle methods have

More information

One-way ANOVA Inference for one-way ANOVA

One-way ANOVA Inference for one-way ANOVA One-way ANOVA Inference for one-way ANOVA IPS Chater 12.1 2009 W.H. Freeman and Comany Objectives (IPS Chater 12.1) Inference for one-way ANOVA Comaring means The two-samle t statistic An overview of ANOVA

More information

Asymptotic Properties of the Markov Chain Model method of finding Markov chains Generators of..

Asymptotic Properties of the Markov Chain Model method of finding Markov chains Generators of.. IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, -ISSN: 319-765X. Volume 1, Issue 4 Ver. III (Jul. - Aug.016), PP 53-60 www.iosrournals.org Asymtotic Proerties of the Markov Chain Model method of

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

Topic: Lower Bounds on Randomized Algorithms Date: September 22, 2004 Scribe: Srinath Sridhar

Topic: Lower Bounds on Randomized Algorithms Date: September 22, 2004 Scribe: Srinath Sridhar 15-859(M): Randomized Algorithms Lecturer: Anuam Guta Toic: Lower Bounds on Randomized Algorithms Date: Setember 22, 2004 Scribe: Srinath Sridhar 4.1 Introduction In this lecture, we will first consider

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

Outline. Markov Chains and Markov Models. Outline. Markov Chains. Markov Chains Definitions Huizhen Yu

Outline. Markov Chains and Markov Models. Outline. Markov Chains. Markov Chains Definitions Huizhen Yu and Markov Models Huizhen Yu janey.yu@cs.helsinki.fi Det. Comuter Science, Univ. of Helsinki Some Proerties of Probabilistic Models, Sring, 200 Huizhen Yu (U.H.) and Markov Models Jan. 2 / 32 Huizhen Yu

More information

Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity

Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity Bayesian Satially Varying Coefficient Models in the Presence of Collinearity David C. Wheeler 1, Catherine A. Calder 1 he Ohio State University 1 Abstract he belief that relationshis between exlanatory

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

Deriving Indicator Direct and Cross Variograms from a Normal Scores Variogram Model (bigaus-full) David F. Machuca Mory and Clayton V.

Deriving Indicator Direct and Cross Variograms from a Normal Scores Variogram Model (bigaus-full) David F. Machuca Mory and Clayton V. Deriving ndicator Direct and Cross Variograms from a Normal Scores Variogram Model (bigaus-full) David F. Machuca Mory and Clayton V. Deutsch Centre for Comutational Geostatistics Deartment of Civil &

More information

1 Probability Spaces and Random Variables

1 Probability Spaces and Random Variables 1 Probability Saces and Random Variables 1.1 Probability saces Ω: samle sace consisting of elementary events (or samle oints). F : the set of events P: robability 1.2 Kolmogorov s axioms Definition 1.2.1

More information

UNIVERSITY OF DUBLIN TRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics

UNIVERSITY OF DUBLIN TRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics UNIVERSI OF DUBLIN RINI COLLEGE Facult of Engineering, Mathematics and Science School of Comuter Science & Statistics BA (Mod) Maths, SM rinit erm 04 SF and JS S35 Probabilit and heoretical Statistics

More information

Robustness of classifiers to uniform l p and Gaussian noise Supplementary material

Robustness of classifiers to uniform l p and Gaussian noise Supplementary material Robustness of classifiers to uniform l and Gaussian noise Sulementary material Jean-Yves Franceschi Ecole Normale Suérieure de Lyon LIP UMR 5668 Omar Fawzi Ecole Normale Suérieure de Lyon LIP UMR 5668

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2017 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

arxiv: v1 [math-ph] 29 Apr 2016

arxiv: v1 [math-ph] 29 Apr 2016 INFORMATION THEORY AND STATISTICAL MECHANICS REVISITED arxiv:64.8739v [math-h] 29 Ar 26 JIAN ZHOU Abstract. We derive Bose-Einstein statistics and Fermi-Dirac statistics by Princile of Maximum Entroy alied

More information

1 Random Variables and Probability Distributions

1 Random Variables and Probability Distributions 1 Random Variables and Probability Distributions 1.1 Random Variables 1.1.1 Discrete random variables A random variable X is called discrete if the number of values that X takes is finite or countably

More information

POINTS ON CONICS MODULO p

POINTS ON CONICS MODULO p POINTS ON CONICS MODULO TEAM 2: JONGMIN BAEK, ANAND DEOPURKAR, AND KATHERINE REDFIELD Abstract. We comute the number of integer oints on conics modulo, where is an odd rime. We extend our results to conics

More information

General Random Variables

General Random Variables Chater General Random Variables. Law of a Random Variable Thus far we have considered onl random variables whose domain and range are discrete. We now consider a general random variable X! defined on the

More information

On the asymptotic sizes of subset Anderson-Rubin and Lagrange multiplier tests in linear instrumental variables regression

On the asymptotic sizes of subset Anderson-Rubin and Lagrange multiplier tests in linear instrumental variables regression On the asymtotic sizes of subset Anderson-Rubin and Lagrange multilier tests in linear instrumental variables regression Patrik Guggenberger Frank Kleibergeny Sohocles Mavroeidisz Linchun Chen\ June 22

More information

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK Comuter Modelling and ew Technologies, 5, Vol.9, o., 3-39 Transort and Telecommunication Institute, Lomonosov, LV-9, Riga, Latvia MATHEMATICAL MODELLIG OF THE WIRELESS COMMUICATIO ETWORK M. KOPEETSK Deartment

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

1-way quantum finite automata: strengths, weaknesses and generalizations

1-way quantum finite automata: strengths, weaknesses and generalizations 1-way quantum finite automata: strengths, weaknesses and generalizations arxiv:quant-h/9802062v3 30 Se 1998 Andris Ambainis UC Berkeley Abstract Rūsiņš Freivalds University of Latvia We study 1-way quantum

More information

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model Random Variables Random variables Lecture 5 - Discrete Distributions Sta02 / BME02 Colin Rundel Setember 8, 204 A random variable is a numeric uantity whose value deends on the outcome of a random event

More information

Estimation of the large covariance matrix with two-step monotone missing data

Estimation of the large covariance matrix with two-step monotone missing data Estimation of the large covariance matrix with two-ste monotone missing data Masashi Hyodo, Nobumichi Shutoh 2, Takashi Seo, and Tatjana Pavlenko 3 Deartment of Mathematical Information Science, Tokyo

More information

Background. GLM with clustered data. The problem. Solutions. A fixed effects approach

Background. GLM with clustered data. The problem. Solutions. A fixed effects approach Background GLM with clustered data A fixed effects aroach Göran Broström Poisson or Binomial data with the following roerties A large data set, artitioned into many relatively small grous, and where members

More information

Determining Momentum and Energy Corrections for g1c Using Kinematic Fitting

Determining Momentum and Energy Corrections for g1c Using Kinematic Fitting CLAS-NOTE 4-17 Determining Momentum and Energy Corrections for g1c Using Kinematic Fitting Mike Williams, Doug Alegate and Curtis A. Meyer Carnegie Mellon University June 7, 24 Abstract We have used the

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Introduction to Neural Networks : Lecture 13 John A. Bullinaria, 2004 1. The RBF Maing 2. The RBF Network Architecture 3. Comutational Power of RBF Networks 4.

More information

2x2x2 Heckscher-Ohlin-Samuelson (H-O-S) model with factor substitution

2x2x2 Heckscher-Ohlin-Samuelson (H-O-S) model with factor substitution 2x2x2 Heckscher-Ohlin-amuelson (H-O- model with factor substitution The HAT ALGEBRA of the Heckscher-Ohlin model with factor substitution o far we were dealing with the easiest ossible version of the H-O-

More information

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution Moment Generating Function STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution T. Linder Queen s University Winter 07 Definition Let X (X,...,X n ) T be a random vector and

More information

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding Outline EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Error detection using arity Hamming code for error detection/correction Linear Feedback Shift

More information

Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning

Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning TNN-2009-P-1186.R2 1 Uncorrelated Multilinear Princial Comonent Analysis for Unsuervised Multilinear Subsace Learning Haiing Lu, K. N. Plataniotis and A. N. Venetsanooulos The Edward S. Rogers Sr. Deartment

More information

Supplementary Materials for Robust Estimation of the False Discovery Rate

Supplementary Materials for Robust Estimation of the False Discovery Rate Sulementary Materials for Robust Estimation of the False Discovery Rate Stan Pounds and Cheng Cheng This sulemental contains roofs regarding theoretical roerties of the roosed method (Section S1), rovides

More information

1 Extremum Estimators

1 Extremum Estimators FINC 9311-21 Financial Econometrics Handout Jialin Yu 1 Extremum Estimators Let θ 0 be a vector of k 1 unknown arameters. Extremum estimators: estimators obtained by maximizing or minimizing some objective

More information

Yixi Shi. Jose Blanchet. IEOR Department Columbia University New York, NY 10027, USA. IEOR Department Columbia University New York, NY 10027, USA

Yixi Shi. Jose Blanchet. IEOR Department Columbia University New York, NY 10027, USA. IEOR Department Columbia University New York, NY 10027, USA Proceedings of the 2011 Winter Simulation Conference S. Jain, R. R. Creasey, J. Himmelsach, K. P. White, and M. Fu, eds. EFFICIENT RARE EVENT SIMULATION FOR HEAVY-TAILED SYSTEMS VIA CROSS ENTROPY Jose

More information

Hypothesis Test-Confidence Interval connection

Hypothesis Test-Confidence Interval connection Hyothesis Test-Confidence Interval connection Hyothesis tests for mean Tell whether observed data are consistent with μ = μ. More secifically An hyothesis test with significance level α will reject the

More information

Department of Mathematics

Department of Mathematics Deartment of Mathematics Ma 3/03 KC Border Introduction to Probability and Statistics Winter 209 Sulement : Series fun, or some sums Comuting the mean and variance of discrete distributions often involves

More information

LOGISTIC REGRESSION. VINAYANAND KANDALA M.Sc. (Agricultural Statistics), Roll No I.A.S.R.I, Library Avenue, New Delhi

LOGISTIC REGRESSION. VINAYANAND KANDALA M.Sc. (Agricultural Statistics), Roll No I.A.S.R.I, Library Avenue, New Delhi LOGISTIC REGRESSION VINAANAND KANDALA M.Sc. (Agricultural Statistics), Roll No. 444 I.A.S.R.I, Library Avenue, New Delhi- Chairerson: Dr. Ranjana Agarwal Abstract: Logistic regression is widely used when

More information

Lecture 1.2 Units, Dimensions, Estimations 1. Units To measure a quantity in physics means to compare it with a standard. Since there are many

Lecture 1.2 Units, Dimensions, Estimations 1. Units To measure a quantity in physics means to compare it with a standard. Since there are many Lecture. Units, Dimensions, Estimations. Units To measure a quantity in hysics means to comare it with a standard. Since there are many different quantities in nature, it should be many standards for those

More information

Lecture: Condorcet s Theorem

Lecture: Condorcet s Theorem Social Networs and Social Choice Lecture Date: August 3, 00 Lecture: Condorcet s Theorem Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler Condorcet s theorem, the most basic jury

More information

Topic 7: Using identity types

Topic 7: Using identity types Toic 7: Using identity tyes June 10, 2014 Now we would like to learn how to use identity tyes and how to do some actual mathematics with them. By now we have essentially introduced all inference rules

More information