ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

Size: px
Start display at page:

Download "ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals"

Transcription

1 ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas

2 Outline Matched Filter Generalized Matched Filter Signal Design Multiple Signals

3 3 Detect a known signal in WGN Consider detecting a known deterministic signal in white Gaussian noise. Given a length-n sequence, x n, n = 0, 1,..., N 1, which is generated according to H 0 :X[n] = W [n] H 1 :X[n] = s[n] + W [n] where W [n] N (0, σ 2 ), s = {s[0],..., s[n 1]} is a known and deterministic signal.

4 4 NP Detector Let X = [X[0], X[1],, X[N 1]] T. Then H 0 : X N (0, σ 2 I n ), H 1 : X N (s, σ 2 I n ) The NP detector is L(x) = p 1(x) p 0 (x) H 1 H 0 γ x T s H 1 σ 2 1 ln γ + 2 s 2 H 0 }{{} γ or equivalently T (x) = x[n]s[n] H 1 H 0 γ

5 Correlator and Matched Filter Correlator x[n] N T (x) = P N 1 x[n]s[n] > γ T (x) H1? H 0 Ĥ s[n] Let Matched Filter { s[n 1 n] n = 0, 1,..., N 1 h[n] = 0 o.w. x[n] h[n] FIR filter n = N 1 5 T (x) H1? H 0 0 Ĥ

6 6 Performance of Matched Filter T (x) = x[n]s[n] > γ Under either hypothesis, T (X) is Gaussian. Let E := [ ] E[T H 0 ] = E W [n]s[n] = 0 E[T H 1 ] = E [ s2 [n], ] (s[n] + W [n])s[n] = E var(t H 0 ) = s T Σ w s = σ 2 var(t H 1 ) = s T Σ w s = σ 2 s 2 [n] = σ 2 E s 2 [n] = σ 2 E

7 Performance of Matched Filter (Cont d) { N (0, σ T 2 E) under H 0 N (E, σ 2 E) under H 1 Thus, ( ) γ P FA = P[T > γ ; H 0 ] = Q σ2 E P D = P[T > γ ; H 1 ] = Q ( = Q Q 1 (P FA ) ( γ ) E σ2 E ) E σ 2 Key parameter is the SNR (or energy-to-noise-ratio) E σ 2. As SNR increases, P D increases. The shape of the signal does NOT affect the detection performance. This is not true for colored Gaussian noise. 7

8 8 Generalized Matched Filter Noise is not i.i.d WGN, but correlated: W N (0, C), C is the covariance matrix. Then, { N (0, C) under H0 X N (s, C) under H 1 The optimal test is l(x) = ln p(x H 1) H 1 ln γ p(x H 0 ) H 0 where l(x) = 1 [ (x s) T C 1 (x s) x T C 1 x ] 2 = 1 [ x T C 1 x 2x T C 1 s + s T C 1 s x T C 1 x ] 2 = x T C 1 s 1 2 st C 1 s

9 9 Generalized Matched Filter Generalized Matched Filter: T (x) = x T C 1 s H 1 H 0 ln γ st C 1 s := γ

10 10 Generalized Matched Filter: Prewhitening Matrix When C = U T AU is positive definite, C 1 = U T A 1 U exists and is also positive definite, where A is a diagonal matrix. It can be factored as C 1 = D T D, where D = UA 1/2 is called a prewhitening matrix. Then, T (x) = x T C 1 s = x T D T Ds = x T s, where x = Dx, s = Ds. x[n] D x 0 [n] N P N 1 T (x) H1? H 0 0 Ĥ s 0 [n] D s[n]

11 P D increases with s T C 1 s, not E/σ 2. The shape of the signal DOES affect the detection performance. 11 Performance of Generalized Matched Filter T (x) = x T C 1 s > γ Under either hypothesis, T (X) is Gaussian. E[T H 0 ] = E [ W T C 1 s ] = 0 E[T H 1 ] = E [ (s + W ) T C 1 s ] = s T C 1 s var(t H 0 ) = E [ (W T C 1 s) 2] = s T C 1 s var(t H 1 ) = var(t H 0 ) = s T C 1 s ( Thus, P FA = P[T > γ γ ) ; H 0 ] = Q st C 1 s ( γ P D = P[T > γ s T C 1 ) s ; H 1 ] = Q st C 1 s ( = Q Q 1 (P FA ) ) s T C 1 s

12 12 Signal Design for Correlated Noise Objective: design the signal s to maximize P D for a given P FA, subject to energy constraint s T s = E. maximize s subject to s T C 1 s s T s = E

13 13 Signal Design for Correlated Noise (Cont d) Solution: making use of Lagrangian multipliers F = s T C 1 s + λ(e s T s) Taking derivative w.r.t to s, we have 2C 1 s 2λs = 0, i.e., C 1 s = λs Thus, s T C 1 s = λs T s = λe s is an eigenvector of C 1 associated with eigenvalue λ. To maximize s T C 1 s, s should be associated with the maximum eigenvalue of C 1. Since Cs = (1/λ)s, we should choose the signal as the (scaled) eigenvector of C associated with its minimum eigenvalue.

14 Example Assume W [n] N (0, σ 2 n), and W i s are uncorrelated. How to design the signal s[n], n = 0,..., N 1 to maximize P D?

15 Example [ 1 ρ Assume C = ρ 1 to maximize P D? ], where 0 < ρ 1. How to design the signal s[n], n = 0, 1

16 16 Multiple Signals Detection H 0 :X = W H 1 :X = s + W Classification H 0 :X = s 0 + W H 1 :X = s 1 + W

17 Example Additive Gaussian White Noise (AWGN) communication channel. Two messages i = {0, 1} with probabilities π 0 = π 1. Given i, the received signal is a N 1 random vector X = s i + W where W N (0, σ 2 I N N ). {s 0, s 1 } are known to the receiver. Design the ML receiver.

18 18 Minimum Distance Receiver We want to minimize P e, with equal prior probabilities for H i ML detector p(x H i ) = Decide H i for which [ ] 1 exp 1 (2πσ 2 ) N/2 2σ 2 (x[n] s i [n]) 2 Di 2 := (x[n] s i [n]) 2 = (x s i ) T (x s i ) = x s i 2 is minimum. minimum distance receiver x s 0 R 1 R 0 s 0 s 1 s 1

19 19 Minimum Distance Receiver Di 2 := (x[n] s i [n]) 2 = Therefore, we decide H i for which is maximum. T i (x) := x[n]s i [n] 1 2 x 2 [n] 2 s 2 i [n] = x[n]s i [n] + x[n]s i [n] 1 2 E i s 2 i [n]

20 20 Binary Case ML detector T 1 (x) T 0 (x) = x[n](s 1 [n] s 0 [n]) 1 2 (E 1 E 0 ) H 1 H 0 0 or equivalently Error probability x T (s 1 s 0 ) P e = Q ( 1 2 H 1 1 H 0 2 (E 1 E 0 ) ) s 1 s 0 σ

21 Performance for Binary Case P e = P[Ĥ = H 1 H 0 ]π 0 + P[Ĥ = H 0 H 1 ]π 1 = 1 2 (P[T 1(X) T 0 (X) > 0 H 0 ] + P[T 1 (X) T 0 (X) < 0 H 1 ]) Let T (x) := T 1 (x) T 0 (x) = x[n](s 1 [n] s 0 [n]) 1 2 (E 1 E 0 ) T is a Gaussian random variable conditioned on either hypothesis! E[T H 0 ] = s 0 [n](s 1 [n] s 0 [n]) 1 2 (E 1 E 0 ) = 1 2 s 1 s 0 2 E[T H 1 ] = E[T H 0 ] = 1 2 s 1 s 0 2 var(t H 0 ) = T var(x[n])(s 1 [n] s 0 [n]) 2 = σ 2 s 1 s 0 2 = var(t H 1 ) { N ( 1 2 s 1 s 0 2, σ 2 s 1 s 0 2 ) H 0 N ( 1 2 s 1 s 0 2, σ 2 s 1 s 0 2 ) H 1 P e = Q 21 ( 1 2 ) s 1 s 0 σ

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(0, σ I n n and S = [s, s,..., s n ] T

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Rowan University Department of Electrical and Computer Engineering

Rowan University Department of Electrical and Computer Engineering Rowan University Department of Electrical and Computer Engineering Estimation and Detection Theory Fall 2013 to Practice Exam II This is a closed book exam. There are 8 problems in the exam. The problems

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs LECTURE 18 Last time: White Gaussian noise Bandlimited WGN Additive White Gaussian Noise (AWGN) channel Capacity of AWGN channel Application: DS-CDMA systems Spreading Coding theorem Lecture outline Gaussian

More information

Introduction to Detection Theory

Introduction to Detection Theory Introduction to Detection Theory Detection Theory (a.k.a. decision theory or hypothesis testing) is concerned with situations where we need to make a decision on whether an event (out of M possible events)

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

III.B Linear Transformations: Matched filter

III.B Linear Transformations: Matched filter III.B Linear Transformations: Matched filter [p. ] Definition [p. 3] Deterministic signal case [p. 5] White noise [p. 19] Colored noise [p. 4] Random signal case [p. 4] White noise [p. 4] Colored noise

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE)

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) 1 ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Minimum Variance Unbiased Estimators (MVUE)

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture II: Receive Beamforming

More information

8 Basics of Hypothesis Testing

8 Basics of Hypothesis Testing 8 Basics of Hypothesis Testing 4 Problems Problem : The stochastic signal S is either 0 or E with equal probability, for a known value E > 0. Consider an observation X = x of the stochastic variable X

More information

7. Statistical estimation

7. Statistical estimation 7. Statistical estimation Convex Optimization Boyd & Vandenberghe maximum likelihood estimation optimal detector design experiment design 7 1 Parametric distribution estimation distribution estimation

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Estimation and Detection

Estimation and Detection Estimation and Detection Lecture : Detection Theory Unknown Parameters Dr. ir. Richard C. Hendriks //05 Previous Lecture H 0 : T (x) < H : T (x) > Using detection theory, rules can be derived on how to

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis CS 3 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis AD March 11 AD ( March 11 1 / 17 Multivariate Gaussian Consider data { x i } N i=1 where xi R D and we assume they are

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Module 1 - Signal estimation

Module 1 - Signal estimation , Arraial do Cabo, 2009 Module 1 - Signal estimation Sérgio M. Jesus (sjesus@ualg.pt) Universidade do Algarve, PT-8005-139 Faro, Portugal www.siplab.fct.ualg.pt February 2009 Outline of Module 1 Parameter

More information

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

Chapter 2 Signal Processing at Receivers: Detection Theory

Chapter 2 Signal Processing at Receivers: Detection Theory Chapter Signal Processing at Receivers: Detection Theory As an application of the statistical hypothesis testing, signal detection plays a key role in signal processing at receivers of wireless communication

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

7. Statistical estimation

7. Statistical estimation 7. Statistical estimation Convex Optimization Boyd & Vandenberghe maximum likelihood estimation optimal detector design experiment design 7 1 Parametric distribution estimation distribution estimation

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Department of Electrical Engineering University of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Introduction Fourier Transform Properties of Fourier

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Applications of Information Geometry to Hypothesis Testing and Signal Detection

Applications of Information Geometry to Hypothesis Testing and Signal Detection CMCAA 2016 Applications of Information Geometry to Hypothesis Testing and Signal Detection Yongqiang Cheng National University of Defense Technology July 2016 Outline 1. Principles of Information Geometry

More information

Random Processes Handout IV

Random Processes Handout IV RP-IV.1 Random Processes Handout IV CALCULATION OF MEAN AND AUTOCORRELATION FUNCTIONS FOR WSS RPS IN LTI SYSTEMS In the last classes, we calculated R Y (τ) using an intermediate function f(τ) (h h)(τ)

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Mengye Ren mren@cs.toronto.edu October 18, 2015 Mengye Ren Naive Bayes and Gaussian Bayes Classifier October 18, 2015 1 / 21 Naive Bayes Bayes Rules: Naive Bayes

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Ladislav Rampasek slides by Mengye Ren and others February 22, 2016 Naive Bayes and Gaussian Bayes Classifier February 22, 2016 1 / 21 Naive Bayes Bayes Rule:

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

CFAR DETECTION OF SPATIALLY DISTRIBUTED TARGETS IN K- DISTRIBUTED CLUTTER WITH UNKNOWN PARAMETERS

CFAR DETECTION OF SPATIALLY DISTRIBUTED TARGETS IN K- DISTRIBUTED CLUTTER WITH UNKNOWN PARAMETERS CFAR DETECTION OF SPATIALLY DISTRIBUTED TARGETS IN K- DISTRIBUTED CLUTTER WITH UNKNOWN PARAMETERS N. Nouar and A.Farrouki SISCOM Laboratory, Department of Electrical Engineering, University of Constantine,

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

TARGET DETECTION WITH FUNCTION OF COVARIANCE MATRICES UNDER CLUTTER ENVIRONMENT

TARGET DETECTION WITH FUNCTION OF COVARIANCE MATRICES UNDER CLUTTER ENVIRONMENT TARGET DETECTION WITH FUNCTION OF COVARIANCE MATRICES UNDER CLUTTER ENVIRONMENT Feng Lin, Robert C. Qiu, James P. Browning, Michael C. Wicks Cognitive Radio Institute, Department of Electrical and Computer

More information

The Gaussian distribution

The Gaussian distribution The Gaussian distribution Probability density function: A continuous probability density function, px), satisfies the following properties:. The probability that x is between two points a and b b P a

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Gaussian channel Information theory 2013, lecture 6 Jens Sjölund 8 May 2013 Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Outline 1 Definitions 2 The coding theorem for Gaussian channel 3 Bandlimited

More information

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Quantization C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)5731877 cmliu@cs.nctu.edu.tw

More information

The problem is to infer on the underlying probability distribution that gives rise to the data S.

The problem is to infer on the underlying probability distribution that gives rise to the data S. Basic Problem of Statistical Inference Assume that we have a set of observations S = { x 1, x 2,..., x N }, xj R n. The problem is to infer on the underlying probability distribution that gives rise to

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

Lecture Notes on the Gaussian Distribution

Lecture Notes on the Gaussian Distribution Lecture Notes on the Gaussian Distribution Hairong Qi The Gaussian distribution is also referred to as the normal distribution or the bell curve distribution for its bell-shaped density curve. There s

More information

Chapter 7. Basic Probability Theory

Chapter 7. Basic Probability Theory Chapter 7. Basic Probability Theory I-Liang Chern October 20, 2016 1 / 49 What s kind of matrices satisfying RIP Random matrices with iid Gaussian entries iid Bernoulli entries (+/ 1) iid subgaussian entries

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

Problem Set 1. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 20

Problem Set 1. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 20 Problem Set MAS 6J/.6J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 0 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain a

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Multi User Detection I

Multi User Detection I January 12, 2005 Outline Overview Multiple Access Communication Motivation: What is MU Detection? Overview of DS/CDMA systems Concept and Codes used in CDMA CDMA Channels Models Synchronous and Asynchronous

More information

LDPC Codes. Intracom Telecom, Peania

LDPC Codes. Intracom Telecom, Peania LDPC Codes Alexios Balatsoukas-Stimming and Athanasios P. Liavas Technical University of Crete Dept. of Electronic and Computer Engineering Telecommunications Laboratory December 16, 2011 Intracom Telecom,

More information

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis TAMS39 Lecture 10 Principal Component Analysis Factor Analysis Martin Singull Department of Mathematics Mathematical Statistics Linköping University, Sweden Content - Lecture Principal component analysis

More information

Machine Learning. 7. Logistic and Linear Regression

Machine Learning. 7. Logistic and Linear Regression Sapienza University of Rome, Italy - Machine Learning (27/28) University of Rome La Sapienza Master in Artificial Intelligence and Robotics Machine Learning 7. Logistic and Linear Regression Luca Iocchi,

More information

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold)

Asymptotic Capacity Bounds for Magnetic Recording. Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Asymptotic Capacity Bounds for Magnetic Recording Raman Venkataramani Seagate Technology (Joint work with Dieter Arnold) Outline Problem Statement Signal and Noise Models for Magnetic Recording Capacity

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Elias Tragas tragas@cs.toronto.edu October 3, 2016 Elias Tragas Naive Bayes and Gaussian Bayes Classifier October 3, 2016 1 / 23 Naive Bayes Bayes Rules: Naive

More information

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters D. Richard Brown III Worcester Polytechnic Institute 26-February-2009 Worcester Polytechnic Institute D. Richard Brown III 26-February-2009

More information

Lecture 2. Spring Quarter Statistical Optics. Lecture 2. Characteristic Functions. Transformation of RVs. Sums of RVs

Lecture 2. Spring Quarter Statistical Optics. Lecture 2. Characteristic Functions. Transformation of RVs. Sums of RVs s of Spring Quarter 2018 ECE244a - Spring 2018 1 Function s of The characteristic function is the Fourier transform of the pdf (note Goodman and Papen have different notation) C x(ω) = e iωx = = f x(x)e

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

EE 574 Detection and Estimation Theory Lecture Presentation 8

EE 574 Detection and Estimation Theory Lecture Presentation 8 Lecture Presentation 8 Aykut HOCANIN Dept. of Electrical and Electronic Engineering 1/14 Chapter 3: Representation of Random Processes 3.2 Deterministic Functions:Orthogonal Representations For a finite-energy

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 15: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 29 th, 2015 1 Example: Channel Capacity of BSC o Let then: o For

More information

Linear Regression and Discrimination

Linear Regression and Discrimination Linear Regression and Discrimination Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Partial Solution Set, Leon 4.3

Partial Solution Set, Leon 4.3 Partial Solution Set, Leon 4.3 4.3.2 Let [u 1, u 2 ] and [v 1, v 2 ] be ordered bases for R 2, where u 1 (1, 1) T, u 2 ( 1, 1) T, v 1 (2, 1) T, and v 2 (1, ) T. Let L be the linear transformation defined

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Lecture 5: Moment Generating Functions

Lecture 5: Moment Generating Functions Lecture 5: Moment Generating Functions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 28th, 2018 Rasmussen (CUED) Lecture 5: Moment

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Cognitive MIMO Radar

Cognitive MIMO Radar Cognitive MIMO Radar Joseph Tabriian Signal Processing Laboratory Department of Electrical and Computer Engineering Ben-Gurion University of the Negev Involved collaborators and Research Assistants: Prof.

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences. possible signals has been transmitted.

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences. possible signals has been transmitted. Introduction I We have focused on the problem of deciding which of two possible signals has been transmitted. I Binary Signal Sets I We will generalize the design of optimum (MPE) receivers to signal sets

More information

Covariance Estimation for High Dimensional Data Vectors

Covariance Estimation for High Dimensional Data Vectors Covariance Estimation for High Dimensional Data Vectors Charles A. Bouman Purdue University School of Electrical and Computer Engineering Co-authored with: Guangzhi Cao and Leonardo R Bachega Covariance

More information

III.C - Linear Transformations: Optimal Filtering

III.C - Linear Transformations: Optimal Filtering 1 III.C - Linear Transformations: Optimal Filtering FIR Wiener Filter [p. 3] Mean square signal estimation principles [p. 4] Orthogonality principle [p. 7] FIR Wiener filtering concepts [p. 8] Filter coefficients

More information

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland Morning Session Capacity-based Power Control Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland So Far, We Learned... Power control with SIR-based QoS guarantees Suitable

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions Engineering Tripos Part IIA THIRD YEAR 3F: Signals and Systems INFORMATION THEORY Examples Paper Solutions. Let the joint probability mass function of two binary random variables X and Y be given in the

More information