Spatial Inference of Nitrate Concentrations in Groundwater

Size: px
Start display at page:

Download "Spatial Inference of Nitrate Concentrations in Groundwater"

Transcription

1 Spatial Inference of Nitrate Concentrations in Groundwater Dawn Woodard Operations Research & Information Engineering Cornell University joint work with Robert Wolpert, Duke Univ. Dept. of Statistical Science and School of the Environment and Michael O Connell, Waratah Corporation, Durham, NC 1

2 Outline 1 Nitrates in Groundwater 2 The Data 3 Existing Approaches for Pollutant Estimation 4 Bayesian Moving-Average Models 5 Results 6 Conclusions and Future Work 2

3 Nitrates in Groundwater High levels of nitrates in groundwater can cause health and environmental problems Nitrate contamination in groundwater can be due to: agricultural fertilization, septic systems, etc. 4

4 Nitrates in Groundwater Measurements of nitrates in groundwater have been obtained over the mid-atlantic states [Ator 1998]: > 8.3 mg/l mid range < 0.75 mg/l 5

5 Nitrate Estimation Desire geographic interpolation of nitrate levels Distinct regulatory goals require inference at distinct geographic scales... fine-scale, regulatory units (e.g. counties), hydrologic units (e.g. watersheds)....as well as distinct risk measures average nitrate concentration, probability of exceeding a threshold, averaged by region, maximum nitrate concentration occurring in each region. 6

6 Nitrate Estimation 1. Wish to perform inference for multiple scales and risk measures without refitting the model or ad-hoc aggregation 2. Need the uncertainty associated with all estimates of risk measures 3. Desire a nonparametric approach 7

7 Model Summary We utilize a nonparametric spatial statistical model for nitrate concentrations at all locations Bayesian approach: uncertainty about the nitrate concentration and its average over various regions are all random variables......for which we can compute expected values (best overall estimates) and probabilities of exceeding specified thresholds 8

8 Data Summary Nitrate measurements from 929 wells in the mid-atlantic states Taken between the years of 1985 and

9 Existing Approaches for Pollutant Estimation Pollutant concentrations can be estimated separately for each region. This leads to unreliable estimates for regions with few measurements When inference is desired at a single spatial partition (e.g. counties), lattice models can be used 12

10 Existing Approaches for Pollutant Estimation Kriging allows smooth spatial interpolation. It models the pollutant concentration Λ(x) at location x X as: log Λ(x) = J X j (x)β j + Z (x) j=1 where Z (x) is a mean-zero Gaussian process. 13

11 Existing Approaches for Pollutant Estimation A kriged surface with only an intercept term β 0 : > 8.3 mid range < Latitude Longitude 14

12 Existing Approaches for Pollutant Estimation The interpolated surface is reasonable. > 8.3 mid range < Latitude Longitude 15

13 Existing Approaches for Pollutant Estimation However, the confidence intervals are very wide in many locations, even where there is much data. Lower Bound: Upper Bound: > 8.3 mid range < > 8.3 mid range < Latitude Latitude Longitude Longitude 16

14 Existing Approaches for Pollutant Estimation The Gaussian process model makes strong assumptions about the distribution of the nitrate concentration The wide confidence intervals may be due to the data violating these assumptions Let s look at a nonparametric alternative 17

15 Moving-Average Models Ickstadt and Wolpert (1997) and Wolpert and Ickstadt (1998) introduced methods for interpolating intensities of spatial point processes by modeling the intensity Λ(x) as a moving average of an underlying stochastic process The approach has been used in non-point-process applications: identifying proteins in mass spectroscopy [House, Clyde, and Wolpert 2006] inferring temporal fluctuations in sulfur dioxide pollution [Tu 2006] 19

16 Moving-Average Models The concentration Λ(x) at location x X is modeled as: Λ(x) = J X j (x)β j + j=1 M m=1 k(x, s m )γ m for k(x, s) a kernel function on X S. The number M, locations s m, and magnitudes γ m of the mixture components are uncertain; so are the coefficients β j. 20

17 Moving-Average Models Interpretation of the spatial portion of the model, m k(x, s m)γ m, for pollutant level estimation: the pollutant surface is the sum of an unknown number of point sources with unknown locations and magnitudes......where the pollutant spreads out from each source in a manner consistent with the kernel k(, ) 21

18 Moving-Average Models The ith measurement Y i is assumed to have a log-normal distribution centered at Λ(x i ): log Y i Normal( log Λ(x i ),σ 2 ) The measurement variance σ 2 is unknown 22

19 Moving-Average Models The kernel is specified as: k(x, s) =exp where d > 0 is a constant { 1 } x s 2 2d 2 This decreases smoothly as a function of distance from the center s 23

20 Prior Specification The parameters are σ, β,m, {s m }, {γ m } For the nitrates analysis we do not include covariates, so β is not in the model Following common practice we assign for fixed α σ > 0 and ρ σ > 0 σ 2 Gamma( α σ,ρ σ ) 24

21 Prior Specification The spatial term in the model can be rewritten where M m=1 k(x, s m )γ m = Γ(ds) = is a discrete measure on S. M m=1 S k(x, s)γ(ds) γ m δ sm (ds) Under some reasonable assumptions (e.g. Γ(A) and Γ(B) are indep. for disjoint sets A, B S), our prior on Γ must be a Lévy random field We use the well-known gamma random field on a bounded set S R d 25

22 Prior Specification The gamma random field prior for Γ(ds) implies that for fixed α, ρ, ɛ > 0: The number of mixture components M has a Poisson distribution: M Poisson(α S E 1 (ρɛ)) where E 1 is the exponential integral function Conditional on M, the locations s m are independently uniformly distributed on S The magnitudes γ m are independently distributed with a truncated gamma distribution, having density: f (γ) γ 1 e ργ 1(γ >ɛ) 26

23 Prior Specification The constants d, α, ρ, ɛ, α σ, and ρ σ are given reasonable values using expert knowledge and information in the data. 27

24 Prior Specification These choices lead to prior surfaces Λ(x) like this one: Latitude Longitude 28

25 Prior Specification There are some areas with high nitrate concentrations; these areas have random (unknown) locations a priori: Latitude Longitude 29

26 Nitrate Inferences The posterior mean surface for the nitrate concentration is: Latitude > 8.3 mid range < Longitude 31

27 Nitrate Inferences There are hot spots in the Chesapeake region, southeast Pennsylvania, etc. Latitude > 8.3 mid range < Longitude 32

28 Nitrate Inferences There are low-nitrate areas in West Virginia, eastern North Carolina, etc. Latitude > 8.3 mid range < Longitude 33

29 Nitrate Inferences Areas with sparse / no data have expected concentration close to the prior mean of 4.4 mg/l. Latitude > 8.3 mid range < Longitude 34

30 Nitrate Inferences The posterior standard deviation of the nitrate concentration is: Latitude > 8.3 mid range < Longitude 35

31 Nitrate Inferences This is a measure of estimation uncertainty. Latitude > 8.3 mid range < Longitude 36

32 Nitrate Inferences Areas with sparse / no data have high uncertainty. Latitude > 8.3 mid range < Longitude 37

33 Nitrate Inferences Most areas with numerous measurements have low uncertainty. Latitude > 8.3 mid range < Longitude 38

34 Nitrate Inferences The spotty quality of the figure is due to noise from the computational method, and could be eliminated with, e.g., parallelization. Latitude > 8.3 mid range < Longitude 39

35 Nitrate Inferences Average nitrate concentrations over counties can be obtained: Latitude > 5 mg/l mid range < 1 mg/l Longitude 40

36 Nitrate Inferences So can the probability that the nitrate concentration exceeds the regulatory limit, averaged by county: Latitude > 8 % mid range < 2 % Longitude 41

37 Nitrate Inferences This probability is low in most regions with a lot of data: Latitude > 8 % mid range < 2 % Longitude 42

38 Nitrate Inferences This probability is equal to its prior value of 5% in regions with sparse / no data: Latitude > 8 % mid range < 2 % Longitude 43

39 Nitrate Inferences Again there is a hot spot in the Chesapeake region: Latitude > 8 % mid range < 2 % Longitude 44

40 Nitrate Inferences The green counties around the edge are due to edge effects of the model. Latitude > 8 % mid range < 2 % Longitude 45

41 Conclusions The Bayesian moving-average model allows inference of a variety of risk measures at a variety of spatial scales. Uncertainty measures are available for all these estimates. The model is nonparametric. It has a desirable interpretation in the context of pollutant level estimation. 47

42 Conclusions The moving-average model has a computational advantage over kriging for large data sets Likelihood evaluation for the moving-average model is O(NM), where N is the number of data points and M is the number of mixture components. Likelihood evaluation is O(N 3 ) for kriging. 48

43 Future Work Covariates such as climatic, geologic, and land use factors could be added to the nitrates analysis. The fixed kernels could be replaced with kernels that have priors on the scale and eccentricity. This would allow the model to capture, e.g., pollutant point sources that spread out more in one direction than another due to flow patterns. Additional risk measures, e.g. the % of population exposed to nitrate levels above 10 mg/l 49

44 References Ator, S. W. (1998). Nitrate and pesticide data for waters of the mid- Atlantic region. USGS Open File Report , Reston, VA: U.S. Geological Survey. House, L. L., Clyde, M. A., and Wolpert, R. L. (2006). Nonparametric models for peak identification and quantification in mass spectroscopy, with application to MALDI-TOF. Discussion Paper , Duke Univ. Dept. of Statistical Science. Ickstadt, K. and Wolpert, R. L. (1997). Multiresolution assessment of forest inhomogeneity, in Case Studies in Bayesian Statistics, Vol. III, NY: Springer-Verlag, pp Tu, C. (2006). Bayesian nonparametric modeling using Levy process priors with applications for function estimation, time series modeling, and spatio-temporal modeling. PhD thesis, Duke Univ. Dept. of Statistical Science. Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika, 85,

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

More information

Efficient Posterior Inference and Prediction of Space-Time Processes Using Dynamic Process Convolutions

Efficient Posterior Inference and Prediction of Space-Time Processes Using Dynamic Process Convolutions Efficient Posterior Inference and Prediction of Space-Time Processes Using Dynamic Process Convolutions Catherine A. Calder Department of Statistics The Ohio State University 1958 Neil Avenue Columbus,

More information

Bayesian Hierarchical Models

Bayesian Hierarchical Models Bayesian Hierarchical Models Gavin Shaddick, Millie Green, Matthew Thomas University of Bath 6 th - 9 th December 2016 1/ 34 APPLICATIONS OF BAYESIAN HIERARCHICAL MODELS 2/ 34 OUTLINE Spatial epidemiology

More information

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources

Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources th International Conference on Information Fusion Chicago, Illinois, USA, July -8, Non-parametric Bayesian Modeling and Fusion of Spatio-temporal Information Sources Priyadip Ray Department of Electrical

More information

False Discovery Control in Spatial Multiple Testing

False Discovery Control in Spatial Multiple Testing False Discovery Control in Spatial Multiple Testing WSun 1,BReich 2,TCai 3, M Guindani 4, and A. Schwartzman 2 WNAR, June, 2012 1 University of Southern California 2 North Carolina State University 3 University

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data

Models for spatial data (cont d) Types of spatial data. Types of spatial data (cont d) Hierarchical models for spatial data Hierarchical models for spatial data Based on the book by Banerjee, Carlin and Gelfand Hierarchical Modeling and Analysis for Spatial Data, 2004. We focus on Chapters 1, 2 and 5. Geo-referenced data arise

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

Resolving GRB Light Curves

Resolving GRB Light Curves Resolving GRB Light Curves Robert L. Wolpert Duke University wolpert@stat.duke.edu w/mary E Broadbent (Duke) & Tom Loredo (Cornell) 2014 August 03 17:15{17:45 Robert L. Wolpert Resolving GRB Light Curves

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

On dealing with spatially correlated residuals in remote sensing and GIS

On dealing with spatially correlated residuals in remote sensing and GIS On dealing with spatially correlated residuals in remote sensing and GIS Nicholas A. S. Hamm 1, Peter M. Atkinson and Edward J. Milton 3 School of Geography University of Southampton Southampton SO17 3AT

More information

Statistics for extreme & sparse data

Statistics for extreme & sparse data Statistics for extreme & sparse data University of Bath December 6, 2018 Plan 1 2 3 4 5 6 The Problem Climate Change = Bad! 4 key problems Volcanic eruptions/catastrophic event prediction. Windstorms

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets Abhirup Datta 1 Sudipto Banerjee 1 Andrew O. Finley 2 Alan E. Gelfand 3 1 University of Minnesota, Minneapolis,

More information

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Matthias Katzfuß Advisor: Dr. Noel Cressie Department of Statistics The Ohio State University

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

Learning Outbreak Regions in Bayesian Spatial Scan Statistics

Learning Outbreak Regions in Bayesian Spatial Scan Statistics Maxim Makatchev Daniel B. Neill Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 USA maxim.makatchev@cs.cmu.edu neill@cs.cmu.edu Abstract The problem of anomaly detection for biosurveillance

More information

Fusing point and areal level space-time data. data with application to wet deposition

Fusing point and areal level space-time data. data with application to wet deposition Fusing point and areal level space-time data with application to wet deposition Alan Gelfand Duke University Joint work with Sujit Sahu and David Holland Chemical Deposition Combustion of fossil fuel produces

More information

Measuring Uncertainty in Spatial Data via Bayesian Melding

Measuring Uncertainty in Spatial Data via Bayesian Melding Measuring Uncertainty in Spatial Data via Bayesian Melding Matt Falk Queensland University of Technology (QUT) m.falk@qut.edu.au Joint work with Robert Denham (NRW) and Kerrie Mengersen (QUT) Data Driven

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 1 Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 2 MOVING AVERAGE SPATIAL MODELS Kernel basis representation for spatial processes z(s) Define m basis functions

More information

Some Notes on Gamma Processes

Some Notes on Gamma Processes Some Notes on Gamma Processes RLW, Draft 3.0 February 10, 2017 1 Gamma Distribution An exponential random variable X Ex(β) with rate β has mean µ = 1/β, complimentary CDF F(t) = P[X > t] = e βt, t 0, and

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016

Log Gaussian Cox Processes. Chi Group Meeting February 23, 2016 Log Gaussian Cox Processes Chi Group Meeting February 23, 2016 Outline Typical motivating application Introduction to LGCP model Brief overview of inference Applications in my work just getting started

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland EnviroInfo 2004 (Geneva) Sh@ring EnviroInfo 2004 Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland Mikhail Kanevski 1, Michel Maignan 1

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS

ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS ESTIMATING THE MEAN LEVEL OF FINE PARTICULATE MATTER: AN APPLICATION OF SPATIAL STATISTICS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C.,

More information

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES Philip Jonathan, Kevin Ewans, David Randell, Yanyun Wu philip.jonathan@shell.com www.lancs.ac.uk/ jonathan Wave Hindcasting & Forecasting

More information

A spatially explicit modelling framework for assessing ecotoxicological risks at the landscape scale

A spatially explicit modelling framework for assessing ecotoxicological risks at the landscape scale A spatially explicit modelling framework for assessing ecotoxicological risks at the landscape scale Melen Leclerc, Emily Walker, Antoine Messéan and Samuel Soubeyrand INRA IGEPP, BioSP & Eco-Innov units

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution

Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution Matthew Thomas 9 th January 07 / 0 OUTLINE Introduction Previous methods for

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Spatio-Temporal Modelling of Credit Default Data

Spatio-Temporal Modelling of Credit Default Data 1/20 Spatio-Temporal Modelling of Credit Default Data Sathyanarayan Anand Advisor: Prof. Robert Stine The Wharton School, University of Pennsylvania April 29, 2011 2/20 Outline 1 Background 2 Conditional

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava

MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS. Maya Gupta, Luca Cazzanti, and Santosh Srivastava MINIMUM EXPECTED RISK PROBABILITY ESTIMATES FOR NONPARAMETRIC NEIGHBORHOOD CLASSIFIERS Maya Gupta, Luca Cazzanti, and Santosh Srivastava University of Washington Dept. of Electrical Engineering Seattle,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle

Statistical Analysis of Spatio-temporal Point Process Data. Peter J Diggle Statistical Analysis of Spatio-temporal Point Process Data Peter J Diggle Department of Medicine, Lancaster University and Department of Biostatistics, Johns Hopkins University School of Public Health

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Kriging by Example: Regression of oceanographic data. Paris Perdikaris. Brown University, Division of Applied Mathematics

Kriging by Example: Regression of oceanographic data. Paris Perdikaris. Brown University, Division of Applied Mathematics Kriging by Example: Regression of oceanographic data Paris Perdikaris Brown University, Division of Applied Mathematics! January, 0 Sea Grant College Program Massachusetts Institute of Technology Cambridge,

More information

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl.

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl. Risk-Informed Safety Margin Characterization Uncertainty Quantification and Validation Using RAVEN https://lwrs.inl.gov A. Alfonsi, C. Rabiti North Carolina State University, Raleigh 06/28/2017 Assumptions

More information

Quasi-likelihood Scan Statistics for Detection of

Quasi-likelihood Scan Statistics for Detection of for Quasi-likelihood for Division of Biostatistics and Bioinformatics, National Health Research Institutes & Department of Mathematics, National Chung Cheng University 17 December 2011 1 / 25 Outline for

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES

A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES A STATISTICAL TECHNIQUE FOR MODELLING NON-STATIONARY SPATIAL PROCESSES JOHN STEPHENSON 1, CHRIS HOLMES, KERRY GALLAGHER 1 and ALEXANDRE PINTORE 1 Dept. Earth Science and Engineering, Imperial College,

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information

Probabilistic assessment of danger zones using a surrogate model of CFD simulations

Probabilistic assessment of danger zones using a surrogate model of CFD simulations HARMO 17 17 th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Probabilistic assessment of danger zones using a surrogate model of CFD simulations

More information

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAWS -PART II

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAWS -PART II BME SUDIES OF SOCHASIC DIFFERENIAL EQUAIONS REPRESENING PHYSICAL LAWS -PAR II M.L. Serre and G. Christakos Environmental Modelling Program, Department of Environmental Sciences & Engineering School of

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Estimation of Operational Risk Capital Charge under Parameter Uncertainty

Estimation of Operational Risk Capital Charge under Parameter Uncertainty Estimation of Operational Risk Capital Charge under Parameter Uncertainty Pavel V. Shevchenko Principal Research Scientist, CSIRO Mathematical and Information Sciences, Sydney, Locked Bag 17, North Ryde,

More information

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling

Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Bayesian SAE using Complex Survey Data Lecture 4A: Hierarchical Spatial Bayes Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 37 Lecture Content Motivation

More information

Some Topics in Convolution-Based Spatial Modeling

Some Topics in Convolution-Based Spatial Modeling Some Topics in Convolution-Based Spatial Modeling Catherine A. Calder 1 and Noel Cressie Department of Statistics The Ohio State University 1958 Neil Ave. Columbus, OH 43210 USA Appears in the Proceedings

More information

Wrapped Gaussian processes: a short review and some new results

Wrapped Gaussian processes: a short review and some new results Wrapped Gaussian processes: a short review and some new results Giovanna Jona Lasinio 1, Gianluca Mastrantonio 2 and Alan Gelfand 3 1-Università Sapienza di Roma 2- Università RomaTRE 3- Duke University

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking György Terdik and Subba Rao Tata UofD, HU & UofM, UK January 30, 2015 Laboratoire

More information

Spatial Regression for Marked Point Processes

Spatial Regression for Marked Point Processes BAYESIAN STATISTICS 6, pp. 000 000 J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (Eds.) Oxford University Press, 1998 Spatial Regression for Marked Point Processes KATJA ICKSTADT and ROBERT

More information

Ornstein-Uhlenbeck processes for geophysical data analysis

Ornstein-Uhlenbeck processes for geophysical data analysis Ornstein-Uhlenbeck processes for geophysical data analysis Semere Habtemicael Department of Mathematics North Dakota State University May 19, 2014 Outline 1 Introduction 2 Model 3 Characteristic function

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models

Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Environmentrics 00, 1 12 DOI: 10.1002/env.XXXX Comparing Non-informative Priors for Estimation and Prediction in Spatial Models Regina Wu a and Cari G. Kaufman a Summary: Fitting a Bayesian model to spatial

More information

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Sahar Z Zangeneh Robert W. Keener Roderick J.A. Little Abstract In Probability proportional

More information

A Spatio-Temporal Point Process Model for Ambulance Demand

A Spatio-Temporal Point Process Model for Ambulance Demand A Spatio-Temporal Point Process Model for Ambulance Demand David S. Matteson Department of Statistical Science Department of Social Statistics Cornell University matteson@cornell.edu http://www.stat.cornell.edu/~matteson/

More information

Statistical Ecology with Gaussian Processes

Statistical Ecology with Gaussian Processes Statistical Ecology with Gaussian Processes 5.6.2017 Machine Learning Coffee Seminar, University of Helsinki Jarno Vanhatalo Department of Mathematics and Statistics and Department of Biosciences University

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Bayesian Inference for the Multivariate Normal

Bayesian Inference for the Multivariate Normal Bayesian Inference for the Multivariate Normal Will Penny Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK. November 28, 2014 Abstract Bayesian inference for the multivariate

More information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information

Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information p. 1/27 Analysis of Marked Point Patterns with Spatial and Non-spatial Covariate Information Shengde Liang, Bradley

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Hyperparameter estimation in Dirichlet process mixture models

Hyperparameter estimation in Dirichlet process mixture models Hyperparameter estimation in Dirichlet process mixture models By MIKE WEST Institute of Statistics and Decision Sciences Duke University, Durham NC 27706, USA. SUMMARY In Bayesian density estimation and

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

Rate Maps and Smoothing

Rate Maps and Smoothing Rate Maps and Smoothing Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Mapping Rates Risk

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Spatio-Temporal Models for Areal Data

Spatio-Temporal Models for Areal Data Spatio-Temporal Models for Areal Data Juan C. Vivar (jcvivar@dme.ufrj.br) and Marco A. R. Ferreira (marco@im.ufrj.br) Departamento de Métodos Estatísticos - IM Universidade Federal do Rio de Janeiro (UFRJ)

More information

An Introduction to Gaussian Processes for Spatial Data (Predictions!)

An Introduction to Gaussian Processes for Spatial Data (Predictions!) An Introduction to Gaussian Processes for Spatial Data (Predictions!) Matthew Kupilik College of Engineering Seminar Series Nov 216 Matthew Kupilik UAA GP for Spatial Data Nov 216 1 / 35 Why? When evidence

More information

Modelling Operational Risk Using Bayesian Inference

Modelling Operational Risk Using Bayesian Inference Pavel V. Shevchenko Modelling Operational Risk Using Bayesian Inference 4y Springer 1 Operational Risk and Basel II 1 1.1 Introduction to Operational Risk 1 1.2 Defining Operational Risk 4 1.3 Basel II

More information

Modeling Spatial Dependence and Spatial Heterogeneity in. County Yield Forecasting Models

Modeling Spatial Dependence and Spatial Heterogeneity in. County Yield Forecasting Models Modeling Spatial Dependence and Spatial Heterogeneity in County Yield Forecasting Models August 1, 2000 AAEA Conference Tampa, Summer 2000 Session 8 Cassandra DiRienzo Paul Fackler Barry K. Goodwin North

More information

A spatial causal analysis of wildfire-contributed PM 2.5 using numerical model output. Brian Reich, NC State

A spatial causal analysis of wildfire-contributed PM 2.5 using numerical model output. Brian Reich, NC State A spatial causal analysis of wildfire-contributed PM 2.5 using numerical model output Brian Reich, NC State Workshop on Causal Adjustment in the Presence of Spatial Dependence June 11-13, 2018 Brian Reich,

More information

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Modeling Sub-Visible Particle Data Product Held at Accelerated Stability Conditions José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013 Outline Sub-Visible Particle (SbVP) Poisson Negative Binomial

More information

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Spatio-temporal modeling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique Katie Colborn, PhD Department of Biostatistics and Informatics University of Colorado

More information

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016 Spatial Statistics Spatial Examples More Spatial Statistics with Image Analysis Johan Lindström 1 1 Mathematical Statistics Centre for Mathematical Sciences Lund University Lund October 6, 2016 Johan Lindström

More information

Multi-resolution models for large data sets

Multi-resolution models for large data sets Multi-resolution models for large data sets Douglas Nychka, National Center for Atmospheric Research National Science Foundation NORDSTAT, Umeå, June, 2012 Credits Steve Sain, NCAR Tia LeRud, UC Davis

More information

1 Isotropic Covariance Functions

1 Isotropic Covariance Functions 1 Isotropic Covariance Functions Let {Z(s)} be a Gaussian process on, ie, a collection of jointly normal random variables Z(s) associated with n-dimensional locations s The joint distribution of {Z(s)}

More information

Optimisation séquentielle et application au design

Optimisation séquentielle et application au design Optimisation séquentielle et application au design d expériences Nicolas Vayatis Séminaire Aristote, Ecole Polytechnique - 23 octobre 2014 Joint work with Emile Contal (computer scientist, PhD student)

More information

Statistics 352: Spatial statistics. Jonathan Taylor. Department of Statistics. Models for discrete data. Stanford University.

Statistics 352: Spatial statistics. Jonathan Taylor. Department of Statistics. Models for discrete data. Stanford University. 352: 352: Models for discrete data April 28, 2009 1 / 33 Models for discrete data 352: Outline Dependent discrete data. Image data (binary). Ising models. Simulation: Gibbs sampling. Denoising. 2 / 33

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information