Optimisation séquentielle et application au design

Size: px
Start display at page:

Download "Optimisation séquentielle et application au design"

Transcription

1 Optimisation séquentielle et application au design d expériences Nicolas Vayatis Séminaire Aristote, Ecole Polytechnique - 23 octobre 2014

2 Joint work with Emile Contal (computer scientist, PhD student) and: David Buffoni Computer scientist, postdoc researcher Vianney Perchet Mathematician, maître de conférences, Université Paris-Diderot Alexandre Robicquet Undergraduate student in applied mathematics Themistoklis Stefanakis Civil engineer, PhD in Fluid Mechanics at CMLA and tsunami experts: Frédéric Dias Professor, School of Mathematical Sciences, University College Dublin Costas Synolakis Professor, Department of Civil and Environmental Engineering, University of California San Diego

3 Tsunamis Amplification Phenomena Numerical simulations of a tsunami amplification generated by a conical island

4 Setup: sequential and batch-sequential optimization Gaussian Process setup Two novel algorithms for sequential optimization Regret bounds Numerical experiments

5 Problem statement Optimization of an unknown function Parameter space X R d compact and convex Unknown objective function f (x) R for all x X Noisy measurement y = f (x) + ɛ, where ɛ iid N (0, η 2 ) Find the parameter vector x maximizing f (x) Sequential setup and performance metric Queries x 1, x 2,... and feedback y 1, y 2,... Goal: minimize cumulative regret after T iterations: T ( ) R T = f (x ) f (x t ) t=1

6 Problem statement Optimization of an unknown function Parameter space X R d compact and convex Unknown objective function f (x) R for all x X Noisy measurement y = f (x) + ɛ, where ɛ iid N (0, η 2 ) Find the parameter vector x maximizing f (x) Batch-Sequential setup and performance metric Batch queries {x 1 t,..., x K t } and batch feedback {y 1 t,..., y K t } at each t Goal: minimize cumulative regret after T iterations: T ( ) R T = f (x ) max f (x t k ) 1 k K t=1

7 Constraints Challenges Large number of parameters High level of noise Expensive evaluations Cope with nonconcave functions: exploration vs. exploitation Example: Tsunamis 5 parameters Each simulation takes 2 hours of computation A regular grid with 10 values per parameters needs 10 5 points A naive approach would take 23 years of computation

8 Sequential Optimization 1 x 5? objective 0 1 (x 3, y 3) (x 4, y 4) (x 1, y 1) 2 (x 2, y 2) parameter

9 Sequential Optimization 1 x 5? objective 0 1 (x 3, y 3) (x 4, y 4) (x 1, y 1) 2 (x 2, y 2) parameter

10 Batch-Sequential Optimization 1 objective 0 1 x5 1? x 5 2? x 5 3? (x 4, y 4) (x 3, y 3) (x 1, y 1) 2 (x 2, y 2) parameter

11 Main Approaches to Query Selection Experimental design [Fedorov, 1972]... Bayesian optimization (BO) [Moore and Schneider, 1995][Srinivas et al., 2010]... Active learning [Carpentier et al., 2011] [Chen and Krause, 2013] Multiarmed bandits [Auer, 2002] [Audibert et al., 2011]...

12 Classical Strategies for Query Selection in BO Maximum Mean (MM) or PMAX [Moore and Schneider, 1995] Maximum Upper Interval (MUI) or IEMAX [Moore and Schneider, 1995] Maximum Probability of Improvement (MPI) [Mockus, 1989] Maximum Expected Improvement (MEI) [Jones et al., 1998] [Locatelli, 1997] Gaussian Process Upper Confidence Bound (GP-UCB) [Cox and John, 1997] [Auer, 2002], [Srinivas et al., 2010], [Desautels et al., 2012]

13 Setup: sequential and batch-sequential optimization Gaussian Process setup Two novel algorithms for sequential optimization Regret bounds Numerical experiments

14 Gaussian Processes Framework Definition f GP(m, k), with mean function m : X R and covariance function k : X X R +, when for all x 1,..., x n, ( f (x1 ),..., f (x n ) ) N (µ, C), with µ[x i ] = m(x i ) and C[x i, x j ] = k(x i, x j ). Probabilistic smoothness assumption Nearby location are highly correlated Large local variation have low probability

15 Typical Kernels Polynomial with degree α N: for c R x 1, x 2, k(x 1, x 2 ) = (x T 1 x 2 + c) α Radial Basis Function with length-scale parameter b > 0: x 1, x 2, k(x 1, x 2 ) = exp ( x 1 x 2 2 ) 2b 2 Matérn with length-scale b > 0 and order ν: ( ) x 1, x 2, k(x 1, x 2 ) = 21 ν Γ(ν) Φ 2ν x1 x 2 ν b where Φ ν (z) = z ν K ν (z) and K ν is a Bessel function of the second kind with order ν.

16 Gaussian Processes Examples 1D Gaussian Processes with different covariance functions

17 Gaussian Process Interpolation Bayesian Inference [Rasmussen and Williams, 2006] At iteration t, with observations Y t for the query points X t, the posterior mean and variances are given at all point x in the search space by: µ t (x) = k t (x) C 1 t Y t (1) σ 2 t (x) = k(x, x) k t (x) C 1 t k t (x), (2) where C t = K t + η 2 I, and k t (x) = [k(x τ, x)] 1 τ t, and K t = [k(x τ, x τ )] 1 τ,τ t. Interpretation posterior mean µ t : prediction posterior variance σ 2 t : uncertainty

18 Example: Bayesian inference with 4 observations

19 Mutual Information An Important Ingredient Information Gain The information gain on f at X T is the mutual information between f and Y T. For a GP distribution with K T the kernel matrix of X T : I T (X T ) = 1 2 log det(i + η 2 K T ). We define γ T = max X =T I T (X ) the maximum information gain by a sequence of T queries points. Empirical Lower Bound For GPs with bounded variance, we have: [Srinivas et al. 2012] T γ T = σt 2 2 (x t ) Cγ T where C = log(1 + η 2 ) t=1

20 Mutual Information Examples The parameter γ T is the maximum mutual information about f obtainable by a sequence of T queries. Linear kernel: γ T = O(d log T ) RBF kernel: γ T = O ( (log T ) d+1) Matérn kernel: where α = γ T = O ( T α log T ), d(d + 1) 2ν + d(d + 1) 1.

21 Setup: sequential and batch-sequential optimization Gaussian Process setup Two novel algorithms for sequential optimization Regret bounds Numerical experiments

22 Upper and Lower Confidence Bounds Definition Fix 0 < δ < 1, and consider upper/lower confidence bounds on f : defined in f + Property (Srinivas, 2012) t (x) = µ t (x) + ft (x) = µ t (x) β t σt 2 (x) β t σt 2 (x) Fix δ > 0. With the choice β t (δ) = O ( log(t/δ) ), we have: x X, t 1, f (x) [ ft (x), f t + (x) ], with probability at least (1 δ).

23 Relevant Region R t Definition The Relevant Region R t is defined by, y t = max t (x), { } R t = x X f t + (x) y t. x X f Property We have: x R t, with probability at least (1 δ).

24 Relevant Region R t

25 Upper Confidence Bound and Pure Exploration UCB policy: k = 1 Achieves tradeoff between exploitation vs. exploration (µ t vs. σ 2 t ): where R + t = xt+1 1 argmax x R + t { x X µ t (x) + 2 f t + (x) β t σ 2 t (x) y t PE policy: k = 2,..., K Selects the most uncertain points inside the Relevant Region: xt+1 k argmax σ (k) t (x), for 2 k K, x R + t where σ (k) t (x) is the updated uncertainty using xt+1 1,..., x t+1 k 1 }

26 Algorithm 1: GP-UCB-PE β t slowly increasing for t = 1, 2,... do Compute µ t and σ 2 t with Bayesian inference on y 1 1,..., y K t 1 Compute R + t x 1 t+1 argmax x R + t for k = 2,..., K do Update σ (k) t x k t+1 argmax x R + t Query x 1 t+1,..., x K t+1 Observe y 1 t+1,..., y K t+1 f t + (x) σ (k) t (x)

27 The GP-UCB-PE algorithm [Contal et al., 2013] 1 x

28 The GP-UCB-PE algorithm [Contal et al., 2013] 1 0 x 1 x

29 GP-MI A Novel Algorithm for Sequential Optimization Algorithm 2: GP-MI γ 0 0, α fixed for t = 1, 2,... do Compute µ t and σt 2 using Bayesian inference φ t (x) α ( σ 2t (x) + γ t 1 γ ) t 1 x t argmax x X µ t (x) + φ t (x) γ t γ t 1 + σ 2 t (x t ) Query at x t and observe y t

30 Setup: sequential and batch-sequential optimization Gaussian Process setup Two novel algorithms for sequential optimization Regret bounds Numerical experiments

31 Regret bound on GP-UCB-PE General result Consider f GP(0, k) with k(x, x) 1 for all x, then we have, with probability at least (1 δ): R K T = O ( (T K ) ) γ TK log T Specialized results Linear kernel: RT (log(tk) K = O ) dt /K ( RBF kernel: RT K = O (T /K) ( log(tk) ) ) d+2 Matérn kernel: R K T = O ( log(tk) T α+1 K α 1 )

32 Two Competitors for Batch Strategies GP-BUCB = GP Batch UCB [Desautels et al., 2012] Batch estimation based on updates µ k t (x) of µ t (x) Regret bound with RBF kernel due to initialization: ( ( (2d ) ) d (T O exp e K ) ) log(tk) SM-UCB = Simulation Matching with UCB [Azimi et al., 2010] Select batch of points that matches expected behavior Based on a greedy K-medoid algorithm to screen irrelevant data points No regret bound available

33 Regret bound for GP-MI General result Consider f GP(0, k) with k(x, x) 1 for all x, then we have, with probability at least (1 δ): ( ) ( ) 2 2 R T 5 Cγ T log + 4 log δ δ where C = 2 log(1+η 2 ). Specialized results For linear kernel: R T = O( d log T ) For RBF kernel: R T = O ( (log T ) d+1) For Matérn kernel: R T = O ( T α log T ),

34 Setup: sequential and batch-sequential optimization Gaussian Process setup Two novel algorithms for sequential optimization Regret bounds Numerical experiments

35 Experiments Competitors for batch-sequential: GP-BUCB and SM-UCB Competitors for sequential: GP-UCB and GP-EI Assessment: synthetic problems and real-data benchmarks (a) Himmelblau s function (b) Gaussian Mixture

36 Numerical results for sequential-batch strategy GP-UCB-PE Regret r K t Iteration t GP-BUCB SM-UCB GP-UCB-PE (a) Generated GP Iteration t (b) Himmelblau Iteration t (c) Gaussian mixture Regret r K t Iteration t Iteration t Iteration t (d) Mackey-Glass (e) Tsunamis (f) Abalone

37 Numerical results for sequential strategy GP-MI UCB EI MI (g) Generated GP (d = 4) UCB 1 EI 0.5 MI (h) Himmelblau RT /T EI UCB 0.5 MI ,000 (i) Gaussian mixture UCB 0.2 EI 0.1 MI ,000 RT /T MI EI UCB RT /T UCB EI MI (j) Mackey-Glass (k) Tsunamis (l) Branin

38 Conclusion 1/2 GP-UCB-PE and GP-MI Generic sequential optimization methods Good theoretical guarantees for cumulative regret - what about simple regret? Efficient in practice Easy to implement Matlab source code online at:

39 Conclusion 2/2 Further developments In progress: Nonparametric approach (active learning) In progress: Application to other fields and to multiobjective optimization Automotive industry Wind power-based energy plants Challenge: how to set physical priors in the design space?

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Emile Contal David Buffoni Alexandre Robicquet Nicolas Vayatis CMLA, ENS Cachan, France September 25, 2013 Motivating

More information

Gaussian Process Optimization with Mutual Information

Gaussian Process Optimization with Mutual Information Gaussian Process Optimization with Mutual Information Emile Contal 1 Vianney Perchet 2 Nicolas Vayatis 1 1 CMLA Ecole Normale Suprieure de Cachan & CNRS, France 2 LPMA Université Paris Diderot & CNRS,

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

arxiv: v3 [stat.ml] 8 Jun 2015

arxiv: v3 [stat.ml] 8 Jun 2015 Gaussian Process Optimization with Mutual Information arxiv:1311.485v3 [stat.ml] 8 Jun 15 Emile Contal 1, Vianney Perchet, and Nicolas Vayatis 1 1 CMLA, UMR CNRS 8536, ENS Cachan, France LPMA, Université

More information

Quantifying mismatch in Bayesian optimization

Quantifying mismatch in Bayesian optimization Quantifying mismatch in Bayesian optimization Eric Schulz University College London e.schulz@cs.ucl.ac.uk Maarten Speekenbrink University College London m.speekenbrink@ucl.ac.uk José Miguel Hernández-Lobato

More information

Talk on Bayesian Optimization

Talk on Bayesian Optimization Talk on Bayesian Optimization Jungtaek Kim (jtkim@postech.ac.kr) Machine Learning Group, Department of Computer Science and Engineering, POSTECH, 77-Cheongam-ro, Nam-gu, Pohang-si 37673, Gyungsangbuk-do,

More information

Dynamic Batch Bayesian Optimization

Dynamic Batch Bayesian Optimization Dynamic Batch Bayesian Optimization Javad Azimi EECS, Oregon State University azimi@eecs.oregonstate.edu Ali Jalali ECE, University of Texas at Austin alij@mail.utexas.edu Xiaoli Fern EECS, Oregon State

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Parallelised Bayesian Optimisation via Thompson Sampling

Parallelised Bayesian Optimisation via Thompson Sampling Parallelised Bayesian Optimisation via Thompson Sampling Kirthevasan Kandasamy Carnegie Mellon University Google Research, Mountain View, CA Sep 27, 2017 Slides: www.cs.cmu.edu/~kkandasa/talks/google-ts-slides.pdf

More information

Predictive Variance Reduction Search

Predictive Variance Reduction Search Predictive Variance Reduction Search Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh Centre of Pattern Recognition and Data Analytics (PRaDA), Deakin University Email: v.nguyen@deakin.edu.au

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

KNOWLEDGE GRADIENT METHODS FOR BAYESIAN OPTIMIZATION

KNOWLEDGE GRADIENT METHODS FOR BAYESIAN OPTIMIZATION KNOWLEDGE GRADIENT METHODS FOR BAYESIAN OPTIMIZATION A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Batch Bayesian Optimization via Simulation Matching

Batch Bayesian Optimization via Simulation Matching Batch Bayesian Optimization via Simulation Matching Javad Azimi, Alan Fern, Xiaoli Z. Fern School of EECS, Oregon State University {azimi, afern, xfern}@eecs.oregonstate.edu Abstract Bayesian optimization

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

arxiv: v1 [stat.ml] 24 Oct 2016

arxiv: v1 [stat.ml] 24 Oct 2016 Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation arxiv:6.7379v [stat.ml] 4 Oct 6 Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher Laboratory

More information

arxiv: v4 [cs.lg] 9 Jun 2010

arxiv: v4 [cs.lg] 9 Jun 2010 Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design arxiv:912.3995v4 [cs.lg] 9 Jun 21 Niranjan Srinivas California Institute of Technology niranjan@caltech.edu Sham M.

More information

Contextual Gaussian Process Bandit Optimization

Contextual Gaussian Process Bandit Optimization Contextual Gaussian Process Bandit Optimization Andreas Krause Cheng Soon Ong Department of Computer Science, ETH Zurich, 89 Zurich, Switzerland krausea@ethz.ch chengsoon.ong@inf.ethz.ch Abstract How should

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Research Collection. Active Learning for Level Set Estimation. Master Thesis. ETH Library. Author(s): Gotovos, Alkis. Publication Date: 2013

Research Collection. Active Learning for Level Set Estimation. Master Thesis. ETH Library. Author(s): Gotovos, Alkis. Publication Date: 2013 Research Collection Master Thesis Active Learning for Level Set Estimation Author(s): Gotovos, Alkis Publication Date: 213 Permanent Link: https://doiorg/13929/ethz-a-9767767 Rights / License: In Copyright

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models

High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models Chun-Liang Li Kirthevasan Kandasamy Barnabás Póczos Jeff Schneider {chunlial, kandasamy, bapoczos, schneide}@cs.cmu.edu Carnegie

More information

Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation

Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher Laboratory for Information and Inference

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting)

Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting) Advanced Machine Learning Practical 4b Solution: Regression (BLR, GPR & Gradient Boosting) Professor: Aude Billard Assistants: Nadia Figueroa, Ilaria Lauzana and Brice Platerrier E-mails: aude.billard@epfl.ch,

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Probabilistic Regression Using Basis Function Models

Probabilistic Regression Using Basis Function Models Probabilistic Regression Using Basis Function Models Gregory Z. Grudic Department of Computer Science University of Colorado, Boulder grudic@cs.colorado.edu Abstract Our goal is to accurately estimate

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Robust Monte Carlo Methods for Sequential Planning and Decision Making

Robust Monte Carlo Methods for Sequential Planning and Decision Making Robust Monte Carlo Methods for Sequential Planning and Decision Making Sue Zheng, Jason Pacheco, & John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory

More information

Bayesian optimization for automatic machine learning

Bayesian optimization for automatic machine learning Bayesian optimization for automatic machine learning Matthew W. Ho man based o work with J. M. Hernández-Lobato, M. Gelbart, B. Shahriari, and others! University of Cambridge July 11, 2015 Black-bo optimization

More information

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Master s Thesis Presentation Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master s Thesis Presentation

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Robustness in GANs and in Black-box Optimization

Robustness in GANs and in Black-box Optimization Robustness in GANs and in Black-box Optimization Stefanie Jegelka MIT CSAIL joint work with Zhi Xu, Chengtao Li, Ilija Bogunovic, Jonathan Scarlett and Volkan Cevher Robustness in ML noise Generator Critic

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

arxiv: v3 [stat.ml] 7 Feb 2018

arxiv: v3 [stat.ml] 7 Feb 2018 Bayesian Optimization with Gradients Jian Wu Matthias Poloczek Andrew Gordon Wilson Peter I. Frazier Cornell University, University of Arizona arxiv:703.04389v3 stat.ml 7 Feb 08 Abstract Bayesian optimization

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Bayesian Linear Regression. Sargur Srihari

Bayesian Linear Regression. Sargur Srihari Bayesian Linear Regression Sargur srihari@cedar.buffalo.edu Topics in Bayesian Regression Recall Max Likelihood Linear Regression Parameter Distribution Predictive Distribution Equivalent Kernel 2 Linear

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Why experimenters should not randomize, and what they should do instead

Why experimenters should not randomize, and what they should do instead Why experimenters should not randomize, and what they should do instead Maximilian Kasy Department of Economics, Harvard University Maximilian Kasy (Harvard) Experimental design 1 / 42 project STAR Introduction

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation COMP 55 Applied Machine Learning Lecture 2: Bayesian optimisation Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp55 Unless otherwise noted, all material posted

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Global Optimisation with Gaussian Processes. Michael A. Osborne Machine Learning Research Group Department o Engineering Science University o Oxford

Global Optimisation with Gaussian Processes. Michael A. Osborne Machine Learning Research Group Department o Engineering Science University o Oxford Global Optimisation with Gaussian Processes Michael A. Osborne Machine Learning Research Group Department o Engineering Science University o Oxford Global optimisation considers objective functions that

More information

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, 2016

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

A General Framework for Constrained Bayesian Optimization using Information-based Search

A General Framework for Constrained Bayesian Optimization using Information-based Search Journal of Machine Learning Research 17 (2016) 1-53 Submitted 12/15; Revised 4/16; Published 9/16 A General Framework for Constrained Bayesian Optimization using Information-based Search José Miguel Hernández-Lobato

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations

Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Physician Performance Assessment / Spatial Inference of Pollutant Concentrations Dawn Woodard Operations Research & Information Engineering Cornell University Johns Hopkins Dept. of Biostatistics, April

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Myopic Policies for Budgeted Optimization with Constrained Experiments

Myopic Policies for Budgeted Optimization with Constrained Experiments Myopic Policies for Budgeted Optimization with Constrained Experiments Javad Azami and Xiaoli Fern and Alan Fern School of Electrical Engineering and Computer Science, Oregon State University Elizabeth

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

When Gaussian Processes Meet Combinatorial Bandits: GCB

When Gaussian Processes Meet Combinatorial Bandits: GCB European Workshop on Reinforcement Learning 14 018 October 018, Lille, France. When Gaussian Processes Meet Combinatorial Bandits: GCB Guglielmo Maria Accabi Francesco Trovò Alessandro Nuara Nicola Gatti

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Profile-Based Bandit with Unknown Profiles

Profile-Based Bandit with Unknown Profiles Journal of Machine Learning Research 9 (208) -40 Submitted /7; Revised 6/8; Published 9/8 Profile-Based Bandit with Unknown Profiles Sylvain Lamprier sylvain.lamprier@lip6.fr Sorbonne Universités, UPMC

More information

Relevance Vector Machines for Earthquake Response Spectra

Relevance Vector Machines for Earthquake Response Spectra 2012 2011 American American Transactions Transactions on on Engineering Engineering & Applied Applied Sciences Sciences. American Transactions on Engineering & Applied Sciences http://tuengr.com/ateas

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

How to build an automatic statistician

How to build an automatic statistician How to build an automatic statistician James Robert Lloyd 1, David Duvenaud 1, Roger Grosse 2, Joshua Tenenbaum 2, Zoubin Ghahramani 1 1: Department of Engineering, University of Cambridge, UK 2: Massachusetts

More information

Constrained Bayesian Optimization and Applications

Constrained Bayesian Optimization and Applications Constrained Bayesian Optimization and Applications The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gelbart, Michael

More information