Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Size: px
Start display at page:

Download "Stratégies bayésiennes et fréquentistes dans un modèle de bandit"

Transcription

1 Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

2 The multi-armed bandit model K arms = K probability distributions (ν a has mean µ a ) ν 1 ν 2 ν 3 ν 4 ν 5 At round t, an agent: chooses an arm A t observes a sample X t ν At using a sequential sampling strategy (A t ): A t+1 = F t (A 1, X 1,..., A t, X t ). Generic goal: learn the best arm, a = argmax a µ a

3 Regret minimization in a bandit model Samples = rewards, (A t ) is adjusted to maximize the (expected) sum of rewards, [ T ] E X t t=1 or equivalently minimize the regret: [ ] T R T = E T µ X t t=1 µ = µ a = max µ a a Exploration/Exploitation tradeoff

4 Modern motivation: recommendation tasks ν 1 ν 2 ν 3 ν 4 ν 5 For the t-th visitor of a website, recommend a movie A t observe a rating X t ν At (e.g. X t {1,..., 5}) Goal: maximize the sum of ratings

5 Back to the initial motivation: clinical trials B(µ 1 ) B(µ 2 ) B(µ 3 ) B(µ 4 ) B(µ 5 ) For the t-th patient in a clinical study, chooses a treatment A t observes a response X t {0, 1}: P(X t = 1) = µ At Goal: maximize the number of patient healed during the study

6 Back to the initial motivation: clinical trials B(µ 1 ) B(µ 2 ) B(µ 3 ) B(µ 4 ) B(µ 5 ) For the t-th patient in a clinical study, chooses a treatment A t observes a response X t {0, 1}: P(X t = 1) = µ At Goal: maximize the number of patient healed during the study Alternative goal: allocate the treatments so as to identify as quickly as possible the best treatment (no focus on curing patients during the study)

7 Two bandit problems Regret minimization Best arm identification sampling rule (A t ) Bandit sampling rule (A t ) stopping rule τ algorithm recommendation rule â τ Input horizon T risk parameter δ [ minimize ensure P(â τ = a ) 1 δ Objective R T = E µ T ] T t=1 X t and minimize E[τ] Exploration/Exploitation pure Exploration Goal: find efficient, optimal algorithms for both objectives In the presentation, we focus on Bernoulli bandit models µ = (µ 1,..., µ K )

8 Outline 1 Asymptotically optimal algorithms for regret minimization 2 A Bayesian approach for regret minimization Bayes-UCB Thompson Sampling 3 Optimal algorithms for Best Arm Identification

9 Outline 1 Asymptotically optimal algorithms for regret minimization 2 A Bayesian approach for regret minimization Bayes-UCB Thompson Sampling 3 Optimal algorithms for Best Arm Identification

10 Optimal algorithms for regret minimization µ = (µ 1,..., µ K ). N a (t) : number of draws of arm a up to time t [ T ] K R µ (A, T ) = µ T E µ X t = (µ µ a )E µ [N a (T )] t=1 Notation: Kullback-Leibler divergence d(µ, µ ) := KL ( B(µ), B(µ ) ) a=1 = µ log(µ/µ ) + (1 µ) log((1 µ)/(1 µ )) [Lai and Robbins, 1985]: for uniformly efficient algorithms, µ a < µ lim inf T E µ [N a (T )] log T 1 d(µ a, µ ) A bandit algorithm is asymptotically optimal if, for every µ, µ a < µ E µ [N a (T )] 1 lim sup T log T d(µ a, µ )

11 Algorithms: naive ideas Idea 1 : Choose each arm T /K times EXPLORATION Idea 2 : Always choose the best arm so far EXPLOITATION A t+1 = argmax a ˆµ a (t)...linear regret

12 Algorithms: naive ideas Idea 1 : Choose each arm T /K times EXPLORATION Idea 2 : Always choose the best arm so far EXPLOITATION A t+1 = argmax a ˆµ a (t)...linear regret Idea 3 : First explore the arms uniformly, then commit to the empirical best until the end EXPLORATION followed by EXPLOITATION...Still sub-optimal

13 Mixing Exploration and Exploitation: the UCB approach I a (t) = [LCB a (t), UCB a (t)] a confidence interval on µ a, based on observation up to round t. A UCB-type (or optimistic) algorithm chooses at round t A t+1 = argmax a=1...k UCB a (t).

14 Mixing Exploration and Exploitation: the UCB approach I a (t) = [LCB a (t), UCB a (t)] a confidence interval on µ a, based on observation up to round t. A UCB-type (or optimistic) algorithm chooses at round t A t+1 = argmax a=1...k UCB a (t). How to choose the Upper Confidence Bounds? use appropriate deviation inequalities in order to guarantee that P(µ a UCB a (t)) 1 t 1

15 The KL-UCB algorithm ˆµ a (t): empirical mean of rewards from arm a up to time t. A deviation inequality involving the KL-divergence: P (N a (t)d(ˆµ a (t), µ a ) γ) 2e(log(t) + 1)γe γ The KL-UCB algorithm: A t+1 = arg max a { u a (t) := max q : d (ˆµ a (t), q) u a (t) with log(t) + c log log(t) N a (t) d(µ a (t),q) }, log(t)/n a (t) µ a (t) [ ] u a (t) q [Cappé et al. 13]: KL-UCB satisfies, for c 5, E µ [N a (T )] 1 d(µ a, µ ) log T + O( log(t )).

16 Outline 1 Asymptotically optimal algorithms for regret minimization 2 A Bayesian approach for regret minimization Bayes-UCB Thompson Sampling 3 Optimal algorithms for Best Arm Identification

17 A frequentist or a Bayesian model? µ = (µ 1,..., µ K ). Two probabilistic modelings Frequentist model Bayesian model µ 1,..., µ K µ 1,..., µ K drawn from a unknown parameters prior distribution : µ a π a arm a: (Y a,s ) s i.i.d. B(µ a ) The regret can be computed in each case arm a: (Y a,s ) s µ i.i.d. B(µ a ) Frequentist regret (regret) [ T ] R T (A, µ)= E µ t=1 (µ µ At ) Bayesian regret (Bayes risk) [ T ] R T (A, π)= E µ π t=1 (µ µ At ) = R T (A, µ)dπ(µ)

18 Frequentist and Bayesian algorithms Two types of tools to build bandit algorithms: Frequentist tools MLE estimators of the means Confidence Intervals Bayesian tools Posterior distributions πa t = L(µ a X a,1,..., X a,na(t)) One can separate tools and objective: We present efficient Bayesian algorithms for regret minimization

19 Outline 1 Asymptotically optimal algorithms for regret minimization 2 A Bayesian approach for regret minimization Bayes-UCB Thompson Sampling 3 Optimal algorithms for Best Arm Identification

20 The Bayes-UCB algorithm π t a the posterior distribution over µ a at the end of round t. Algorithm: Bayes-UCB [K., Cappé, Garivier 2012] ( Q 1 A t+1 = argmax a 1 t(log t) c, πt a where Q(α, p) is the quantile of order α of the distribution p. ) Bernoulli reward with uniform prior: π 0 a i.i.d U([0, 1]) = Beta(1, 1) π t a = Beta(S a (t) + 1, N a (t) S a (t) + 1)

21 Bayes-UCB in practice

22 Theoretical results Bayes-UCB is asymptotically optimal Theorem [K.,Cappé,Garivier 2012] Let ɛ > 0. The Bayes-UCB algorithm using a uniform prior over the arms and parameter c 5 satisfies E µ [N a (T )] 1 + ɛ d(µ a, µ ) log(t ) + o ɛ,c (log(t )).

23 Links to a frequentist algorithm Bayes-UCB index is close to KL-UCB indices: Lemma with: u a (t) = max ũ a (t) = max q : d { q : d (ˆµ a (t), q) ũ a (t) q a (t) u a (t) ( ) Na (t)ˆµ a (t) log N a (t) + 1, q } log(t) + c log log(t) N a (t) ( ) + c log log(t) t N a(t)+2 (N a (t) + 1) Bayes-UCB automatically builds confidence intervals based on the Kullback-Leibler divergence!

24 Where does it come from? We have a tight bound on the tail of posterior distributions (Beta distributions) First element: link between Beta and Binomial distribution: P(X a,b x) = P(S a+b 1,1 x b) Second element: Sanov inequalities Lemma For k > nx, e nd( k n,x) n + 1 P(S n,x k) e nd( k n,x)

25 Outline 1 Asymptotically optimal algorithms for regret minimization 2 A Bayesian approach for regret minimization Bayes-UCB Thompson Sampling 3 Optimal algorithms for Best Arm Identification

26 Thompson Sampling (π1 t,.., πt K ) posterior distribution on (µ 1,.., µ K ) at round t. Algorithm: Thompson Sampling Thompson Sampling is a randomized Bayesian algorithm: a {1..K}, θ a (t) πa t A t+1 = argmax a θ a (t) Draw each arm according to its posterior probability of being optimal the first bandit algorithm, introduced by [Thompson 1933]

27 Illustration of the algorithm θ (t) μ μ 2 θ 2 (t) Posterior distributions of the mean of arm 1 (top) and arm 2 (bottom) in a two-armed bandit model

28 Thompson Sampling is asymptotically optimal good empirical performance in complex models first logarithmic regret bound by [Agrawal and Goyal 2012] Theorem [K.,Korda,Munos 2012] For all ɛ > 0, E µ [N a (T )] 1 + ɛ d(µ a, µ ) log(t ) + o µ,ɛ(log(t )).

29 Outline 1 Asymptotically optimal algorithms for regret minimization 2 A Bayesian approach for regret minimization Bayes-UCB Thompson Sampling 3 Optimal algorithms for Best Arm Identification

30 A sample complexity lower bound A Best Arm Identification algorithm (A t, τ, â τ ) is δ-pac if µ, P µ (â τ = a (µ)) 1 δ. Theorem [Garivier and K. 2016] For any δ-pac algorithm, where T (µ) 1 = sup w Σ K E µ [τ] T (µ) log inf ( ) 1, 2.4δ {λ:a (λ) a (µ)} a=1 with Σ K = {w [0, 1] K : K i=1 w i = 1}. K w a d(µ a, λ a )

31 Optimal proportion of draws The vector w (µ) = argmax w Σ K inf {λ:a (λ) a (µ)} a=1 K w a d(µ a, λ a ) contains the optimal proportions of draws of the arms, i.e. an algorithm matching the lower bound should satisfy a {1,..., K}, E µ [N a (τ)] E µ [τ] w a (µ). Building on this notion of optimal proportions, one can exhibit an asymptotically optimal algorithm: lim δ E µ [τ δ ] log(1/δ) = T (µ).

32 Conclusion We saw two Bayesian algorithms that are good alternative to KL-UCB for regret minimization because: they are also asymptotically optimal in simple models they display better empirical performance... they can be easily generalized to more complex models Algorithms for regret minimization and BAI are very different! playing mostly the best arm vs. optimal proportions different complexity terms (featuring KL-divergence) ( R T µ µ ) a d(µ a, µ log(t ) E µ [τ] T (µ) log (1/δ) ) a a

33 Merci de votre attention. Merci!

34 Bayesian algorithms in contextual linear bandit models At time t, a set of contexts D t R d is revealed. = characteristics of the items to recommend The model: if the context x t D t is selected a reward r t = x T t θ + ɛ t is received θ R d = underlying preference vector A Bayesian model: (with Gaussian prior) r t = xt T θ + ɛ t, θ N ( 0, κ 2 ) I d, ɛt N ( 0, σ 2). ) Explicit posterior: p(θ x 1, r 1,..., x t, r t ) = N (ˆθ(t), Σt. Thompson Sampling: ) θ(t) N (ˆθ(t), Σ t, and x t+1 = argmax x T θ(t). x D t+1

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

arxiv: v2 [stat.ml] 14 Nov 2016

arxiv: v2 [stat.ml] 14 Nov 2016 Journal of Machine Learning Research 6 06-4 Submitted 7/4; Revised /5; Published /6 On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models arxiv:407.4443v [stat.ml] 4 Nov 06 Emilie Kaufmann

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION Submitted to the Annals of Statistics arxiv: math.pr/0000000 KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION By Olivier Cappé 1, Aurélien Garivier 2, Odalric-Ambrym Maillard

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

arxiv: v3 [cs.lg] 7 Nov 2017

arxiv: v3 [cs.lg] 7 Nov 2017 ESAIM: PROCEEDINGS AND SURVEYS, Vol.?, 2017, 1-10 Editors: Will be set by the publisher arxiv:1702.00001v3 [cs.lg] 7 Nov 2017 LEARNING THE DISTRIBUTION WITH LARGEST MEAN: TWO BANDIT FRAMEWORKS Emilie Kaufmann

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

On the Complexity of A/B Testing

On the Complexity of A/B Testing JMLR: Workshop and Conference Proceedings vol 35:1 3, 014 On the Complexity of A/B Testing Emilie Kaufmann LTCI, Télécom ParisTech & CNRS KAUFMANN@TELECOM-PARISTECH.FR Olivier Cappé CAPPE@TELECOM-PARISTECH.FR

More information

arxiv: v3 [stat.ml] 6 Nov 2017

arxiv: v3 [stat.ml] 6 Nov 2017 On Bayesian index policies for sequential resource allocation Emilie Kaufmann arxiv:60.090v3 [stat.ml] 6 Nov 07 CNRS & Univ. Lille, UMR 989 CRIStAL, Inria SequeL emilie.kaufmann@univ-lille.fr Abstract

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search Wouter M. Koolen Machine Learning and Statistics for Structures Friday 23 rd February, 2018 Outline 1 Intro 2 Model

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Dynamic resource allocation: Bandit problems and extensions

Dynamic resource allocation: Bandit problems and extensions Dynamic resource allocation: Bandit problems and extensions Aurélien Garivier Institut de Mathématiques de Toulouse MAD Seminar, Université Toulouse 1 October 3rd, 2014 The Bandit Model Roadmap 1 The Bandit

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Monte-Carlo Tree Search by. MCTS by Best Arm Identification

Monte-Carlo Tree Search by. MCTS by Best Arm Identification Monte-Carlo Tree Search by Best Arm Identification and Wouter M. Koolen Inria Lille SequeL team CWI Machine Learning Group Inria-CWI workshop Amsterdam, September 20th, 2017 Part of...... a new Associate

More information

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Junya Honda Akimichi Takemura The University of Tokyo {honda, takemura}@stat.t.u-tokyo.ac.jp Abstract In stochastic bandit problems,

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation

Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, Gilles Stoltz To cite this version: Olivier Cappé, Aurélien

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Optimistic Bayesian Sampling in Contextual-Bandit Problems

Optimistic Bayesian Sampling in Contextual-Bandit Problems Journal of Machine Learning Research volume (2012) 2069-2106 Submitted 7/11; Revised 5/12; Published 6/12 Optimistic Bayesian Sampling in Contextual-Bandit Problems Benedict C. May School of Mathematics

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

arxiv: v4 [math.pr] 26 Aug 2013

arxiv: v4 [math.pr] 26 Aug 2013 The Annals of Statistics 2013, Vol. 41, No. 3, 1516 1541 DOI: 10.1214/13-AOS1119 c Institute of Mathematical Statistics, 2013 arxiv:1210.1136v4 [math.pr] 26 Aug 2013 KULLBACK LEIBLER UPPER CONFIDENCE BOUNDS

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Sandeep Juneja Tata Institute of Fundamental Research Mumbai, India joint work with Peter Glynn Applied

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com Navin Goyal Microsoft Research India navingo@microsoft.com Abstract The multi-armed

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conugate Priors Yichi Zhou 1 Jun Zhu 1 Jingwe Zhuo 1 Abstract Thompson sampling has impressive empirical performance for many multi-armed

More information

Anytime optimal algorithms in stochastic multi-armed bandits

Anytime optimal algorithms in stochastic multi-armed bandits Rémy Degenne LPMA, Université Paris Diderot Vianney Perchet CREST, ENSAE REMYDEGENNE@MATHUNIV-PARIS-DIDEROTFR VIANNEYPERCHET@NORMALESUPORG Abstract We introduce an anytime algorithm for stochastic multi-armed

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

An Information-Theoretic Analysis of Thompson Sampling

An Information-Theoretic Analysis of Thompson Sampling Journal of Machine Learning Research (2015) Submitted ; Published An Information-Theoretic Analysis of Thompson Sampling Daniel Russo Department of Management Science and Engineering Stanford University

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 3: RL problems, sample complexity and regret Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce the

More information

Lecture 4 January 23

Lecture 4 January 23 STAT 263/363: Experimental Design Winter 2016/17 Lecture 4 January 23 Lecturer: Art B. Owen Scribe: Zachary del Rosario 4.1 Bandits Bandits are a form of online (adaptive) experiments; i.e. samples are

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

Stat 260/CS Learning in Sequential Decision Problems.

Stat 260/CS Learning in Sequential Decision Problems. Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Exponential families. Cumulant generating function. KL-divergence. KL-UCB for an exponential

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

arxiv: v1 [cs.lg] 15 Oct 2014

arxiv: v1 [cs.lg] 15 Oct 2014 THOMPSON SAMPLING WITH THE ONLINE BOOTSTRAP By Dean Eckles and Maurits Kaptein Facebook, Inc., and Radboud University, Nijmegen arxiv:141.49v1 [cs.lg] 15 Oct 214 Thompson sampling provides a solution to

More information

On Sequential Decision Problems

On Sequential Decision Problems On Sequential Decision Problems Aurélien Garivier Séminaire du LIP, 14 mars 2018 Équipe-projet AOC: Apprentissage, Optimisation, Complexité Institut de Mathématiques de Toulouse LabeX CIMI Université Paul

More information

arxiv: v2 [math.st] 14 Nov 2016

arxiv: v2 [math.st] 14 Nov 2016 On Explore-hen-Commit Strategies arxiv:1605.08988v math.s] 1 Nov 016 Aurélien Garivier Institut de Mathématiques de oulouse; UMR519 Université de oulouse; CNRS UPS IM, F-3106 oulouse Cedex 9, France aurelien.garivier@math.univ-toulouse.fr

More information

Bayesian Contextual Multi-armed Bandits

Bayesian Contextual Multi-armed Bandits Bayesian Contextual Multi-armed Bandits Xiaoting Zhao Joint Work with Peter I. Frazier School of Operations Research and Information Engineering Cornell University October 22, 2012 1 / 33 Outline 1 Motivating

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

arxiv: v7 [cs.lg] 7 Jul 2017

arxiv: v7 [cs.lg] 7 Jul 2017 Learning to Optimize Via Information-Directed Sampling Daniel Russo 1 and Benjamin Van Roy 2 1 Northwestern University, daniel.russo@kellogg.northwestern.edu 2 Stanford University, bvr@stanford.edu arxiv:1403.5556v7

More information

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Accouncements You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Please do not zip these files and submit (unless there are >5 files) 1 Bayesian Methods Machine Learning

More information

arxiv: v1 [cs.ds] 4 Mar 2016

arxiv: v1 [cs.ds] 4 Mar 2016 Sequential ranking under random semi-bandit feedback arxiv:1603.01450v1 [cs.ds] 4 Mar 2016 Hossein Vahabi, Paul Lagrée, Claire Vernade, Olivier Cappé March 7, 2016 Abstract In many web applications, a

More information

Complex Bandit Problems and Thompson Sampling

Complex Bandit Problems and Thompson Sampling Complex Bandit Problems and Aditya Gopalan Department of Electrical Engineering Technion, Israel aditya@ee.technion.ac.il Shie Mannor Department of Electrical Engineering Technion, Israel shie@ee.technion.ac.il

More information

Exploration and exploitation of scratch games

Exploration and exploitation of scratch games Mach Learn (2013) 92:377 401 DOI 10.1007/s10994-013-5359-2 Exploration and exploitation of scratch games Raphaël Féraud Tanguy Urvoy Received: 10 January 2013 / Accepted: 12 April 2013 / Published online:

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Optimistic Gittins Indices

Optimistic Gittins Indices Optimistic Gittins Indices Eli Gutin Operations Research Center, MIT Cambridge, MA 0242 gutin@mit.edu Vivek F. Farias MIT Sloan School of Management Cambridge, MA 0242 vivekf@mit.edu Abstract Starting

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

Optimal Best Arm Identification with Fixed Confidence

Optimal Best Arm Identification with Fixed Confidence JMLR: Workshop and Conference Proceedings vol 49:1 30, 2016 Optimal Best Arm Identification with Fixed Confidence Aurélien Garivier Institut de Mathématiques de Toulouse; UMR5219 Université de Toulouse;

More information

Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks

Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks Reward Maximization Under Uncertainty: Leveraging Side-Observations Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks Swapna Buccapatnam AT&T Labs Research, Middletown, NJ

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Exploiting Correlation in Finite-Armed Structured Bandits

Exploiting Correlation in Finite-Armed Structured Bandits Exploiting Correlation in Finite-Armed Structured Bandits Samarth Gupta Carnegie Mellon University Pittsburgh, PA 1513 Gauri Joshi Carnegie Mellon University Pittsburgh, PA 1513 Osman Yağan Carnegie Mellon

More information

The knowledge gradient method for multi-armed bandit problems

The knowledge gradient method for multi-armed bandit problems The knowledge gradient method for multi-armed bandit problems Moving beyond inde policies Ilya O. Ryzhov Warren Powell Peter Frazier Department of Operations Research and Financial Engineering Princeton

More information

Online Learning with Gaussian Payoffs and Side Observations

Online Learning with Gaussian Payoffs and Side Observations Online Learning with Gaussian Payoffs and Side Observations Yifan Wu 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science University of Alberta 2 Department of Electrical and Electronic

More information

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit European Worshop on Reinforcement Learning 14 (2018 October 2018, Lille, France. Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit Réda Alami Orange Labs 2 Avenue Pierre Marzin 22300,

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Stochastic Regret Minimization via Thompson Sampling

Stochastic Regret Minimization via Thompson Sampling JMLR: Workshop and Conference Proceedings vol 35:1 22, 2014 Stochastic Regret Minimization via Thompson Sampling Sudipto Guha Department of Computer and Information Sciences, University of Pennsylvania,

More information

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits 1 On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits Naumaan Nayyar, Dileep Kalathil and Rahul Jain Abstract We consider the problem of learning in single-player and multiplayer

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Week 12. Testing and Kullback-Leibler Divergence 1. Likelihood Ratios Let 1, 2, 2,...

More information

Learning to Optimize via Information-Directed Sampling

Learning to Optimize via Information-Directed Sampling Learning to Optimize via Information-Directed Sampling Daniel Russo Stanford University Stanford, CA 94305 djrusso@stanford.edu Benjamin Van Roy Stanford University Stanford, CA 94305 bvr@stanford.edu

More information

THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION

THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION Hock Peng Chan stachp@nus.edu.sg Department of Statistics and Applied Probability National University of Singapore Abstract Lai and

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Corrupt Bandits. Abstract

Corrupt Bandits. Abstract Corrupt Bandits Pratik Gajane Orange labs/inria SequeL Tanguy Urvoy Orange labs Emilie Kaufmann INRIA SequeL pratik.gajane@inria.fr tanguy.urvoy@orange.com emilie.kaufmann@inria.fr Editor: Abstract We

More information

Multiple Identifications in Multi-Armed Bandits

Multiple Identifications in Multi-Armed Bandits Multiple Identifications in Multi-Armed Bandits arxiv:05.38v [cs.lg] 4 May 0 Sébastien Bubeck Department of Operations Research and Financial Engineering, Princeton University sbubeck@princeton.edu Tengyao

More information

Review: Probability. BM1: Advanced Natural Language Processing. University of Potsdam. Tatjana Scheffler

Review: Probability. BM1: Advanced Natural Language Processing. University of Potsdam. Tatjana Scheffler Review: Probability BM1: Advanced Natural Language Processing University of Potsdam Tatjana Scheffler tatjana.scheffler@uni-potsdam.de October 21, 2016 Today probability random variables Bayes rule expectation

More information