Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Size: px
Start display at page:

Download "Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University"

Transcription

1 Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University

2 Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3 Contextual Bandits LinUCB

3 K Slot Machines......

4 K Slot Machines Choose a machine and get a reward Only have T chances Goal: maximize the cumulative rewards How to choose the machines (arms)?

5 Two Phases: Explore-Exploit Explore: Try different arms. Exploit: Play the most rewarding arm. A/B Testing: Draw the arms uniformly during T/2 rounds Then draw the empirical best until the end Jump from pure exploration to pure exploitation. Bandits: Transit from exploration to exploitation more smoothly.

6 A/B Testing v.s. Bandits......

7 Multi-Armed Bandits (MAB) A set of K arms, denoted by A. The number of rounds T is fixed. At the round t, player picks arm at a it A. Player gets rewards r it [0, 1] for the chosen arm (no full information). Assume for each arm a, its rewards iid D a (unknown) People usually call this iid setting stochastic bandits.

8 Regret Regret: R(T ) = T µ T µ(a t ), t=1 where µ(a i ) := E(r i ) denotes the mean reward for the arm a i and µ := max a A µ(a) is the optimal mean reward. Maximizing rewards Minimizing regret.

9 MAB Algorithms......

10 Exploration-First Algorithm A/B testing style Exploration phase: try each arm N times Select the arm a opt with the highest average reward Exploitation phase: play arm a opt in all remaining rounds Regret bound: with a proper value of N, R(T ) 1 + 2K log(2kt ) 2, min where min = min a A\{a } ( µ µ(a) ).

11 Epsilon-Greedy Algorithm Exploit: with probability 1 ϵ, play the best arm so far Explore: with probability ϵ, choose an arm randomly

12 Epsilon-Greedy Algorithm If ϵ is held constant, only a linear bound on R(T ) can be achieved. When ϵ decreases with time, it could obtain ( ) K log T R(T ) O 2 min with ϵ t = O(1/t).

13 Adaptive Exploration A big flaw: the exploration is completely random, does not depend on the history of the observed rewards. Adaptive v.s. non-adaptive exploration.

14 Softmax Algorithm Idea: pick each arm with a probability that is proportional to its average reward. Given initial empirical means ˆµ i for i = 1,..., K P(Play kth Arm) = ˆµ k K i=1 ˆµ i Softmax Algorithm (Boltzmann Exploration): P(Play kth Arm) = exp(ˆµ k /τ) K i=1 exp(ˆµ i/τ) τ: a temperature parameter, controlling the randomness of the choice. Annealing: dynamically decrease τ over time.

15 Epsilon-Greedy and Softmax Tend to select the best arm currently. Sometimes decide to explore and choose an option that is not currently best. Drawbacks: ignore the randomness (noise) of rewards could be easily misled by negative experiences: non-robust

16 UCB1 Algorithm Given initial empirical means ˆµ i for i = 1,..., K Play the jth arm with j = arg max UCB(a i ) := ˆµ i + i=1,...,k α log t n i, where n i is the number of times a i was played so far. Usually, α = 2.

17 UCB UCB: Upper Confidence Bounds UCB(a i ) := ˆµ i + α log t n i By Hoeffding s inequality ( ) ( α log t ( α log t )) P ˆµ i + µ i exp 2n i = 1 n i n i t 2α

18 Regret Bound for UCB1 Regret Bound for UCB1 (Auer et al., 2002) E(R(T )) 8 where i = µ µ i. i: i >0 ( K log T O min No need to set any parameter! log T i + ), ) (1 + π2 K i, 3 i=1

19 UCB1-Tuned A variant which takes into account the variance of each arm. Play the jth arm with j = arg max i=1,...,k ˆµ i + log t n i ( 1 min i) 4, V, where V i = ˆσ 2 i + 2 log t ˆσ 2 i can be computed from the historical rewards. n i

20 Thompson Sampling Bayes point of view: quantify the reward in terms of a distribution rather than a point estimate. Prior: assume rewards follow Beta(S, F ). S: wins, F: fails. Set S i = F i = 0 for i = 1,..., K. At the t-th round, Sample θ i Beta(S i + 1, F i + 1), i. Play arm j t := arg max i θ i and receive reward r t Generate w t Ber(r t ). Update S jt = S jt + 1 if w t = 1, otherwise F jt = F jt + 1.

21 Regret Bound for Thompson Sampling Regret Bound for Thompson sampling (Agrawal and Goyal, 2012) ( ( 1 ) ) 2 E(R(T )) O log T. 2 i: i >0 i This rate is the same as that in UCB1, but is inferior in terms of constant factors and dependence on. Cheap in computation and have competitive performance to UCB1.

22 Comparison We generated bernoulli rewards with K = 5, T = Figure: Average of 100 runs

23 Adversarial Bandits Non-stochastic: sometimes the reward distribution cannot be modeled by a stationary distribution. Adversarial bandit game: at time t The player chooses arm a it Simultaneously, an adversary chooses a vector of rewards [r t 1, r t 2,..., r t K] The player only receives the reward r t i t. We still assume r [0, 1] for simplicity.

24 Adversarial Bandits For any deterministic algorithm there exists a sequence of rewards such that R(T ) T/2. The idea is to add randomization to the selection of the arm.

25 Exp3 Algorithm Set p 0 i = 1/K, i = 1,..., K and G 0 i = 0 (estimated cumulative rewards) At the round t (t 1): Sample arm i based on the probability p t 1, observe r t i t Estimating rewards for all actions: g t = [0,..., 0, Update cumulative rewards: Update sampling probability ri t t p t 1 i G t = G t 1 + g t, 0,..., 0] p t = exp( ηgt ) 1, exp( ηg t )

26 Exp3 Algorithm Unbiased estimate of unseen rewards [ r t E[gj] t j = E A variant: p t 1 j 1 j=it ] = rt j p t 1 j E[1 j=it ] = rt j p t 1 j p t 1 j p t exp( ηg t ) = (1 γ) 1, exp( ηg t ) + γ 1, γ (0, 1] K = r t j A mixture of the uniform distribution (exploration) and a exponential weights (exploitation).

27 Contextual Bandits Some additional information available at each round. This information (context) could help with the arm choices. Web article recommendation system. Contextual information about visitors: demographic browsing history location

28 Contextual Bandits Each round t proceeds The player observes a context x t The player chooses an arm a it Reward r t [0, 1] is realized Reward distribution could be stochastic (iid) or adversarial.

29 Example: Web Article Recommendation 3 articles but only one space: K = 3 2 user features: if they had clicked on a sports article or a politics article in the past. Find which articles are best for people given their past click behaviors. arm clk sports clk politics reward

30 LinUCB A combination of supervised learning and UCB At each round, fit a ridge regression for each arm ˆθ a = (X a X a + I) 1 X a r a X a is the feature matrix for the arm a so far. r a is the reward vector from choosing the arm a so far. [ ] 1 0 X 1 =, X = [ 0 0 ], X 3 = [ 0 1 ] r 1 = [ ] 0.58, r = [ 0.19 ], r 3 = [ 0.51 ]

31 LinUCB Choose the arm which gives the largest UCB for a new observed context x t ( ) a + = arg max x ˆθ t a +α x a A }{{} t (X a X a + I) 1 x t }{{} prediction standard deviation

32 LinUCB Feature engineering is extremely important. Could use both user features and arm features. Hybrid-LinUCB allows arms to share contextual variables. GLM-UCB for rewards following distributions from exponential family.

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Large-scale Information Processing, Summer Recommender Systems (part 2)

Large-scale Information Processing, Summer Recommender Systems (part 2) Large-scale Information Processing, Summer 2015 5 th Exercise Recommender Systems (part 2) Emmanouil Tzouridis tzouridis@kma.informatik.tu-darmstadt.de Knowledge Mining & Assessment SVM question When a

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

arxiv: v1 [cs.lg] 15 Oct 2014

arxiv: v1 [cs.lg] 15 Oct 2014 THOMPSON SAMPLING WITH THE ONLINE BOOTSTRAP By Dean Eckles and Maurits Kaptein Facebook, Inc., and Radboud University, Nijmegen arxiv:141.49v1 [cs.lg] 15 Oct 214 Thompson sampling provides a solution to

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Estimation Considerations in Contextual Bandits

Estimation Considerations in Contextual Bandits Estimation Considerations in Contextual Bandits Maria Dimakopoulou Zhengyuan Zhou Susan Athey Guido Imbens arxiv:1711.07077v4 [stat.ml] 16 Dec 2018 Abstract Contextual bandit algorithms are sensitive to

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang Presentation by Terry Lam 02/2011 Outline The Contextual Bandit Problem Prior Works The Epoch Greedy Algorithm

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Hybrid Machine Learning Algorithms

Hybrid Machine Learning Algorithms Hybrid Machine Learning Algorithms Umar Syed Princeton University Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft) Common Approaches to Machine Learning!! Supervised

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Exploration and exploitation of scratch games

Exploration and exploitation of scratch games Mach Learn (2013) 92:377 401 DOI 10.1007/s10994-013-5359-2 Exploration and exploitation of scratch games Raphaël Féraud Tanguy Urvoy Received: 10 January 2013 / Accepted: 12 April 2013 / Published online:

More information

arxiv: v1 [cs.lg] 7 Sep 2018

arxiv: v1 [cs.lg] 7 Sep 2018 Analysis of Thompson Sampling for Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms Alihan Hüyük Bilkent University Cem Tekin Bilkent University arxiv:809.02707v [cs.lg] 7 Sep 208

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems Lecture 2: Learning from Evaluative Feedback or Bandit Problems 1 Edward L. Thorndike (1874-1949) Puzzle Box 2 Learning by Trial-and-Error Law of Effect: Of several responses to the same situation, those

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights

More information

Thompson Sampling for the MNL-Bandit

Thompson Sampling for the MNL-Bandit JMLR: Workshop and Conference Proceedings vol 65: 3, 207 30th Annual Conference on Learning Theory Thompson Sampling for the MNL-Bandit author names withheld Editor: Under Review for COLT 207 Abstract

More information

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Lecture 10 : Contextual Bandits

Lecture 10 : Contextual Bandits CMSC 858G: Bandits, Experts and Games 11/07/16 Lecture 10 : Contextual Bandits Instructor: Alex Slivkins Scribed by: Guowei Sun and Cheng Jie 1 Problem statement and examples In this lecture, we will be

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Lecture 4 January 23

Lecture 4 January 23 STAT 263/363: Experimental Design Winter 2016/17 Lecture 4 January 23 Lecturer: Art B. Owen Scribe: Zachary del Rosario 4.1 Bandits Bandits are a form of online (adaptive) experiments; i.e. samples are

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Online Learning Schemes for Power Allocation in Energy Harvesting Communications

Online Learning Schemes for Power Allocation in Energy Harvesting Communications Online Learning Schemes for Power Allocation in Energy Harvesting Communications Pranav Sakulkar and Bhaskar Krishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering

More information

Profile-Based Bandit with Unknown Profiles

Profile-Based Bandit with Unknown Profiles Journal of Machine Learning Research 9 (208) -40 Submitted /7; Revised 6/8; Published 9/8 Profile-Based Bandit with Unknown Profiles Sylvain Lamprier sylvain.lamprier@lip6.fr Sorbonne Universités, UPMC

More information

Tsinghua Machine Learning Guest Lecture, June 9,

Tsinghua Machine Learning Guest Lecture, June 9, Tsinghua Machine Learning Guest Lecture, June 9, 2015 1 Lecture Outline Introduction: motivations and definitions for online learning Multi-armed bandit: canonical example of online learning Combinatorial

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Exploiting Correlation in Finite-Armed Structured Bandits

Exploiting Correlation in Finite-Armed Structured Bandits Exploiting Correlation in Finite-Armed Structured Bandits Samarth Gupta Carnegie Mellon University Pittsburgh, PA 1513 Gauri Joshi Carnegie Mellon University Pittsburgh, PA 1513 Osman Yağan Carnegie Mellon

More information

Spectral Bandits for Smooth Graph Functions with Applications in Recommender Systems

Spectral Bandits for Smooth Graph Functions with Applications in Recommender Systems Spectral Bandits for Smooth Graph Functions with Applications in Recommender Systems Tomáš Kocák SequeL team INRIA Lille France Michal Valko SequeL team INRIA Lille France Rémi Munos SequeL team, INRIA

More information

Multi-armed bandit based policies for cognitive radio s decision making issues

Multi-armed bandit based policies for cognitive radio s decision making issues Multi-armed bandit based policies for cognitive radio s decision making issues Wassim Jouini SUPELEC/IETR wassim.jouini@supelec.fr Damien Ernst University of Liège dernst@ulg.ac.be Christophe Moy SUPELEC/IETR

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

Applications of on-line prediction. in telecommunication problems

Applications of on-line prediction. in telecommunication problems Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1 Outline On-line prediction; Some

More information

Online Learning under Full and Bandit Information

Online Learning under Full and Bandit Information Online Learning under Full and Bandit Information Artem Sokolov Computerlinguistik Universität Heidelberg 1 Motivation 2 Adversarial Online Learning Hedge EXP3 3 Stochastic Bandits ε-greedy UCB Real world

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Learning with Exploration

Learning with Exploration Learning with Exploration John Langford (Yahoo!) { With help from many } Austin, March 24, 2011 Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

More information

Adaptive Learning with Unknown Information Flows

Adaptive Learning with Unknown Information Flows Adaptive Learning with Unknown Information Flows Yonatan Gur Stanford University Ahmadreza Momeni Stanford University June 8, 018 Abstract An agent facing sequential decisions that are characterized by

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

U Logo Use Guidelines

U Logo Use Guidelines Information Theory Lecture 3: Applications to Machine Learning U Logo Use Guidelines Mark Reid logo is a contemporary n of our heritage. presents our name, d and our motto: arn the nature of things. authenticity

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France Partially based on material by: Toma s Koca k November 23, 2015 MVA 2015/2016 Last Lecture Examples of applications of online SSL

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

Chapter 2 Stochastic Multi-armed Bandit

Chapter 2 Stochastic Multi-armed Bandit Chapter 2 Stochastic Multi-armed Bandit Abstract In this chapter, we present the formulation, theoretical bound, and algorithms for the stochastic MAB problem. Several important variants of stochastic

More information

Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms

Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms Journal of Machine Learning Research 17 2016) 1-33 Submitted 7/14; Revised 3/15; Published 4/16 Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms Wei Chen Microsoft

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Multi-task Linear Bandits

Multi-task Linear Bandits Multi-task Linear Bandits Marta Soare Alessandro Lazaric Ouais Alsharif Joelle Pineau INRIA Lille - Nord Europe INRIA Lille - Nord Europe McGill University & Google McGill University NIPS2014 Workshop

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities Lecture 15: Bandit problems. Markov Processes Bandit problems Action values (and now to compute them) Exploration-exploitation trade-off Simple exploration strategies -greedy Softmax (Boltzmann) exploration

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com Navin Goyal Microsoft Research India navingo@microsoft.com Abstract The multi-armed

More information

Introduction of Reinforcement Learning

Introduction of Reinforcement Learning Introduction of Reinforcement Learning Deep Reinforcement Learning Reference Textbook: Reinforcement Learning: An Introduction http://incompleteideas.net/sutton/book/the-book.html Lectures of David Silver

More information

Monte-Carlo Tree Search by. MCTS by Best Arm Identification

Monte-Carlo Tree Search by. MCTS by Best Arm Identification Monte-Carlo Tree Search by Best Arm Identification and Wouter M. Koolen Inria Lille SequeL team CWI Machine Learning Group Inria-CWI workshop Amsterdam, September 20th, 2017 Part of...... a new Associate

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Sequential and reinforcement learning: Stochastic Optimization I

Sequential and reinforcement learning: Stochastic Optimization I 1 Sequential and reinforcement learning: Stochastic Optimization I Sequential and reinforcement learning: Stochastic Optimization I Summary This session describes the important and nowadays framework of

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

Learning Optimal Online Advertising Portfolios with Periodic Budgets

Learning Optimal Online Advertising Portfolios with Periodic Budgets Learning Optimal Online Advertising Portfolios with Periodic Budgets Lennart Baardman Operations Research Center, MIT, Cambridge, MA 02139, baardman@mit.edu Elaheh Fata Department of Aeronautics and Astronautics,

More information

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit European Worshop on Reinforcement Learning 14 (2018 October 2018, Lille, France. Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit Réda Alami Orange Labs 2 Avenue Pierre Marzin 22300,

More information

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits 1 On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits Naumaan Nayyar, Dileep Kalathil and Rahul Jain Abstract We consider the problem of learning in single-player and multiplayer

More information