Monte-Carlo Tree Search by. MCTS by Best Arm Identification

Size: px
Start display at page:

Download "Monte-Carlo Tree Search by. MCTS by Best Arm Identification"

Transcription

1 Monte-Carlo Tree Search by Best Arm Identification and Wouter M. Koolen Inria Lille SequeL team CWI Machine Learning Group Inria-CWI workshop Amsterdam, September 20th, 2017

2 Part of a new Associate Team proposal 6 PAC involving Peter Grünwald (CWI, Machine Learning Group) Wouter M. Koolen (CWI, Machine Learning Group) Benjamin Guedj (Inria Lille, MODAL project-team) (Inria Lille, SequeL project-team) Broader goal: Probably Approximately Correct - Learning 6 Safe, Efficient, Sequential, Active, Structured, Ideal

3 Monte-Carlo Tree Search for games

4 Monte-Carlo Tree Search for games We introduce an idealized model: fixed maximin tree i.i.d. playouts starting from each leaf and propose new algorithms with sample complexity guarantees

5 Outline 1 Problem formulation 2 The BAI-MCTS architecture 3 UGapE-MCTS and LUCB-MCTS 4 Towards optimal algorithms

6 Outline 1 Problem formulation 2 The BAI-MCTS architecture 3 UGapE-MCTS and LUCB-MCTS 4 Towards optimal algorithms

7 A simple model for MCTS A fixed MAXMIN game tree T, with leaves L. MAX node (= your move) MIN node (= adversary move) Leaf l: stochastic oracle O l that evaluates the position

8 A simple model for MCTS At round t a MCTS algorithm: picks a path down to a leaf L t get an evaluation of this leaf X t O Lt Assumption: i.i.d. sucessive evaluations, E X Ol [X ] = µ l

9 A simple model for MCTS μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8 At round t a MCTS algorithm: picks a path down to a leaf L t get an evaluation of this leaf X t O Lt Assumption: i.i.d. sucessive evaluations, E X Ol [X ] = µ l

10 Goal s 0 μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8 A MCTS algorithm should find the best move at the root: µ s if s L, V s = max c C(s) V c if s is a MAX node, min c C(s) V c if s is a MIN node. s = argmax s C(s 0 ) V s

11 A PAC learning framework s 0 μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8 MCTS algorithm: (L t, τ, ŝ τ ), where L t is the sampling rule τ is the stopping rule ŝ τ C(s 0 ) is the recommendation rule is (ɛ, δ) PAC if P (Vŝτ V s ɛ) 1 δ. Goal: (ɛ, δ)-pac algorithm with a small sample complexity τ.

12 A simpler problem: best arm identification Reminiscent of a bandit model: μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8 A Best Arm Identification algorithm: (A t, τ, ŝ τ ), where A t is the sampling rule τ is the stopping rule ŝ τ C(s 0 ) is the recommendation rule is (ɛ, δ)-pac if P (µŝτ µ ɛ) 1 δ.

13 A simpler problem: best arm identification Reminiscent of a bandit model: μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8 A Best Arm Identification algorithm: (A t, τ, ŝ τ ), where A t is the sampling rule τ is the stopping rule ŝ τ C(s 0 ) is the recommendation rule is (ɛ, δ)-pac if P (µŝτ µ ɛ) 1 δ. The BAI problem: How to adaptivly sample the arms so as to identify as quickly as possible the arm with highest mean?

14 MCTS: a structured BAI problem Reminiscent of a bandit model: μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8 A Best Arm Identification algorithm: (L t, τ, ŝ τ ), where L t is the sampling rule τ is the stopping rule ŝ τ C(s 0 ) is the recommendation rule is (ɛ, δ)-pac if P (Vŝτ V s ɛ) 1 δ. The MCTS problem: How to adaptivly sample the leaves of a maxmin tree so as to identify as quickly as possible the best action at the root?

15 Outline 1 Problem formulation 2 The BAI-MCTS architecture 3 UGapE-MCTS and LUCB-MCTS 4 Towards optimal algorithms

16 A key building block: confidence intervals Using the samples collected for the leaves, one can build, for l L, [LCB l (t), UCB l (t)] a confidence interval on µ l s 0 μ 1 μ 2 μ 3 μ 4 μ 5 μ 6 μ 7 μ 8

17 A key building block: confidence intervals Using the samples collected for the leaves, one can build, for l L, [LCB l (t), UCB l (t)] a confidence interval on µ l s 0 Idea: Propagate these confidence intervals up in the tree

18 A key building block: confidence intervals MAX node: UCB s (t) = max c C(s) UCB c(t) LCB s (t) = max c C(s) LCB c(t) s 0

19 A key building block: confidence intervals MAX node: UCB s (t) = max c C(s) UCB c(t) s 0 LCB s (t) = max c C(s) LCB c(t)

20 A key building block: confidence intervals MIN node: UCB s (t) = min c C(s) UCB c(t) s 0 LCB s (t) = min c C(s) LCB c(t)

21 Property of this construction s 0 (µ l I l (t)) (V s I s (t)) l L s T

22 Representative leaves l s (t): representative leaf of internal node s T. s 0 Idea: alternate optimistic/pessimistic moves starting from s

23 Generic BAI-MCTS algorithm Input: a BAI algorithm Initialization: t = 0. while not BAIStop ({s C(s 0 )}) do R t+1 = BAIStep ({s C(s 0 )}) Sample the representative leaf L t+1 = l Rt+1 (t) Update the information about the arms. t = t + 1. end Output: BAIReco ({s C(s 0 )})

24 Generic BAI-MCTS algorithm Input: a BAI algorithm Initialization: t = 0. while not BAIStop ({s C(s 0 )}) do R t+1 = BAIStep ({s C(s 0 )}) Sample the representative leaf L t+1 = l Rt+1 (t) Update the information about the arms. t = t + 1. end Output: BAIReco ({s C(s 0 )})... sometimes reduces to updating confidence intervals!

25 Outline 1 Problem formulation 2 The BAI-MCTS architecture 3 UGapE-MCTS and LUCB-MCTS 4 Towards optimal algorithms

26 An example of BAI algorithm: LUCB The (KL)-LUCB algorithm [Kalyanakrishnan et al. 12, Kaufmann and Kalyanakrishnan 13]

27 UGapE-MCTS based on the UGapE algorithm [Gabillon et al. 12] Sampling rule: R t+1 is the least sampled among two promising depth-one nodes: where a t = argmin a C(s 0 ) Stopping rule: B s (t) = B a (t) and b t = argmax UCB b (t), b C(s 0 )\{a t } max UCB s s (t) LCB s(t). C(s 0 )\{s} τ = inf { t N : UCB bt (t) LCB at (t) < ɛ } Recommendation rule: ŝ τ = a τ

28 Theoretical guarantees We choose confidence intervals of the form β(n l (t), δ) LCB l (t) = ˆµ l (t) 2N l (t) β(n l (t), δ) UCB l (t) = ˆµ l (t) + 2N l (t) where β(s, δ) is some exploration function. Correctness If δ max(0.1 L, 1), for the choice β(s, δ) = log( L /δ) + 3 log log( L /δ) + (3/2) log(log s + 1) UGapE-MCTS is (ɛ, δ)-pac.

29 Theoretical guarantees where H ɛ (µ) := l L := V (s ) V (s 2) l := max s Ancestors(l)\{s 0 } 1 2 l 2 ɛ 2 V Parent(s) V s Sample complexity With probability larger than 1 δ, the total number of leaves explorations performed by UGapE-MCTS is upper bounded as ( ( )) 1 τ = O Hɛ (µ) log. δ

30 Theoretical guarantees where H ɛ (µ) := l L := V (s ) V (s 2) l := max s Ancestors(l)\{s 0 } 1 2 l 2 ɛ V Parent(s) V s

31 Numerical results ɛ = 0, δ = (N = 10 6 simulations) LUCB-MCTS (0.72% errors, 1551 samples) UGapE-MCTS (0.75% erros, 1584 samples) FindTopWinner (0% errors, samples) [Teraoka et al. 14]

32 Outline 1 Problem formulation 2 The BAI-MCTS architecture 3 UGapE-MCTS and LUCB-MCTS 4 Towards optimal algorithms

33 A sample complexity lower bound Theorem Let ɛ = 0. Any δ-correct algorithm satisfies where T (µ) 1 := Depth-two tree: E µ [τ] T (µ) log (1/(3δ)) sup inf w Σ L λ Alt(µ) l L w l KL (B(µ l ), B(λ l )). The optimal proportions satisfy w i,j(µ) = 0 if i 2 and j 2.

34 A sample complexity lower bound Theorem Let ɛ = 0. Any δ-correct algorithm satisfies where T (µ) 1 := Depth-two tree: E µ [τ] T (µ) log (1/(3δ)) sup inf w Σ L λ Alt(µ) l L w l KL (B(µ l ), B(λ l )). The optimal proportions satisfy w i,j(µ) = 0 if i 2 and j 2. A more general sparsity pattern?

35 Conclusion Our contributions: a generic way to use a BAI algorithm for MCTS PAC and sample complexity guarantees for UGapE-MCTS and LUCB-MCTS that also displays good empirical performance Future work: identify the optimal sample complexity of the MCTS problem... (i.e. matching upper and lower bounds)... and that of other structured Best Arm Identification problems [Ajallooeian et al., ALT 17]

36 Conclusion Our contributions: a generic way to use a BAI algorithm for MCTS PAC and sample complexity guarantees for UGapE-MCTS and LUCB-MCTS that also displays good empirical performance Future work: identify the optimal sample complexity of the MCTS problem... (i.e. matching upper and lower bounds)... and that of other structured Best Arm Identification problems [Ajallooeian et al., ALT 17] Reference: E. Kaufmann & W.M. Koolen, Monte-Carlo Tree Search by Best Arm Identification to appear in NIPS 2017

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search Wouter M. Koolen Machine Learning and Statistics for Structures Friday 23 rd February, 2018 Outline 1 Intro 2 Model

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

arxiv: v2 [stat.ml] 14 Nov 2016

arxiv: v2 [stat.ml] 14 Nov 2016 Journal of Machine Learning Research 6 06-4 Submitted 7/4; Revised /5; Published /6 On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models arxiv:407.4443v [stat.ml] 4 Nov 06 Emilie Kaufmann

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling Emilie Kaufmann 1 Wouter M. Koolen 2 Aurélien Garivier 3 1 CNRS & U. Lille, CRIStAL / SequeL Inria Lille, emilie.kaufmann@univ-lille.fr

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

On Sequential Decision Problems

On Sequential Decision Problems On Sequential Decision Problems Aurélien Garivier Séminaire du LIP, 14 mars 2018 Équipe-projet AOC: Apprentissage, Optimisation, Complexité Institut de Mathématiques de Toulouse LabeX CIMI Université Paul

More information

The optimistic principle applied to function optimization

The optimistic principle applied to function optimization The optimistic principle applied to function optimization Rémi Munos Google DeepMind INRIA Lille, Sequel team LION 9, 2015 The optimistic principle applied to function optimization Optimistic principle:

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Introduction to Reinforcement Learning Part 3: Exploration for sequential decision making

Introduction to Reinforcement Learning Part 3: Exploration for sequential decision making Introduction to Reinforcement Learning Part 3: Exploration for sequential decision making Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe

More information

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Multiple Identifications in Multi-Armed Bandits

Multiple Identifications in Multi-Armed Bandits Multiple Identifications in Multi-Armed Bandits arxiv:05.38v [cs.lg] 4 May 0 Sébastien Bubeck Department of Operations Research and Financial Engineering, Princeton University sbubeck@princeton.edu Tengyao

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Mingxi Li (s1720554) First Advisor: Dr. Wouter M.Koolen Secondary Advisor: Dr. Tim van Erven master thesis Defended on October

More information

On the Complexity of A/B Testing

On the Complexity of A/B Testing JMLR: Workshop and Conference Proceedings vol 35:1 3, 014 On the Complexity of A/B Testing Emilie Kaufmann LTCI, Télécom ParisTech & CNRS KAUFMANN@TELECOM-PARISTECH.FR Olivier Cappé CAPPE@TELECOM-PARISTECH.FR

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Hypothesis Testing. Rianne de Heide. April 6, CWI & Leiden University

Hypothesis Testing. Rianne de Heide. April 6, CWI & Leiden University Hypothesis Testing Rianne de Heide CWI & Leiden University April 6, 2018 Me PhD-student Machine Learning Group Study coordinator M.Sc. Statistical Science Peter Grünwald Jacqueline Meulman Projects Bayesian

More information

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conugate Priors Yichi Zhou 1 Jun Zhu 1 Jingwe Zhuo 1 Abstract Thompson sampling has impressive empirical performance for many multi-armed

More information

Lecture 6: Non-stochastic best arm identification

Lecture 6: Non-stochastic best arm identification CSE599i: Online and Adaptive Machine Learning Winter 08 Lecturer: Kevin Jamieson Lecture 6: Non-stochastic best arm identification Scribes: Anran Wang, eibin Li, rian Chan, Shiqing Yu, Zhijin Zhou Disclaimer:

More information

Online Learning with Gaussian Payoffs and Side Observations

Online Learning with Gaussian Payoffs and Side Observations Online Learning with Gaussian Payoffs and Side Observations Yifan Wu 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science University of Alberta 2 Department of Electrical and Electronic

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Pure Exploration in Finitely Armed and Continuous Armed Bandits

Pure Exploration in Finitely Armed and Continuous Armed Bandits Pure Exploration in Finitely Armed and Continuous Armed Bandits Sébastien Bubeck INRIA Lille Nord Europe, SequeL project, 40 avenue Halley, 59650 Villeneuve d Ascq, France Rémi Munos INRIA Lille Nord Europe,

More information

Adaptive Concentration Inequalities for Sequential Decision Problems

Adaptive Concentration Inequalities for Sequential Decision Problems Adaptive Concentration Inequalities for Sequential Decision Problems Shengjia Zhao Tsinghua University zhaosj12@stanford.edu Ashish Sabharwal Allen Institute for AI AshishS@allenai.org Enze Zhou Tsinghua

More information

Multi-task Linear Bandits

Multi-task Linear Bandits Multi-task Linear Bandits Marta Soare Alessandro Lazaric Ouais Alsharif Joelle Pineau INRIA Lille - Nord Europe INRIA Lille - Nord Europe McGill University & Google McGill University NIPS2014 Workshop

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Introduction to Reinforcement Learning and multi-armed bandits

Introduction to Reinforcement Learning and multi-armed bandits Introduction to Reinforcement Learning and multi-armed bandits Rémi Munos INRIA Lille - Nord Europe Currently on leave at MSR-NE http://researchers.lille.inria.fr/ munos/ NETADIS Summer School 2013, Hillerod,

More information

Estimation Considerations in Contextual Bandits

Estimation Considerations in Contextual Bandits Estimation Considerations in Contextual Bandits Maria Dimakopoulou Zhengyuan Zhou Susan Athey Guido Imbens arxiv:1711.07077v4 [stat.ml] 16 Dec 2018 Abstract Contextual bandit algorithms are sensitive to

More information

Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence

Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence Best Ar Identification: A Unified Approach to Fixed Budget and Fixed Confidence Victor Gabillon Mohaad Ghavazadeh Alessandro Lazaric INRIA Lille - Nord Europe, Tea SequeL {victor.gabillon,ohaad.ghavazadeh,alessandro.lazaric}@inria.fr

More information

Approximate Universal Artificial Intelligence

Approximate Universal Artificial Intelligence Approximate Universal Artificial Intelligence A Monte-Carlo AIXI Approximation Joel Veness Kee Siong Ng Marcus Hutter David Silver University of New South Wales National ICT Australia The Australian National

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, 2016

More information

PAC Subset Selection in Stochastic Multi-armed Bandits

PAC Subset Selection in Stochastic Multi-armed Bandits In Langford, Pineau, editors, Proceedings of the 9th International Conference on Machine Learning, pp 655--66, Omnipress, New York, NY, USA, 0 PAC Subset Selection in Stochastic Multi-armed Bandits Shivaram

More information

Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration

Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration JMLR: Workshop and Conference Proceedings vol 65: 55, 207 30th Annual Conference on Learning Theory Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration Editor: Under Review for COLT 207

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian

More information

Solving Zero-Sum Extensive-Form Games. Branislav Bošanský AE4M36MAS, Fall 2013, Lecture 6

Solving Zero-Sum Extensive-Form Games. Branislav Bošanský AE4M36MAS, Fall 2013, Lecture 6 Solving Zero-Sum Extensive-Form Games ranislav ošanský E4M36MS, Fall 2013, Lecture 6 Imperfect Information EFGs States Players 1 2 Information Set ctions Utility Solving II Zero-Sum EFG with perfect recall

More information

Notes on AdaGrad. Joseph Perla 2014

Notes on AdaGrad. Joseph Perla 2014 Notes on AdaGrad Joseph Perla 2014 1 Introduction Stochastic Gradient Descent (SGD) is a common online learning algorithm for optimizing convex (and often non-convex) functions in machine learning today.

More information

Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem

Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem Masrour Zoghi 1, Shimon Whiteson 1, Rémi Munos 2 and Maarten de Rijke 1 University of Amsterdam 1 ; INRIA Lille / MSR-NE 2 June 24,

More information

Efficient learning by implicit exploration in bandit problems with side observations

Efficient learning by implicit exploration in bandit problems with side observations Efficient learning by implicit exploration in bandit problems with side observations Tomáš Kocák, Gergely Neu, Michal Valko, Rémi Munos SequeL team, INRIA Lille - Nord Europe, France SequeL INRIA Lille

More information

Approximate Universal Artificial Intelligence

Approximate Universal Artificial Intelligence Approximate Universal Artificial Intelligence A Monte-Carlo AIXI Approximation Joel Veness Kee Siong Ng Marcus Hutter Dave Silver UNSW / NICTA / ANU / UoA September 8, 2010 General Reinforcement Learning

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

arxiv: v1 [cs.gt] 1 Sep 2015

arxiv: v1 [cs.gt] 1 Sep 2015 HC selection for MCTS in Simultaneous Move Games Analysis of Hannan Consistent Selection for Monte Carlo Tree Search in Simultaneous Move Games arxiv:1509.00149v1 [cs.gt] 1 Sep 2015 Vojtěch Kovařík vojta.kovarik@gmail.com

More information

Minimax strategy for prediction with expert advice under stochastic assumptions

Minimax strategy for prediction with expert advice under stochastic assumptions Minimax strategy for prediction ith expert advice under stochastic assumptions Wojciech Kotłosi Poznań University of Technology, Poland otlosi@cs.put.poznan.pl Abstract We consider the setting of prediction

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Optimal Best Arm Identification with Fixed Confidence

Optimal Best Arm Identification with Fixed Confidence JMLR: Workshop and Conference Proceedings vol 49:1 30, 2016 Optimal Best Arm Identification with Fixed Confidence Aurélien Garivier Institut de Mathématiques de Toulouse; UMR5219 Université de Toulouse;

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machine Learning Theory (CS 6783) Tu-Th 1:25 to 2:40 PM Hollister, 306 Instructor : Karthik Sridharan ABOUT THE COURSE No exams! 5 assignments that count towards your grades (55%) One term project (40%)

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning

From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning Rémi Munos To cite this version: Rémi Munos. From Bandits to Monte-Carlo Tree Search: The Optimistic

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

arxiv: v3 [cs.lg] 7 Nov 2017

arxiv: v3 [cs.lg] 7 Nov 2017 ESAIM: PROCEEDINGS AND SURVEYS, Vol.?, 2017, 1-10 Editors: Will be set by the publisher arxiv:1702.00001v3 [cs.lg] 7 Nov 2017 LEARNING THE DISTRIBUTION WITH LARGEST MEAN: TWO BANDIT FRAMEWORKS Emilie Kaufmann

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

Models of collective inference

Models of collective inference Models of collective inference Laurent Massoulié (Microsoft Research-Inria Joint Centre) Mesrob I. Ohannessian (University of California, San Diego) Alexandre Proutière (KTH Royal Institute of Technology)

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits C&A Workshop 2016, Hangzhou Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction 2 Arms Best Arm Identification

More information

Adaptive Concentration Inequalities for Sequential Decision Problems

Adaptive Concentration Inequalities for Sequential Decision Problems Adaptive Concentration Inequalities for Sequential Decision Problems Shengjia Zhao Tsinghua University zhaosj12@stanford.edu Ashish Sabharwal Allen Institute for AI AshishS@allenai.org Enze Zhou Tsinghua

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting On Minimaxity of Follow the Leader Strategy in the Stochastic Setting Wojciech Kot lowsi Poznań University of Technology, Poland wotlowsi@cs.put.poznan.pl Abstract. We consider the setting of prediction

More information

Ordinal Optimization and Multi Armed Bandit Techniques

Ordinal Optimization and Multi Armed Bandit Techniques Ordinal Optimization and Multi Armed Bandit Techniques Sandeep Juneja. with Peter Glynn September 10, 2014 The ordinal optimization problem Determining the best of d alternative designs for a system, on

More information

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Emile Contal David Buffoni Alexandre Robicquet Nicolas Vayatis CMLA, ENS Cachan, France September 25, 2013 Motivating

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Rob Fergus, Tomáš Kocák March 17, 2015 MVA 2014/2015 Last Lecture Analysis of online SSL Analysis

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information