Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Size: px
Start display at page:

Download "Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem"

Transcription

1 Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe: Hossein Keshavarz Announcements There is no class on Wednesday, November 7 Good job on project proposals so far! 9. Review on stochastic multi-armed bandit problem Consider a gambler playing against a N armed slot machine and sequentially pulls up arms to minimize the expected regret. Each arm, i {,...,N} has a probability distribution D i supported on the closed interval [0,]. Let µ i be the expected value of the corresponding loss to arm i and define Ĩ = argmin j N µ j as the index of the optimal expected value among arms. Suppose that the gambler selects arm I t at round t, then the expected regret of the gambler up to round T is defined as E regret = E where X i,t D i denotes the loss associated with choosing arm i at round t. It s worthwhile to mention that the expected value is taken over the distributions {D i } N i= and the randomness of choosing arms. 9. Analysis of greedy algorithm This section is devoted to state and prove the theorem regarding the upper bound on the expected regret of the greedy algorithm. The greedy algorithm is introduced in the last lecture. Theorem 9.. Suppose that there exists a positive scalar such that µ j µ Ĩ the expected regret of the greedy algorithm has the following upper bound for any j Ĩ. Then E regret + N lognt Proof. Let us to decompose the expected regret as sum of two terms in which the first term is the associated regret to the sampling phase and the second term corresponds to the exploitation phase.

2 Lecture 9: UCB Algorithm and Adversarial Bandit Problem E regret = E b Nm + E + E I It Ĩ = Nm + +mn +mn a Nm + E P I t Ĩ Nm + T max +Nm t T P I t Ĩ 9. Note that inequalities a and b are immediate consequence of the fact that X k,t [0,] for all k N and t T. Therefore, in order to complete the proof, we need to control the deterministic term P I t Ĩ uniformly from above. If I t Ĩ then ˆµ It ˆµ Ĩ, hence using some straightforward algebraic manipulation we obtain µ It µ = Ĩ µ It ˆµ It + ˆµIt ˆµ Ĩ + ˆµĨ µ Ĩ µit ˆµ It ˆµĨ µ Ĩ max µ j ˆµ j j N In other words, P I t Ĩ P max j N µj ˆµ j for any t. Combination of union bound inequality a and Hoeffding s inequality used to prove inequality b give us the desired upper bound. = max P I t Ĩ P max µ j ˆµ j +Nm t T j N b m N exp a N max j N P µj ˆµ j 9. Letting the optional parameter m = log N and substituting inequality 9. into inequality 9. yield E regret Nm + T = N N log + T Choosing = T terminates the proof. Note that the reason that appeared in the denumerator of the expected regret is that the inequality E XIt,t X Ĩ,t Nm is not tight enough. Lemma 9. Hoeffding s inequality. Let Z,...,Z n are indepent and identically distributed random variables such that Z [0,] almost sure and EZ = µ. Then, P n n Z i µ ɛ exp nɛ j=

3 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Upper Confidence Bound UCB algorithm In order to introduce UCB algorithm let us to introduce some notation. Define, T j t t I Is =j as the number of times that the gambler played the arm j up to time t and let the empirical expected regret of arm j as the following ˆµ j,t = T j t s= t X j,s I Is =j 9.3 s= Algorithm. UCB algorithm to solve multi armed bandit problem Initialization Play each arm once For t = to T For j = to N Update ˆµ j,t according to the identity 9.3 Play the arm I t = argmin j N ˆµ j,t 3logt T j t The arm selection criterion of UCB algorithm encourages to choose the rarely chosen arms. The next theorem characterizes the upper bound on the expected regret of UCB algorithm. The interested reader is referred to [] for further details and proof of Theorem 9.3. Theorem 9.3. Let j = µ j µ Ĩ such that j > 0 for any j Ĩ. Then the expected regret of UCB algorithm can be upper bounded by the following inequality. E regret O Theorem 9.3 shows that the expected regret of UCB algorithm is far better than greedy method for small j s. Strictly speaking, if min = min j Ĩ j, then j Ĩ logt j N logt E regret O min 9.4 Adversarial Bandit Unlike the multi armed bandit setting where the loss of each action has a stationary distribution over time, in the adversarial bandit problem there is no statistical assumption about the form of the generating process of losses. In this new formulation, the associated regret to each arm is determined at each round by an adversary and the player only knows the reward of previously chosen actions. The only assumption about the loss vector is that, l t [0,] N for each round t. Since the adversary can assign low reward to the previously selected actions and high rewards to the unseen arms, hence, a deterministic policy of arm selection can not optimize the expected

4 Lecture 9: UCB Algorithm and Adversarial Bandit Problem 4 regret function. Finally, we need to mention that the distribution of action I t only deps on the loss of previous actions, { l s I s } t s=. Due to the lack of full information about the associated losses of choosing arms, the player can t run exponential weighted algorithm to optimize the regret function. One doubtful solution is to estimate of loss vector, l t, based on the observation of a single component l t I t. Taking advantage of the conditional expectation property, we can show that if l t is an unbiased estimator of l t, i.e. E lt F t = l t where F t is the generated σ field by observations up to round t, then the expected regrets with respect to l t and l t are the same. E l t. p t p = E E l t. p t p F t = E E lt F t. p t p = E l t. p t p 9.4. Unbiased estimation of l t We claim that the following procedure which is called exponential weighted algorithm with ɛ exploration generates an unbiased estimator of l t.. With probability ɛ, choose p t = N,..., and select I t p t uniformly at random. Let l t = 0,...,0, Nlt It ɛ,0,...,0.. With probability ɛ choose p t by exponential weighted algorithm on the loss vectors { l s } t s= and let l t = 0. proof of claim. E lt = ɛ.0 + ɛ N N 0,...,0, Nlt j,0,...,0 = lt ɛ j= Since l t is an unbiased estimator of l t, so at the first glance, it seems that the expected regret of above algorithm is exactly equal to the expected regret of EWA. However, a contingent reader notices that l t is no longer in the closed cube [0,] N. Recalling the proof of Theorem 3.. in the lecture notes, one can easily show that logn E regret of EWA with ɛ exploration T ɛ+ ɛ + l t = O T ɛ + logn + T N ɛ Now choosing the regularization parameters ɛ = N T upper bound is given by T logn and = ɛ logn N T, the optimal NT 3 E regret of EWA with ɛ exploration O 4 logn 4 9.4

5 Lecture 9: UCB Algorithm and Adversarial Bandit Problem 5 It s worthwhile to mention that although max t T l t N ɛ, but most of the times with probability ɛ, we have l t = 0 [0,]. Hence, the proof can be slightly modified in a smart way to obtain the following upper bound. E regret of EWA with ɛ exploration O which leads to E regret of EWA with ɛ exploration O NT 3. T ɛ + logn + T N ɛ Question: Is there any algorithm with the expected regret O NT? Yes! EXP3 algorithm 9.5 EXP3 Algorithm Let L t be the cumulative loss up to round t. Algorithm. EXP3 algorithm to for adversarial multi-armed bandit problem Input Regularization parameter Initialization St initial value for p For t = to T For j = to N Sample I t absed on the distribution p t Observe l t I t Let l t = 0,...,0, lt It p t It Update p t+ by p t+,0,...,0 j = exp L j t N exp L t j j= The EXP3 algorithm will be analyzed in the next class. References [] P. Auer, N. Cesa-Bianchi and P. Fischer, Finite-time analysis of the multi-armed bandit problem, Machine learning 47, no : [] P. Auer, N. Cesa-Bianchi, Y. Freund and R. E. Schapire, Gambling in a rigged casino: The adversarial multi-armed bandit problem, In Foundations of Computer Science, 995. Proceedings., 36th Annual Symposium on, pp IEEE, 995.

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Applications of on-line prediction. in telecommunication problems

Applications of on-line prediction. in telecommunication problems Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1 Outline On-line prediction; Some

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Gambling in a rigged casino: The adversarial multi-armed bandit problem

Gambling in a rigged casino: The adversarial multi-armed bandit problem Gambling in a rigged casino: The adversarial multi-armed bandit problem Peter Auer Institute for Theoretical Computer Science University of Technology Graz A-8010 Graz (Austria) pauer@igi.tu-graz.ac.at

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Lecture 3: Lower Bounds for Bandit Algorithms

Lecture 3: Lower Bounds for Bandit Algorithms CMSC 858G: Bandits, Experts and Games 09/19/16 Lecture 3: Lower Bounds for Bandit Algorithms Instructor: Alex Slivkins Scribed by: Soham De & Karthik A Sankararaman 1 Lower Bounds In this lecture (and

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Online learning with feedback graphs and switching costs

Online learning with feedback graphs and switching costs Online learning with feedback graphs and switching costs A Proof of Theorem Proof. Without loss of generality let the independent sequence set I(G :T ) formed of actions (or arms ) from to. Given the sequence

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Learning Algorithms for Minimizing Queue Length Regret

Learning Algorithms for Minimizing Queue Length Regret Learning Algorithms for Minimizing Queue Length Regret Thomas Stahlbuhk Massachusetts Institute of Technology Cambridge, MA Brooke Shrader MIT Lincoln Laboratory Lexington, MA Eytan Modiano Massachusetts

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Regional Multi-Armed Bandits

Regional Multi-Armed Bandits School of Information Science and Technology University of Science and Technology of China {wzy43, zrd7}@mail.ustc.edu.cn, congshen@ustc.edu.cn Abstract We consider a variant of the classic multiarmed

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Convergence and No-Regret in Multiagent Learning

Convergence and No-Regret in Multiagent Learning Convergence and No-Regret in Multiagent Learning Michael Bowling Department of Computing Science University of Alberta Edmonton, Alberta Canada T6G 2E8 bowling@cs.ualberta.ca Abstract Learning in a multiagent

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

1 A Support Vector Machine without Support Vectors

1 A Support Vector Machine without Support Vectors CS/CNS/EE 53 Advanced Topics in Machine Learning Problem Set 1 Handed out: 15 Jan 010 Due: 01 Feb 010 1 A Support Vector Machine without Support Vectors In this question, you ll be implementing an online

More information

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

Piecewise-stationary Bandit Problems with Side Observations

Piecewise-stationary Bandit Problems with Side Observations Jia Yuan Yu jia.yu@mcgill.ca Department Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada. Shie Mannor shie.mannor@mcgill.ca; shie@ee.technion.ac.il Department Electrical

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information

Multi armed bandit problem: some insights

Multi armed bandit problem: some insights Multi armed bandit problem: some insights July 4, 20 Introduction Multi Armed Bandit problems have been widely studied in the context of sequential analysis. The application areas include clinical trials,

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Multi-armed Bandit Algorithms and Empirical Evaluation

Multi-armed Bandit Algorithms and Empirical Evaluation Multi-armed Bandit Algorithms and Empirical Evaluation Joannès Vermorel 1 and Mehryar Mohri 2 1 École normale supérieure, 45 rue d Ulm, 75005 Paris, France joannes.vermorel@ens.fr 2 Courant Institute of

More information

Anytime optimal algorithms in stochastic multi-armed bandits

Anytime optimal algorithms in stochastic multi-armed bandits Rémy Degenne LPMA, Université Paris Diderot Vianney Perchet CREST, ENSAE REMYDEGENNE@MATHUNIV-PARIS-DIDEROTFR VIANNEYPERCHET@NORMALESUPORG Abstract We introduce an anytime algorithm for stochastic multi-armed

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

PAC Subset Selection in Stochastic Multi-armed Bandits

PAC Subset Selection in Stochastic Multi-armed Bandits In Langford, Pineau, editors, Proceedings of the 9th International Conference on Machine Learning, pp 655--66, Omnipress, New York, NY, USA, 0 PAC Subset Selection in Stochastic Multi-armed Bandits Shivaram

More information

Ordinal Optimization and Multi Armed Bandit Techniques

Ordinal Optimization and Multi Armed Bandit Techniques Ordinal Optimization and Multi Armed Bandit Techniques Sandeep Juneja. with Peter Glynn September 10, 2014 The ordinal optimization problem Determining the best of d alternative designs for a system, on

More information

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

arxiv: v1 [cs.gt] 1 Sep 2015

arxiv: v1 [cs.gt] 1 Sep 2015 HC selection for MCTS in Simultaneous Move Games Analysis of Hannan Consistent Selection for Monte Carlo Tree Search in Simultaneous Move Games arxiv:1509.00149v1 [cs.gt] 1 Sep 2015 Vojtěch Kovařík vojta.kovarik@gmail.com

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Notes from Week 8: Multi-Armed Bandit Problems

Notes from Week 8: Multi-Armed Bandit Problems CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 8: Multi-Armed Bandit Problems Instructor: Robert Kleinberg 2-6 Mar 2007 The multi-armed bandit problem The multi-armed bandit

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

arxiv: v3 [cs.lg] 30 Jun 2012

arxiv: v3 [cs.lg] 30 Jun 2012 arxiv:05874v3 [cslg] 30 Jun 0 Orly Avner Shie Mannor Department of Electrical Engineering, Technion Ohad Shamir Microsoft Research New England Abstract We consider a multi-armed bandit problem where the

More information

arxiv: v1 [cs.lg] 12 Sep 2017

arxiv: v1 [cs.lg] 12 Sep 2017 Adaptive Exploration-Exploitation Tradeoff for Opportunistic Bandits Huasen Wu, Xueying Guo,, Xin Liu University of California, Davis, CA, USA huasenwu@gmail.com guoxueying@outlook.com xinliu@ucdavis.edu

More information

Performance and Convergence of Multi-user Online Learning

Performance and Convergence of Multi-user Online Learning Performance and Convergence of Multi-user Online Learning Cem Tekin, Mingyan Liu Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan, 4809-222 Email: {cmtkn,

More information

Exploration and exploitation of scratch games

Exploration and exploitation of scratch games Mach Learn (2013) 92:377 401 DOI 10.1007/s10994-013-5359-2 Exploration and exploitation of scratch games Raphaël Féraud Tanguy Urvoy Received: 10 January 2013 / Accepted: 12 April 2013 / Published online:

More information

Regret Bounds for Sleeping Experts and Bandits

Regret Bounds for Sleeping Experts and Bandits Regret Bounds for Sleeping Experts and Bandits Robert D. Kleinberg Department of Computer Science Cornell University Ithaca, NY 4853 rdk@cs.cornell.edu Alexandru Niculescu-Mizil Department of Computer

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Exploiting Correlation in Finite-Armed Structured Bandits

Exploiting Correlation in Finite-Armed Structured Bandits Exploiting Correlation in Finite-Armed Structured Bandits Samarth Gupta Carnegie Mellon University Pittsburgh, PA 1513 Gauri Joshi Carnegie Mellon University Pittsburgh, PA 1513 Osman Yağan Carnegie Mellon

More information

Tsinghua Machine Learning Guest Lecture, June 9,

Tsinghua Machine Learning Guest Lecture, June 9, Tsinghua Machine Learning Guest Lecture, June 9, 2015 1 Lecture Outline Introduction: motivations and definitions for online learning Multi-armed bandit: canonical example of online learning Combinatorial

More information

Selecting the State-Representation in Reinforcement Learning

Selecting the State-Representation in Reinforcement Learning Selecting the State-Representation in Reinforcement Learning Odalric-Ambrym Maillard INRIA Lille - Nord Europe odalricambrym.maillard@gmail.com Rémi Munos INRIA Lille - Nord Europe remi.munos@inria.fr

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

CCN Interest Forwarding Strategy as Multi-Armed Bandit Model with Delays

CCN Interest Forwarding Strategy as Multi-Armed Bandit Model with Delays CCN Interest Forwarding Strategy as Multi-Armed Bandit Model with Delays Konstantin Avrachenkov INRIA Sophia Antipolis France Email: k.avrachenkov@sophia.inria.fr Peter Jacko BCAM Basque Center for Applied

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning Journal of Machine Learning Research 1 8, 2017 Algorithmic Learning Theory 2017 New bounds on the price of bandit feedback for mistake-bounded online multiclass learning Philip M. Long Google, 1600 Amphitheatre

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Exploration Scavenging

Exploration Scavenging John Langford jl@yahoo-inc.com Alexander Strehl strehl@yahoo-inc.com Yahoo! Research, 111 W. 40th Street, New York, New York 10018 Jennifer Wortman wortmanj@seas.upenn.edu Department of Computer and Information

More information

Bandit Convex Optimization: T Regret in One Dimension

Bandit Convex Optimization: T Regret in One Dimension Bandit Convex Optimization: T Regret in One Dimension arxiv:1502.06398v1 [cs.lg 23 Feb 2015 Sébastien Bubeck Microsoft Research sebubeck@microsoft.com Tomer Koren Technion tomerk@technion.ac.il February

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Hybrid Machine Learning Algorithms

Hybrid Machine Learning Algorithms Hybrid Machine Learning Algorithms Umar Syed Princeton University Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft) Common Approaches to Machine Learning!! Supervised

More information

Lecture 10: Contextual Bandits

Lecture 10: Contextual Bandits CSE599i: Online and Adaptive Machine Learning Winter 208 Lecturer: Lalit Jain Lecture 0: Contextual Bandits Scribes: Neeraja Abhyankar, Joshua Fan, Kunhui Zhang Disclaimer: These notes have not been subjected

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION c 2015 Chong Jiang ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS BY CHONG JIANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Wei Chen Microsoft Research Asia, Beijing, China Yajun Wang Microsoft Research Asia, Beijing, China Yang Yuan Computer Science

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Adaptive Concentration Inequalities for Sequential Decision Problems

Adaptive Concentration Inequalities for Sequential Decision Problems Adaptive Concentration Inequalities for Sequential Decision Problems Shengjia Zhao Tsinghua University zhaosj12@stanford.edu Ashish Sabharwal Allen Institute for AI AshishS@allenai.org Enze Zhou Tsinghua

More information

Monte-Carlo Tree Search by. MCTS by Best Arm Identification

Monte-Carlo Tree Search by. MCTS by Best Arm Identification Monte-Carlo Tree Search by Best Arm Identification and Wouter M. Koolen Inria Lille SequeL team CWI Machine Learning Group Inria-CWI workshop Amsterdam, September 20th, 2017 Part of...... a new Associate

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information