Yevgeny Seldin. University of Copenhagen

Size: px
Start display at page:

Download "Yevgeny Seldin. University of Copenhagen"

Transcription

1 Yevgeny Seldin University of Copenhagen

2 Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New situation Decision/Action

3 How Online is different from batch? Batch Learning Online Learning Collect Data Act Analyze Analyze Get More Data Act

4 Examples Investment in the stock market Online advertising/personalization Online routing Games Robotics

5 When do we need Online Learning? Until recently, statistical theory has been restricted to the design and analysis of sampling experiments in which the size and composition of the samples are completely determined before the experimentation begins. The reasons for this are partly historical, dating back to the time when the statistician was consulted, if at all, only after the experiment was over, and partly intrinsic in the mathematical difficulty of working with anything but a fixed number of independent random variables. A major advance now appears to be in the making with the creation of a theory of the sequential design of experiments, in which the size and composition of the samples are not fixed in advance but are functions of the observations themselves. (Robbins, 1952)

6 When do we need Online Learning? Interactive learning Adversarial game-theoretic settings No i.i.d. assumption Intelligent data collection / experiment design Large-scale data analysis

7

8 The Space of Online Learning Problems limited (bandit)

9 The Space of Online Learning Problems stock market medical treatments advertising limited (bandit)

10 The Space of Online Learning Problems stock market medical treatments advertising limited (bandit) Exploration-Exploitation Trade-off

11 Exploration-Exploitation Trade-off What drug to give to a new patient Never tried 0/2 6/10 When there are more patients to come Act Analyze More Data We are building the dataset for ourselves

12 The Space of Online Learning Problems environmental resistance adversarial spam filtering stock market medical treatments weather prediction i.i.d. bandit

13 The Space of Online Learning Problems environmental resistance adversarial spam filtering stock market medical treatments weather prediction i.i.d. bandit

14 Learning in Adversarial Environments Game theoretic setting Cannot be treated in batch learning Collect Data Act Evaluation measure: regret Analyze Difference in performance compared to the best choice in hindsight (out of a limited set) E.g. investment revenue vs. the best stock in hindsight Act Analyze More Data

15 The Space of Online Learning Problems environmental resistance adversarial contextual Markov Decision Processes (MDP) i.i.d. stateless structural complexity bandit medical records of different patients subsequent treatments of the same patient

16 The Space of Online Learning Problems environmental resistance adversarial contextual Markov Decision Processes (MDP) i.i.d. stateless structural complexity bandit medical records of different patients subsequent treatments of the same patient Delayed Feedback

17 Delayed Feedback Would you like to have a drink? Yes No Would you like to have a drink? Yes!!! No The next morning.

18 The Space of Online Learning Problems environmental resistance Reinforcement Learning contextual Markov Decision Processes (MDP) adversarial i.i.d. stateless structural complexity bandit subsequent treatments of the same patient Delayed Feedback

19 The Space of Online Learning Problems environmental resistance adversarial contextual i.i.d. stateless bandit MDPs Classical batch ML would be here structural complexity

20 Simplicities along the axes environmental resistance adversarial i.i.d. stateless contextual bandit MDPs structural complexity

21 Simplicities along the axes environmental resistance adversarial The more the simpler i.i.d. stateless contextual bandit MDPs structural complexity

22 Simplicities along the axes environmental resistance adversarial Gaps (between action outcomes) Variance/Range (of action outcomes) i.i.d. stateless contextual bandit MDPs structural complexity

23 Simplicities along the axes environmental resistance adversarial Reducibility of the state space (context relevance) Mixing time (in MDPs) i.i.d. stateless contextual bandit MDPs structural complexity

24 Some standard algorithms environmental resistance adversarial Prediction with expert advice Adversarial bandits i.i.d. stateless contextual bandit Stochastic bandits MDPs structural complexity

25 Typical performance scaling environmental resistance T ln K adversarial KT contextual i.i.d. stateless bandit a a ln T Δ(a) MDPs structural complexity K the number of actions T the number of rounds Δ(a) suboptimality gap

26 Standard algorithms environmental resistance T ln K adversarial KT contextual i.i.d. stateless bandit a a ln T Δ(a) MDPs Assume a certain form of simplicity and exploit it structural complexity

27 environmental resistance adversarial i.i.d. stateless contextual bandit MDPs structural complexity

28 Prediction with limited advice / Bandits with paid observations [Seldin, Bartlett, Cramer, Abbasi-Yadkori, ICML, 2014] environmental resistance adversarial i.i.d. stateless contextual MDPs structural complexity bandit Examples: Multiple algorithms or/and parametrizations, but limited computational resources. Only a subset can be executed. Expensive resources

29 Environmental resistance in info [Koolen & van Erven, COLT, 2015, Luo & Schapire, COLT, 2015, Wintenberger, 2015, van Erven, Kotłowski & Warmuth, COLT, 2014, Gaillard, Stoltz & van Erven, COLT 2014, Cesa-Bianchi, Mansour & Stoltz, MLJ, 2007, ] environmental resistance adversarial i.i.d. stateless contextual MDPs structural complexity bandit Examples: Small deviations from i.i.d. Not adversariality Adaptation to i.i.d. Adaptation to effective outcome range

30 Environmental resistance in bandits [Bubeck & Slivkins, COLT, 2012, Seldin & Slivkins, ICML, 2014, Auer & Chiang, COLT, 2016, Seldin & Lugosi, COLT, 2017, Wei & Luo, COLT, 2018, Zimmert & Seldin, AISTATS, 2019] environmental resistance adversarial i.i.d. stateless contextual MDPs structural complexity bandit Examples: Contaminated observations Adaptation to i.i.d. X Adaptation to effective outcome range is impossible! [Gershinovitz & Lattimore, NIPS, 2016]

31 Prediction with Limited Advice [Thune & Seldin, NIPS, 2018] environmental resistance adversarial i.i.d. stateless contextual MDPs structural complexity bandit Starting from at least 2 observations Adaptation to i.i.d. Adaptation to effective outcome range

32 K actions Prediction with Limited Advice Problem Setting 1 l 1 1 l 2 1 l t i l 1 i l 2 i l t K l 1 K l 2 K l t time Adversarial l t i arbitrary in [0,1] I.I.D. = μ i Gaps: Δ i = μ i min μ j j Effective Loss Range ε E l t i i, j, t: l t i l t j ε Evaluation measure: pseudo-regret R T = E σt A t=1 l t t min E σ T i t=1 l t i {1,,K}

33 SODA: Second Order Difference Adjustment [Thune & Seldin, NIPS, 2018] The primary action A t sampled according to p t i e η i td t 1 η 2 i t S t 1 The secondary observation B t sampled uniformly from 1,, K \{A t } Unbiased loss difference estimates Δl i B s = K 1 I B t = i l t A t l t t Loss difference estimator and its second moment D i t = σt i s=1 Δls S i t = σt s=1 The learning rate Δls i 2 η t ln K max i Si t 1

34 SODA: Regret Guarantees [Thune & Seldin, NIPS, 2018] Adversarial R T = O ε KT ln K Stochastic R T = O Kε2 ln K σ i:δ i >0 1 Δ i Knowledge of i.i.d./adversarial not required! Knowledge of ε not required! Simultaneous adaptation to two types of easiness!

35 An optimal algorithm for i.i.d. and adversarial bandits [Zimmert & Seldin, AISTATS, 2019] environmental resistance adversarial i.i.d. stateless contextual bandit MDPs structural complexity

36 K actions I.I.D. and adversarial bandits Problem Setting 1 l 1 1 l 2 1 l t i l 1 i l 2 i l t K l 1 K l 2 K l t time Evaluation measure: pseudo-regret (as before) R T = E σt A t=1 l t t min E σ T i t=1 l t i {1,,K} Adversarial as before Stochastically Constrained Adversary [Wei & Luo, 2018] i best action E l t i l t i = Δ i 0 I.I.D.: special case when E l t i = μ i

37 α-tsallis-inf [Zimmert & Seldin, AISTATS, 2019] Tsallis entropy H α x = 1 1 α 1 σ i x i α INF Implicitly Normalized Forecaster [Audibert & Bubeck, 2009]

38 α-tsallis-inf [Zimmert & Seldin, AISTATS, 2019] w t = arg min w, L t 1 w Δ K Sample A t w t Update L i i t = L t 1 + σ i wi + l t i I(A t =i) w t i α αη t,i α = 1 corresponds to entropic regularization EXP3 algorithm α = 0 corresponds to log-barrier

39 1 2 -Tsallis-INF: Regret Guarantees [Zimmert & Seldin, AISTATS, 2019] η t = 1/t Adversarial R T 4 KT + 1 Stochastically Constrained Adversary R T σ i i 4 ln T+20 Δ i i.i.d. is a special case + 4 K Both results match the lower bounds (up to constants)! No knowledge of i.i.d./adversarial is required!

40 Tsallis-INF in relation to prior work [Zimmert & Seldin, AISTATS, 2019] BROAD [Wei&Luo,2018] Log-barrier + doubling (α = 0) Regime Upper Bound Lower Bound i.i.d. O K 2 adversarial O ln T α = 1 2 i.i.d. & adversarial O 1 EXP3++ [Seldin&Lugosi,2017] Entropic regularization + mix in extra exploration (α = 1) i.i.d. adversarial O O ln T ln K

41 1 2 -Tsallis-INF: Experiments [Zimmert & Seldin, AISTATS, 2019] i.i.d. Stochastically Constrained Adversary

42 1 2 -Tsallis-INF: Additional Results [Zimmert & Seldin, AISTATS, 2019] Optimality in the moderately contaminated stochastic regime I.I.D. and adversarial optimality in utility-based dueling bandits

43 environmental resistance adversarial i.i.d. stateless contextual bandit MDPs structural complexity

44 environmental resistance adversarial i.i.d. stateless contextual bandit MDPs structural complexity

45 environmental resistance adversarial i.i.d. stateless contextual bandit MDPs structural complexity

46 Check my homepage (or Google me) Papers, tutorials, lecture notes, etc Join our Advanced Topics in Machine Learning course Co-taught by Christian Igel September-October 2019 WARNING: Math-heavy course

47 α-tsallis-inf: Some Considerations [Zimmert & Seldin, AISTATS, 2019] Exploration rate η t i L t i L t i 1 1 α For i.i.d. regret of E L t i L t i = Δ i t η t i Δ i t 1 1 α = 1 Δ i 2 t ln T Δ i the exploration rate must be 1 Δ i 2 t η t i = Δ i 1 2α t α α = 1 2 is the only value for which η t i requires no tuning by (unknown) Δ i

48 α-tsallis-inf: Some Considerations [Zimmert & Seldin, AISTATS, 2019] E L t i L t i = Δ i t The variance of L t i L t i is of order Δ i 2 t 2 L t i L t i cannot be efficiently controlled by Bernstein s inequality Our analysis is based on a self-bounding property of the regret

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

A Second-order Bound with Excess Losses

A Second-order Bound with Excess Losses A Second-order Bound with Excess Losses Pierre Gaillard 12 Gilles Stoltz 2 Tim van Erven 3 1 EDF R&D, Clamart, France 2 GREGHEC: HEC Paris CNRS, Jouy-en-Josas, France 3 Leiden University, the Netherlands

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Explore no more: Improved high-probability regret bounds for non-stochastic bandits

Explore no more: Improved high-probability regret bounds for non-stochastic bandits Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu SequeL team INRIA Lille Nord Europe gergely.neu@gmail.com Abstract This work addresses the problem of regret

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Explore no more: Improved high-probability regret bounds for non-stochastic bandits

Explore no more: Improved high-probability regret bounds for non-stochastic bandits Explore no more: Improved high-probability regret bounds for non-stochastic bandits Gergely Neu SequeL team INRIA Lille Nord Europe gergely.neu@gmail.com Abstract This work addresses the problem of regret

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Time Series Prediction & Online Learning

Time Series Prediction & Online Learning Time Series Prediction & Online Learning Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values. earthquakes.

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation

Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation Ohad Shamir Weizmann Institute of Science ohad.shamir@weizmann.ac.il Abstract Many machine learning approaches

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Online Aggregation of Unbounded Signed Losses Using Shifting Experts

Online Aggregation of Unbounded Signed Losses Using Shifting Experts Proceedings of Machine Learning Research 60: 5, 207 Conformal and Probabilistic Prediction and Applications Online Aggregation of Unbounded Signed Losses Using Shifting Experts Vladimir V. V yugin Institute

More information

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning

New bounds on the price of bandit feedback for mistake-bounded online multiclass learning Journal of Machine Learning Research 1 8, 2017 Algorithmic Learning Theory 2017 New bounds on the price of bandit feedback for mistake-bounded online multiclass learning Philip M. Long Google, 1600 Amphitheatre

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Online Learning under Full and Bandit Information

Online Learning under Full and Bandit Information Online Learning under Full and Bandit Information Artem Sokolov Computerlinguistik Universität Heidelberg 1 Motivation 2 Adversarial Online Learning Hedge EXP3 3 Stochastic Bandits ε-greedy UCB Real world

More information

Applications of on-line prediction. in telecommunication problems

Applications of on-line prediction. in telecommunication problems Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1 Outline On-line prediction; Some

More information

Hybrid Machine Learning Algorithms

Hybrid Machine Learning Algorithms Hybrid Machine Learning Algorithms Umar Syed Princeton University Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft) Common Approaches to Machine Learning!! Supervised

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

More Adaptive Algorithms for Adversarial Bandits

More Adaptive Algorithms for Adversarial Bandits Proceedings of Machine Learning Research vol 75: 29, 208 3st Annual Conference on Learning Theory More Adaptive Algorithms for Adversarial Bandits Chen-Yu Wei University of Southern California Haipeng

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

Sparse Accelerated Exponential Weights

Sparse Accelerated Exponential Weights Pierre Gaillard pierre.gaillard@inria.fr INRIA - Sierra project-team, Département d Informatique de l Ecole Normale Supérieure, Paris, France University of Copenhagen, Denmark Olivier Wintenberger olivier.wintenberger@upmc.fr

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Adversarial bandits Definition: sequential game. Lower bounds on regret from the stochastic case. Exp3: exponential weights

More information

Online Learning with Predictable Sequences

Online Learning with Predictable Sequences JMLR: Workshop and Conference Proceedings vol (2013) 1 27 Online Learning with Predictable Sequences Alexander Rakhlin Karthik Sridharan rakhlin@wharton.upenn.edu skarthik@wharton.upenn.edu Abstract We

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

Online Learning for Time Series Prediction

Online Learning for Time Series Prediction Online Learning for Time Series Prediction Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values.

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

Multiple Identifications in Multi-Armed Bandits

Multiple Identifications in Multi-Armed Bandits Multiple Identifications in Multi-Armed Bandits arxiv:05.38v [cs.lg] 4 May 0 Sébastien Bubeck Department of Operations Research and Financial Engineering, Princeton University sbubeck@princeton.edu Tengyao

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Nicolò Cesa-Bianchi Università degli Studi di Milano Joint work with: Noga Alon (Tel-Aviv University) Ofer Dekel (Microsoft Research) Tomer Koren (Technion and Microsoft

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

No-Regret Algorithms for Unconstrained Online Convex Optimization

No-Regret Algorithms for Unconstrained Online Convex Optimization No-Regret Algorithms for Unconstrained Online Convex Optimization Matthew Streeter Duolingo, Inc. Pittsburgh, PA 153 matt@duolingo.com H. Brendan McMahan Google, Inc. Seattle, WA 98103 mcmahan@google.com

More information

Learning with Exploration

Learning with Exploration Learning with Exploration John Langford (Yahoo!) { With help from many } Austin, March 24, 2011 Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

More information

Efficient learning by implicit exploration in bandit problems with side observations

Efficient learning by implicit exploration in bandit problems with side observations Efficient learning by implicit exploration in bandit problems with side observations omáš Kocák Gergely Neu Michal Valko Rémi Munos SequeL team, INRIA Lille Nord Europe, France {tomas.kocak,gergely.neu,michal.valko,remi.munos}@inria.fr

More information

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo!

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo! Theory and Applications of A Repeated Game Playing Algorithm Rob Schapire Princeton University [currently visiting Yahoo! Research] Learning Is (Often) Just a Game some learning problems: learn from training

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

Minimax strategy for prediction with expert advice under stochastic assumptions

Minimax strategy for prediction with expert advice under stochastic assumptions Minimax strategy for prediction ith expert advice under stochastic assumptions Wojciech Kotłosi Poznań University of Technology, Poland otlosi@cs.put.poznan.pl Abstract We consider the setting of prediction

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Wei Chen Microsoft Research Asia, Beijing, China Yajun Wang Microsoft Research Asia, Beijing, China Yang Yuan Computer Science

More information

Dynamic resource allocation: Bandit problems and extensions

Dynamic resource allocation: Bandit problems and extensions Dynamic resource allocation: Bandit problems and extensions Aurélien Garivier Institut de Mathématiques de Toulouse MAD Seminar, Université Toulouse 1 October 3rd, 2014 The Bandit Model Roadmap 1 The Bandit

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Learning with Large Expert Spaces MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Problem Learning guarantees: R T = O( p T log N). informative even for N very large.

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Adaptive Learning with Unknown Information Flows

Adaptive Learning with Unknown Information Flows Adaptive Learning with Unknown Information Flows Yonatan Gur Stanford University Ahmadreza Momeni Stanford University June 8, 018 Abstract An agent facing sequential decisions that are characterized by

More information

Toward a Classification of Finite Partial-Monitoring Games

Toward a Classification of Finite Partial-Monitoring Games Toward a Classification of Finite Partial-Monitoring Games Gábor Bartók ( *student* ), Dávid Pál, and Csaba Szepesvári Department of Computing Science, University of Alberta, Canada {bartok,dpal,szepesva}@cs.ualberta.ca

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search Wouter M. Koolen Machine Learning and Statistics for Structures Friday 23 rd February, 2018 Outline 1 Intro 2 Model

More information

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint Regret Bounds for Online Portfolio Selection with a Cardinality Constraint Shinji Ito NEC Corporation Daisuke Hatano RIKEN AIP Hanna Sumita okyo Metropolitan University Akihiro Yabe NEC Corporation akuro

More information

Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning

Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning Proceedings of Machine Learning Research vol 65:1 17, 2017 Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning Nicolò Cesa-Bianchi Università degli Studi di Milano, Milano,

More information

Efficient and Principled Online Classification Algorithms for Lifelon

Efficient and Principled Online Classification Algorithms for Lifelon Efficient and Principled Online Classification Algorithms for Lifelong Learning Toyota Technological Institute at Chicago Chicago, IL USA Talk @ Lifelong Learning for Mobile Robotics Applications Workshop,

More information

Online (and Distributed) Learning with Information Constraints. Ohad Shamir

Online (and Distributed) Learning with Information Constraints. Ohad Shamir Online (and Distributed) Learning with Information Constraints Ohad Shamir Weizmann Institute of Science Online Algorithms and Learning Workshop Leiden, November 2014 Ohad Shamir Learning with Information

More information

Notes from Week 8: Multi-Armed Bandit Problems

Notes from Week 8: Multi-Armed Bandit Problems CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 8: Multi-Armed Bandit Problems Instructor: Robert Kleinberg 2-6 Mar 2007 The multi-armed bandit problem The multi-armed bandit

More information

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting

On Minimaxity of Follow the Leader Strategy in the Stochastic Setting On Minimaxity of Follow the Leader Strategy in the Stochastic Setting Wojciech Kot lowsi Poznań University of Technology, Poland wotlowsi@cs.put.poznan.pl Abstract. We consider the setting of prediction

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Bandit Convex Optimization: T Regret in One Dimension

Bandit Convex Optimization: T Regret in One Dimension Bandit Convex Optimization: T Regret in One Dimension arxiv:1502.06398v1 [cs.lg 23 Feb 2015 Sébastien Bubeck Microsoft Research sebubeck@microsoft.com Tomer Koren Technion tomerk@technion.ac.il February

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Elad Hazan IBM Almaden Research Center 650 Harry Rd San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Yahoo! Research 4301

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning

Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning Algorithmic Chaining and the Role of Partial Feedback in Online Nonparametric Learning Nicolò Cesa-Bianchi, Pierre Gaillard, Claudio Gentile, Sébastien Gerchinovitz To cite this version: Nicolò Cesa-Bianchi,

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

University of Alberta. The Role of Information in Online Learning

University of Alberta. The Role of Information in Online Learning University of Alberta The Role of Information in Online Learning by Gábor Bartók A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree

More information

Piecewise-stationary Bandit Problems with Side Observations

Piecewise-stationary Bandit Problems with Side Observations Jia Yuan Yu jia.yu@mcgill.ca Department Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada. Shie Mannor shie.mannor@mcgill.ca; shie@ee.technion.ac.il Department Electrical

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

An adaptive algorithm for finite stochastic partial monitoring

An adaptive algorithm for finite stochastic partial monitoring An adaptive algorithm for finite stochastic partial monitoring Gábor Bartók Navid Zolghadr Csaba Szepesvári Department of Computing Science, University of Alberta, AB, Canada, T6G E8 bartok@ualberta.ca

More information

Better Algorithms for Benign Bandits

Better Algorithms for Benign Bandits Better Algorithms for Benign Bandits Elad Hazan IBM Almaden 650 Harry Rd, San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Microsoft Research One Microsoft Way, Redmond, WA 98052 satyen.kale@microsoft.com

More information

Learning for Contextual Bandits

Learning for Contextual Bandits Learning for Contextual Bandits Alina Beygelzimer 1 John Langford 2 IBM Research 1 Yahoo! Research 2 NYC ML Meetup, Sept 21, 2010 Example of Learning through Exploration Repeatedly: 1. A user comes to

More information

An Introduction to Adaptive Online Learning

An Introduction to Adaptive Online Learning An Introduction to Adaptive Online Learning Tim van Erven Joint work with: Wouter Koolen, Peter Grünwald ABN AMRO October 18, 2018 Example: Sequential Prediction for Football Games Before every match t

More information