Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo!

Size: px
Start display at page:

Download "Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo!"

Transcription

1 Theory and Applications of A Repeated Game Playing Algorithm Rob Schapire Princeton University [currently visiting Yahoo! Research]

2 Learning Is (Often) Just a Game some learning problems: learn from training examples to detect faces in images sequentially predict what decision a person will make next (e.g., what link a user will click on) learn to drive toy car by observing how human does it these appear to be very different this talk: can all be viewed as game-playing problems can all be handled as applications of single algorithm for playing repeated games take-home message: game-theoretic algorithms have wide applications in learning reveals deep connections between seemingly unrelated learning problems

3 Outline how to play repeated games: theory and an algorithm applications: boosting on-line learning apprenticeship learning

4 How to Play Repeated Games [with Freund]

5 Games game defined by matrix M: Rock Paper Scissors Rock 1/2 1 0 Paper 0 1/2 1 Scissors 1 0 1/2 row player ( Mindy ) chooses row i column player ( Max ) chooses column j (simultaneously) Mindy s goal: minimize her loss M(i, j) assume (wlog) all entries in [0,1]

6 Randomized Play usually allow randomized play: Mindy chooses distribution P over rows Max chooses distribution Q over columns (simultaneously) Mindy s (expected) loss = i,j P(i)M(i,j)Q(j) = P MQ M(P,Q) i, j = pure strategies P, Q = mixed strategies m = # rows of M also write M(i,Q) and M(P,j) when one side plays pure and other plays mixed

7 Sequential Play say Mindy plays before Max if Mindy chooses P then Max will pick Q to maximize M(P,Q) loss will be L(P) max Q M(P,Q) = maxm(p, j) j [note: maximum realized at pure strategy] so Mindy should pick P to minimize L(P) loss will be min P L(P) = min P max Q M(P,Q) similarly, if Max plays first, loss will be max Q min P M(P,Q)

8 Minmax Theorem playing second (with knowledge of other player s move) cannot be worse than playing first, so: min max M(P,Q) max minm(p,q) P Q Q P }{{}}{{} Mindy plays first Mindy plays second von Neumann s minmax theorem: min maxm(p,q) = max minm(p,q) P Q Q P in words: no advantage to playing second

9 Optimal Play minmax theorem: min maxm(p,q) = max min M(P,Q) = value v of game P Q Q P optimal strategies: P = arg min P max Q M(P,Q) = minmax strategy Q = arg max Q min P M(P,Q) = maxmin strategy in words: Mindy s minmax strategy P guarantees loss v (regardless of Max s play) optimal because Max has maxmin strategy Q that can force loss v (regardless of Mindy s play) e.g.: in RPS, P = Q = uniform solving game = finding minmax/maxmin strategies

10 Weaknesses of Classical Theory seems to fully answer how to play games just compute minmax strategy (e.g., using linear programming) weaknesses: game M may be unknown game M may be extremely large opponent may not be fully adversarial may be possible to do better than value v e.g.: Lisa (thinks): Poor predictable Bart, always takes Rock. Bart (thinks): Good old Rock, nothing beats that.

11 Repeated Play if only playing once, hopeless to overcome ignorance of game M or opponent but if game played repeatedly, may be possible to learn to play well goal: play (almost) as well as if knew game and how opponent would play ahead of time

12 Repeated Play (cont.) M unknown for t = 1,...,T: want: Mindy chooses P t Max chooses Q t (possibly depending on P t ) Mindy s loss = M(P t,q t ) Mindy observes loss M(i,Q t ) of each pure strategy i 1 T 1 T M(P t,q t ) min M(P,Q t ) + [ small amount ] T P T t=1 t=1 }{{}}{{} actual average loss best loss (in hindsight)

13 Multiplicative-weights Algorithm (MW) choose η > 0 initialize: P 1 = uniform on round t: P t+1 (i) = P t(i) exp( η M(i,Q t )) normalization idea: decrease weight of strategies suffering the most loss directly generalizes [Littlestone & Warmuth] other algorithms: [Hannan 57] [Blackwell 56] [Foster & Vohra] [Fudenberg & Levine].

14 Analysis Theorem: can choose η so that, for any game M with m rows, and any opponent, 1 T 1 T M(P t,q t ) min M(P,Q t ) + T T P T t=1 t=1 }{{}}{{} actual average loss best average loss ( v) ( ) lnm where T = O 0 T regret T is: logarithmic in # rows m independent of # columns running time (of MW) is: linear in # rows m independent of # columns therefore, can use when working with very large games

15 Can Prove Minmax Theorem as Corollary want to prove: min maxm(p,q) max minm(p,q) P Q Q P (already argued ) game M played repeatedly Mindy plays using MW on round t, Max chooses best response: Q t = arg max Q M(P t,q) [note: Q t can be pure] let P = 1 T T P t, t=1 Q = 1 T T t=1 Q t

16 Proof of Minmax Theorem min P max Q P MQ = max Q max Q P MQ 1 T = 1 T 1 T T t=1 T P t MQ t=1 max Q P t MQ T P t MQ t t=1 1 min P T T P MQ t + T t=1 = minp MQ + T P max min Q P P MQ + T

17 Solving a Game derivation shows that: max Q M(P,Q) v + T and min P M(P,Q) v T so: P and Q are T -approximate minmax and maxmin strategies further: can choose Q t s to be pure Q = 1 T t Q t will be sparse ( T non-zero entries)

18 Summary of Game Playing presented MW algorithm for repeatedly playing matrix games plays almost as well as best fixed strategy in hindsight very efficient independent of # columns proved minmax theorem MW can also be used to approximately solve a game

19 Application to Boosting [with Freund]

20 Example: Spam Filtering problem: filter out spam (junk ) gather large collection of examples of spam and non-spam: From: Rob, can you review a paper... non-spam From: xa412@hotmail.com Earn money without working!!!!... spam.. goal: have computer learn from examples to distinguish spam from non-spam main observation: easy to find rules of thumb that are often correct If viagra occurs in message, then predict spam hard to find single rule that is very highly accurate.

21 The Boosting Approach given: training examples access to weak learning algorithm for finding weak classifiers (rules of thumb) repeat: choose distribution on training examples intuition: put most weight on hardest examples train weak learner on distribution to get weak classifier combine weak classifiers into final classifier use (weighted) majority vote weak learning assumption: weak classifiers slightly but consistently better than random want: final classifier to be very accurate

22 Boosting as a Game Mindy (row player) booster Max (column player) weak learner matrix M: row training example column weak classifier { M(i,j) = 1 if j-th weak classifier correct on i-th training example 0 else encodes which weak classifiers correct on which examples huge # of columns one for every possible weak classifier

23 Boosting and the Minmax Theorem γ-weak learning assumption: for every distribution on examples can find weak classifier with weighted error 1 2 γ equivalent to: (value of game M) γ by minmax theorem, implies that: some weighted majority classifier that correctly classifies all training examples further, weights are given by maxmin strategy of game M

24 Idea for Boosting maxmin strategy of M has perfect (training) accuracy find approximately using earlier algorithm for solving a game i.e., apply MW to M yields (variant of) AdaBoost

25 AdaBoost and Game Theory AdaBoost can be derived as special case of general game playing algorithm (MW) idea of boosting intimately tied to minmax theorem game-theoretic interpretation can further be used to analyze: AdaBoost s convergence properties AdaBoost as a large-margin classifier (margin = measure of confidence, useful for analyzing generalization accuracy)

26 Application: Detecting Faces [Viola & Jones] problem: find faces in photograph or movie weak classifiers: detect light/dark rectangles in image many clever tricks to make extremely fast and accurate

27 Application to On-line Learning [with Freund]

28 Example: Predicting Stock Market want to predict daily if stock market will go up or down every morning: listen to predictions of other forecasters (based on market conditions) formulate own prediction every evening: find out if market actually went up or down want own predictions to be almost as good as best forecaster

29 On-line Learning given access to pool of predictors could be: people, simple fixed functions, other learning algorithms, etc. for our purposes, think of as fixed functions of observable context on each round: get predictions of all predictors, given current context make own prediction find out correct outcome want: # mistakes close to that of best predictor training and testing occur simultaneously no statistical assumptions examples chosen by adversary

30 On-line Learning as a Game Mindy (row player) learner Max (column player) adversary matrix M: row predictor column { context 1 if i-th predictor wrong on j-th context M(i,j) = 0 else actually, the same game as in boosting, but with roles of players reversed

31 Applying MW can apply MW to game M weighted majority algorithm MW analysis gives: [Littlestone & Warmuth] (# mistakes of MW) (# mistakes of best predictor) + [ small amount ] regret only logarithmic in # predictors

32 Example: Mind-reading Game [with Freund & Doshi] can use to play penny-matching: human and computer each choose a bit if match, computer wins else human wins random play wins with 50% probability very hard for humans to play randomly can do better if can predict what opponent will do algorithm: MW with many fixed predictors each prediction based on recent history of plays e.g.: if human played 0 on last two rounds, then predict next play will be 1 else predict next play will be 0 play at: seed.ucsd.edu/ mindreader

33 Histogram of Scores number computer wins score human wins score = (rounds won by human) (rounds won by computer) based on 11,882 games computer won 86.6% of games average score = 41.0

34 Slower is Better (for People) 300 average duration (seconds) score the faster people play, the lower their score when play fast, probably fall into rhythmic pattern easy for computer to detect/predict

35 Application to Apprenticeship Learning [with Syed]

36 Learning How to Behave in Complex Environments example: learning to drive in toy world states: positions of cars actions: steer left/right; speed up; slow down reward: for going fast without crashing or going off road in general, called Markov decision process (MDP) goal: find policy that maximizes expected long-term reward policy = mapping from states to actions

37 Unknown Reward Function [Abbeel & Ng] when real-valued reward function known, optimal policy can be found using well established techniques however, often reward function not known in driving example: may know reward features : faster is better than slower collisions are bad going off road is bad but may not know how to combine these into single real-valued function we assume reward is unknown convex combination of known real-valued features

38 Apprenticeship Learning also assume get to observe behavior of expert goal: imitate expert improve on expert, if possible

39 Game-theoretic Approach want to find policy such that improvement over expert is as large as possible, for all possible reward functions can formulate as game: rows features columns policies (note: extremely large number of columns) optimal (randomized) policy, under our criterion, is exactly maxmin of game can solve (approximately) using MW: to pick best column on each round, use methods for standard MDP s with known reward

40 Conclusions presented MW algorithm for playing repeated games used to prove minmax theorem can use to approximately solve games efficiently many diverse applications and insights boosting key concepts and algorithms are all game-theoretic on-line learning in essence, the same problem as boosting apprenticeship learning new and richer problem, but solvable as a game

41 References Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In Ninth Annual Conference on Computational Learning Theory, Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29:79 103, Umar Syed and Robert E. Schapire. A game-theoretic approach to apprenticeship learning. In Advances in Neural Information Processing Systems 20, Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University Press, Coming soon (hopefully): Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT Press, 2010(?).

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Hybrid Machine Learning Algorithms

Hybrid Machine Learning Algorithms Hybrid Machine Learning Algorithms Umar Syed Princeton University Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft) Common Approaches to Machine Learning!! Supervised

More information

Game Theory, On-line prediction and Boosting (Freund, Schapire)

Game Theory, On-line prediction and Boosting (Freund, Schapire) Game heory, On-line prediction and Boosting (Freund, Schapire) Idan Attias /4/208 INRODUCION he purpose of this paper is to bring out the close connection between game theory, on-line prediction and boosting,

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 203 Review of Zero-Sum Games At the end of last lecture, we discussed a model for two player games (call

More information

Boosting: Foundations and Algorithms. Rob Schapire

Boosting: Foundations and Algorithms. Rob Schapire Boosting: Foundations and Algorithms Rob Schapire Example: Spam Filtering problem: filter out spam (junk email) gather large collection of examples of spam and non-spam: From: yoav@ucsd.edu Rob, can you

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 2018

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 2018 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 208 Review of Game heory he games we will discuss are two-player games that can be modeled by a game matrix

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Game Theory, On-line Prediction and Boosting

Game Theory, On-line Prediction and Boosting roceedings of the Ninth Annual Conference on Computational Learning heory, 996. Game heory, On-line rediction and Boosting Yoav Freund Robert E. Schapire A& Laboratories 600 Mountain Avenue Murray Hill,

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Gambling in a rigged casino: The adversarial multi-armed bandit problem

Gambling in a rigged casino: The adversarial multi-armed bandit problem Gambling in a rigged casino: The adversarial multi-armed bandit problem Peter Auer Institute for Theoretical Computer Science University of Technology Graz A-8010 Graz (Austria) pauer@igi.tu-graz.ac.at

More information

A Game-Theoretic Approach to Apprenticeship Learning

A Game-Theoretic Approach to Apprenticeship Learning Advances in Neural Information Processing Systems 20, 2008. A Game-Theoretic Approach to Apprenticeship Learning Umar Syed Computer Science Department Princeton University 35 Olden St Princeton, NJ 08540-5233

More information

Adaptive Game Playing Using Multiplicative Weights

Adaptive Game Playing Using Multiplicative Weights Games and Economic Behavior 29, 79 03 (999 Article ID game.999.0738, available online at http://www.idealibrary.com on Adaptive Game Playing Using Multiplicative Weights Yoav Freund and Robert E. Schapire

More information

Totally Corrective Boosting Algorithms that Maximize the Margin

Totally Corrective Boosting Algorithms that Maximize the Margin Totally Corrective Boosting Algorithms that Maximize the Margin Manfred K. Warmuth 1 Jun Liao 1 Gunnar Rätsch 2 1 University of California, Santa Cruz 2 Friedrich Miescher Laboratory, Tübingen, Germany

More information

An Algorithms-based Intro to Machine Learning

An Algorithms-based Intro to Machine Learning CMU 15451 lecture 12/08/11 An Algorithmsbased Intro to Machine Learning Plan for today Machine Learning intro: models and basic issues An interesting algorithm for combining expert advice Avrim Blum [Based

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Learning and Games MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Normal form games Nash equilibrium von Neumann s minimax theorem Correlated equilibrium Internal

More information

Lecture 8. Instructor: Haipeng Luo

Lecture 8. Instructor: Haipeng Luo Lecture 8 Instructor: Haipeng Luo Boosting and AdaBoost In this lecture we discuss the connection between boosting and online learning. Boosting is not only one of the most fundamental theories in machine

More information

Learning Ensembles. 293S T. Yang. UCSB, 2017.

Learning Ensembles. 293S T. Yang. UCSB, 2017. Learning Ensembles 293S T. Yang. UCSB, 2017. Outlines Learning Assembles Random Forest Adaboost Training data: Restaurant example Examples described by attribute values (Boolean, discrete, continuous)

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Prediction and Playing Games

Prediction and Playing Games Prediction and Playing Games Vineel Pratap vineel@eng.ucsd.edu February 20, 204 Chapter 7 : Prediction, Learning and Games - Cesa Binachi & Lugosi K-Person Normal Form Games Each player k (k =,..., K)

More information

Chapter 18. Decision Trees and Ensemble Learning. Recall: Learning Decision Trees

Chapter 18. Decision Trees and Ensemble Learning. Recall: Learning Decision Trees CSE 473 Chapter 18 Decision Trees and Ensemble Learning Recall: Learning Decision Trees Example: When should I wait for a table at a restaurant? Attributes (features) relevant to Wait? decision: 1. Alternate:

More information

The Boosting Approach to. Machine Learning. Maria-Florina Balcan 10/31/2016

The Boosting Approach to. Machine Learning. Maria-Florina Balcan 10/31/2016 The Boosting Approach to Machine Learning Maria-Florina Balcan 10/31/2016 Boosting General method for improving the accuracy of any given learning algorithm. Works by creating a series of challenge datasets

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Optimal and Adaptive Algorithms for Online Boosting

Optimal and Adaptive Algorithms for Online Boosting Optimal and Adaptive Algorithms for Online Boosting Alina Beygelzimer 1 Satyen Kale 1 Haipeng Luo 2 1 Yahoo! Labs, NYC 2 Computer Science Department, Princeton University Jul 8, 2015 Boosting: An Example

More information

Ensembles. Léon Bottou COS 424 4/8/2010

Ensembles. Léon Bottou COS 424 4/8/2010 Ensembles Léon Bottou COS 424 4/8/2010 Readings T. G. Dietterich (2000) Ensemble Methods in Machine Learning. R. E. Schapire (2003): The Boosting Approach to Machine Learning. Sections 1,2,3,4,6. Léon

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 8: Boosting (and Compression Schemes) Boosting the Error If we have an efficient learning algorithm that for any distribution

More information

Boosting. Acknowledgment Slides are based on tutorials from Robert Schapire and Gunnar Raetsch

Boosting. Acknowledgment Slides are based on tutorials from Robert Schapire and Gunnar Raetsch . Machine Learning Boosting Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das Online Learning 9.520 Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das About this class Goal To introduce the general setting of online learning. To describe an online version of the RLS algorithm

More information

Algorithms, Games, and Networks January 17, Lecture 2

Algorithms, Games, and Networks January 17, Lecture 2 Algorithms, Games, and Networks January 17, 2013 Lecturer: Avrim Blum Lecture 2 Scribe: Aleksandr Kazachkov 1 Readings for today s lecture Today s topic is online learning, regret minimization, and minimax

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Theory and Applications of Boosting. Rob Schapire

Theory and Applications of Boosting. Rob Schapire Theory and Applications of Boosting Rob Schapire Example: How May I Help You? [Gorin et al.] goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson,

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

CS229 Supplemental Lecture notes

CS229 Supplemental Lecture notes CS229 Supplemental Lecture notes John Duchi 1 Boosting We have seen so far how to solve classification (and other) problems when we have a data representation already chosen. We now talk about a procedure,

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

9 Classification. 9.1 Linear Classifiers

9 Classification. 9.1 Linear Classifiers 9 Classification This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 Updated: March 23, 2010 Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 ICML 2009 Tutorial Survey of Boosting from an Optimization Perspective Part I: Entropy Regularized LPBoost Part II: Boosting from

More information

Lecture 14: Approachability and regret minimization Ramesh Johari May 23, 2007

Lecture 14: Approachability and regret minimization Ramesh Johari May 23, 2007 MS&E 336 Lecture 4: Approachability and regret minimization Ramesh Johari May 23, 2007 In this lecture we use Blackwell s approachability theorem to formulate both external and internal regret minimizing

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 25.1 Introduction Today we re going to talk about machine learning, but from an

More information

Background. Adaptive Filters and Machine Learning. Bootstrap. Combining models. Boosting and Bagging. Poltayev Rassulzhan

Background. Adaptive Filters and Machine Learning. Bootstrap. Combining models. Boosting and Bagging. Poltayev Rassulzhan Adaptive Filters and Machine Learning Boosting and Bagging Background Poltayev Rassulzhan rasulzhan@gmail.com Resampling Bootstrap We are using training set and different subsets in order to validate results

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Game Theory, On-line Prediction and Boosting

Game Theory, On-line Prediction and Boosting Game Theory, On-line Prediction and Boosting Yoav Freund Robert E. Schapire AT&T Laboratories 600 Mountain Avenue Murray Hill, NJ 07974-0636 {yoav, schapire}~research. att.com Abstract We study the close

More information

Ensemble Methods for Machine Learning

Ensemble Methods for Machine Learning Ensemble Methods for Machine Learning COMBINING CLASSIFIERS: ENSEMBLE APPROACHES Common Ensemble classifiers Bagging/Random Forests Bucket of models Stacking Boosting Ensemble classifiers we ve studied

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Data Warehousing & Data Mining

Data Warehousing & Data Mining 13. Meta-Algorithms for Classification Data Warehousing & Data Mining Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 13.

More information

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm

CS261: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm CS61: A Second Course in Algorithms Lecture #11: Online Learning and the Multiplicative Weights Algorithm Tim Roughgarden February 9, 016 1 Online Algorithms This lecture begins the third module of the

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Follow-he-Perturbed Leader MEHRYAR MOHRI MOHRI@ COURAN INSIUE & GOOGLE RESEARCH. General Ideas Linear loss: decomposition as a sum along substructures. sum of edge losses in a

More information

Convergence and No-Regret in Multiagent Learning

Convergence and No-Regret in Multiagent Learning Convergence and No-Regret in Multiagent Learning Michael Bowling Department of Computing Science University of Alberta Edmonton, Alberta Canada T6G 2E8 bowling@cs.ualberta.ca Abstract Learning in a multiagent

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

A Drifting-Games Analysis for Online Learning and Applications to Boosting

A Drifting-Games Analysis for Online Learning and Applications to Boosting A Drifting-Games Analysis for Online Learning and Applications to Boosting Haipeng Luo Department of Computer Science Princeton University Princeton, NJ 08540 haipengl@cs.princeton.edu Robert E. Schapire

More information

What makes good ensemble? CS789: Machine Learning and Neural Network. Introduction. More on diversity

What makes good ensemble? CS789: Machine Learning and Neural Network. Introduction. More on diversity What makes good ensemble? CS789: Machine Learning and Neural Network Ensemble methods Jakramate Bootkrajang Department of Computer Science Chiang Mai University 1. A member of the ensemble is accurate.

More information

COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017

COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017 COMS 4721: Machine Learning for Data Science Lecture 13, 3/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University BOOSTING Robert E. Schapire and Yoav

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Ensemble Learning How to combine multiple classifiers into a single one Works well if the classifiers are complementary This class: two types of

More information

A Multiplayer Generalization of the MinMax Theorem

A Multiplayer Generalization of the MinMax Theorem A Multiplayer Generalization of the MinMax Theorem Yang Cai Ozan Candogan Constantinos Daskalakis Christos Papadimitriou Abstract We show that in zero-sum polymatrix games, a multiplayer generalization

More information

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual Outline: Ensemble Learning We will describe and investigate algorithms to Ensemble Learning Lecture 10, DD2431 Machine Learning A. Maki, J. Sullivan October 2014 train weak classifiers/regressors and how

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

An overview of Boosting. Yoav Freund UCSD

An overview of Boosting. Yoav Freund UCSD An overview of Boosting Yoav Freund UCSD Plan of talk Generative vs. non-generative modeling Boosting Alternating decision trees Boosting and over-fitting Applications 2 Toy Example Computer receives telephone

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics

Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics Sergiu Hart August 2016 Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics Sergiu Hart Center for the Study of Rationality

More information

Game Theory: Lecture 3

Game Theory: Lecture 3 Game Theory: Lecture 3 Lecturer: Pingzhong Tang Topic: Mixed strategy Scribe: Yuan Deng March 16, 2015 Definition 1 (Mixed strategy). A mixed strategy S i : A i [0, 1] assigns a probability S i ( ) 0 to

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Introduction to Boosting and Joint Boosting

Introduction to Boosting and Joint Boosting Introduction to Boosting and Learning Systems Group, Caltech 2005/04/26, Presentation in EE150 Boosting and Outline Introduction to Boosting 1 Introduction to Boosting Intuition of Boosting Adaptive Boosting

More information

No-Regret Algorithms for Unconstrained Online Convex Optimization

No-Regret Algorithms for Unconstrained Online Convex Optimization No-Regret Algorithms for Unconstrained Online Convex Optimization Matthew Streeter Duolingo, Inc. Pittsburgh, PA 153 matt@duolingo.com H. Brendan McMahan Google, Inc. Seattle, WA 98103 mcmahan@google.com

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression Large-Margin Thresholded Ensembles for Ordinal Regression Hsuan-Tien Lin (accepted by ALT 06, joint work with Ling Li) Learning Systems Group, Caltech Workshop Talk in MLSS 2006, Taipei, Taiwan, 07/25/2006

More information

Experts in a Markov Decision Process

Experts in a Markov Decision Process University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 2004 Experts in a Markov Decision Process Eyal Even-Dar Sham Kakade University of Pennsylvania Yishay Mansour Follow

More information

Game-Theoretic Learning:

Game-Theoretic Learning: Game-Theoretic Learning: Regret Minimization vs. Utility Maximization Amy Greenwald with David Gondek, Amir Jafari, and Casey Marks Brown University University of Pennsylvania November 17, 2004 Background

More information

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm he Algorithmic Foundations of Adaptive Data Analysis November, 207 Lecture 5-6 Lecturer: Aaron Roth Scribe: Aaron Roth he Multiplicative Weights Algorithm In this lecture, we define and analyze a classic,

More information

1 Basic Game Modelling

1 Basic Game Modelling Max-Planck-Institut für Informatik, Winter 2017 Advanced Topic Course Algorithmic Game Theory, Mechanism Design & Computational Economics Lecturer: CHEUNG, Yun Kuen (Marco) Lecture 1: Basic Game Modelling,

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

COMS 4771 Lecture Boosting 1 / 16

COMS 4771 Lecture Boosting 1 / 16 COMS 4771 Lecture 12 1. Boosting 1 / 16 Boosting What is boosting? Boosting: Using a learning algorithm that provides rough rules-of-thumb to construct a very accurate predictor. 3 / 16 What is boosting?

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

Ensemble learning 11/19/13. The wisdom of the crowds. Chapter 11. Ensemble methods. Ensemble methods

Ensemble learning 11/19/13. The wisdom of the crowds. Chapter 11. Ensemble methods. Ensemble methods The wisdom of the crowds Ensemble learning Sir Francis Galton discovered in the early 1900s that a collection of educated guesses can add up to very accurate predictions! Chapter 11 The paper in which

More information

Decision Trees: Overfitting

Decision Trees: Overfitting Decision Trees: Overfitting Emily Fox University of Washington January 30, 2017 Decision tree recap Loan status: Root 22 18 poor 4 14 Credit? Income? excellent 9 0 3 years 0 4 Fair 9 4 Term? 5 years 9

More information

Introduction to Machine Learning Lecture 11. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 11. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 11 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Boosting Mehryar Mohri - Introduction to Machine Learning page 2 Boosting Ideas Main idea:

More information

The Boosting Approach to Machine Learning. Rob Schapire Princeton University. schapire

The Boosting Approach to Machine Learning. Rob Schapire Princeton University.  schapire The Boosting Approach to Machine Learning Rob Schapire Princeton University www.cs.princeton.edu/ schapire Example: Spam Filtering problem: filter out spam (junk email) gather large collection of examples

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 22: Perceptrons and More! 11/15/2011 Dan Klein UC Berkeley Errors, and What to Do Examples of errors Dear GlobalSCAPE Customer, GlobalSCAPE has partnered

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 23: Perceptrons 11/20/2008 Dan Klein UC Berkeley 1 General Naïve Bayes A general naive Bayes model: C E 1 E 2 E n We only specify how each feature depends

More information

General Naïve Bayes. CS 188: Artificial Intelligence Fall Example: Overfitting. Example: OCR. Example: Spam Filtering. Example: Spam Filtering

General Naïve Bayes. CS 188: Artificial Intelligence Fall Example: Overfitting. Example: OCR. Example: Spam Filtering. Example: Spam Filtering CS 188: Artificial Intelligence Fall 2008 General Naïve Bayes A general naive Bayes model: C Lecture 23: Perceptrons 11/20/2008 E 1 E 2 E n Dan Klein UC Berkeley We only specify how each feature depends

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Errors, and What to Do. CS 188: Artificial Intelligence Fall What to Do About Errors. Later On. Some (Simplified) Biology

Errors, and What to Do. CS 188: Artificial Intelligence Fall What to Do About Errors. Later On. Some (Simplified) Biology CS 188: Artificial Intelligence Fall 2011 Lecture 22: Perceptrons and More! 11/15/2011 Dan Klein UC Berkeley Errors, and What to Do Examples of errors Dear GlobalSCAPE Customer, GlobalSCAPE has partnered

More information

Using Additive Expert Ensembles to Cope with Concept Drift

Using Additive Expert Ensembles to Cope with Concept Drift Jeremy Z. Kolter and Marcus A. Maloof {jzk, maloof}@cs.georgetown.edu Department of Computer Science, Georgetown University, Washington, DC 20057-1232, USA Abstract We consider online learning where the

More information

CS260: Machine Learning Theory Lecture 12: No Regret and the Minimax Theorem of Game Theory November 2, 2011

CS260: Machine Learning Theory Lecture 12: No Regret and the Minimax Theorem of Game Theory November 2, 2011 CS260: Machine Learning heory Lecture 2: No Regret and the Minimax heorem of Game heory November 2, 20 Lecturer: Jennifer Wortman Vaughan Regret Bound for Randomized Weighted Majority In the last class,

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 10 LEARNING THEORY For nothing ought to be posited without a reason given, unless it is self-evident or known by experience or proved by the authority of Sacred

More information

Blackwell s Approachability Theorem: A Generalization in a Special Case. Amy Greenwald, Amir Jafari and Casey Marks

Blackwell s Approachability Theorem: A Generalization in a Special Case. Amy Greenwald, Amir Jafari and Casey Marks Blackwell s Approachability Theorem: A Generalization in a Special Case Amy Greenwald, Amir Jafari and Casey Marks Department of Computer Science Brown University Providence, Rhode Island 02912 CS-06-01

More information

Portfolio Optimization

Portfolio Optimization Statistical Techniques in Robotics (16-831, F12) Lecture#12 (Monday October 8) Portfolio Optimization Lecturer: Drew Bagnell Scribe: Ji Zhang 1 1 Portfolio Optimization - No Regret Portfolio We want to

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Machine Learning Algorithms for Classification. Rob Schapire Princeton University. schapire

Machine Learning Algorithms for Classification. Rob Schapire Princeton University.   schapire Machine Learning Algorithms for Classification Rob Schapire Princeton University www.cs.princeton.edu/ schapire Machine Learning studies how to automatically learn to make accurate predictions based on

More information