Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen

Size: px
Start display at page:

Download "Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen"

Transcription

1 Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search Wouter M. Koolen Machine Learning and Statistics for Structures Friday 23 rd February, 2018

2 Outline 1 Intro 2 Model 3 Statistician s toolbox 4 Sample Complexity Lower Bound 5 Algorithms 6 Extensions

3 Question Complexity of interactive learning.

4 Question Complexity of interactive learning. Medical testing [Villar et al., 2015] Online advertising and website optimisation [Zhou et al., 2014] Monte Carlo planning [Grill et al., 2016], and Game-playing AI [Silver et al., 2016]

5 Pure Exploration Query: Which is... the most effective drug dose? the most appealing website layout? the safest next robot action?

6 Pure Exploration Query: Which is... Method the most effective drug dose? the most appealing website layout? the safest next robot action? statistical experiments in physical or simulated environment, interactively and adaptively.

7 Pure Exploration Query: Which is... Method the most effective drug dose? the most appealing website layout? the safest next robot action? statistical experiments in physical or simulated environment, interactively and adaptively. Main scientific questions: sample complexity of interactive learning # experiments as function of query structure and environment Design of efficient pure exploration systems

8 Outline 1 Intro 2 Model 3 Statistician s toolbox 4 Sample Complexity Lower Bound 5 Algorithms 6 Extensions

9 Formal model Environment (Multi-armed bandit model) K distributions ν 1,..., ν K with means µ 1,..., µ K. Best arm i = argmax µ i i [K]

10 Formal model Environment (Multi-armed bandit model) K distributions ν 1,..., ν K with means µ 1,..., µ K. Best arm i = argmax µ i i [K] Strategy Stopping rule τ N In round t τ sampling rule picks I t [K]. See X t ν It. Recommendation rule Î [K].

11 Formal model Environment (Multi-armed bandit model) K distributions ν 1,..., ν K with means µ 1,..., µ K. Best arm i = argmax µ i i [K] Strategy Stopping rule τ N In round t τ sampling rule picks I t [K]. See X t ν It. Recommendation rule Î [K]. Realisation of interaction: (I 1, X 1 ),..., (I τ, X τ ), Î.

12 Formal model Environment (Multi-armed bandit model) K distributions ν 1,..., ν K with means µ 1,..., µ K. Best arm i = argmax µ i i [K] Strategy Stopping rule τ N In round t τ sampling rule picks I t [K]. See X t ν It. Recommendation rule Î [K]. Realisation of interaction: (I 1, X 1 ),..., (I τ, X τ ), Î. Two objectives: sample efficiency τ and correctness Î = i.

13 Objective Two main flavours: fixed budget : fix τ = T, optimise P(Î = i ) fixed confidence : fix P(Î = i ) δ, optimise E[τ].

14 Objective Two main flavours: fixed budget : fix τ = T, optimise P(Î = i ) fixed confidence : fix P(Î = i ) δ, optimise E[τ]. Notation N i (t) = t s=1 1 {I s = i} and ˆµ i (t) = 1 N i (t) t X s 1 {I s = i} s=1

15 Outline 1 Intro 2 Model 3 Statistician s toolbox 4 Sample Complexity Lower Bound 5 Algorithms 6 Extensions

16 A statistician s view Active Sequential Multiple Composite Hypothesis Testing H i = {ν i (ν) = i} i [K] (Frequentist) uniform type 1 error control.

17 Families of approaches to BAI Upper and Lower confidence bounds [Bubeck et al., 2011, Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann and Kalyanakrishnan, 2013, Jamieson et al., 2014], Racing or Successive Rejects/Eliminations [Maron and Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010, Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013], Thompson Sampling [Russo, 2016] (hemidemisemibayesian) Track-and-Stop [Garivier and Kaufmann, 2016].

18 Outline 1 Intro 2 Model 3 Statistician s toolbox 4 Sample Complexity Lower Bound 5 Algorithms 6 Extensions

19 Change of Measure If the observations are likely under both ν and λ, yet i (ν) i (λ), then the algorithm cannot stop and be correct. Theorem (Kaufmann, Cappé, and Garivier [2016]) For bandit models µ and λ, stopping time τ, and event E F τ, K E [N i (τ)] KL(ν i λ i ) d (P ν (E), P λ (E)) ν i=1

20 Change of Measure If the observations are likely under both ν and λ, yet i (ν) i (λ), then the algorithm cannot stop and be correct. Theorem (Kaufmann, Cappé, and Garivier [2016]) For bandit models µ and λ, stopping time τ, and event E F τ, K E [N i (τ)] KL(ν i λ i ) d (P ν (E), P λ (E)) ν i=1 Theorem (Garivier and Kaufmann [2016]) Let µ and λ be bandit models with i (ν) i (λ). Then for any δ-correct algorithm K E [N i (τ)] KL(ν i λ i ) d(δ, 1 δ) ν i=1

21 Sample Complexity Consequence Starting point: hence so E ν [τ] K i=1 E ν [τ] max w K E ν [N i (τ)] E ν [τ] min λ Alt(ν) KL(ν i λ i ) d(δ, 1 δ) K w i KL(ν i λ i ) d(δ, 1 δ) i=1 Theorem (Garivier and Kaufmann [2016]) E ν [τ] T (ν)d(δ, 1 δ) where 1 T (ν) = max min w K λ Alt(ν) K w i KL(ν i λ i ) i=1

22 Example K = 5 arms, µ = (.3,.4,.5,.6,.7). Bernoulli T (µ) = Gaussian (σ 2 = 1) T (µ) = 893.5

23 Outline 1 Intro 2 Model 3 Statistician s toolbox 4 Sample Complexity Lower Bound 5 Algorithms 6 Extensions

24 Algorithms Sampling rule? Stopping rule? Recommendation rule? Î = argmax i [K] ˆµ i (τ)

25 Sampling Rule Look at the lower bound again. Any good algorithm must sample with optimal proportions w (ν) = argmax w K min λ Alt(ν) K w i KL(ν i λ i ) i=1

26 Sampling Rule Look at the lower bound again. Any good algorithm must sample with optimal proportions w (ν) = argmax w K min λ Alt(ν) K w i KL(ν i λ i ) i=1 Idea: draw I t w ( ˆµ(t)). Ensure N i (t)/t wi by forced exploration Draw arm with N i (t)/t below wi (tracking) Computation

27 Stopping Rule When do we have enough evidence to stop? Generalized Likelihood Ratio Test (GLRT) P ˆµ(t) (data) Z t = ln max λ Alt( ˆµ(t)) P λ (data)

28 Stopping Rule When do we have enough evidence to stop? Generalized Likelihood Ratio Test (GLRT) P ˆµ(t) (data) Z t = ln max λ Alt( ˆµ(t)) P λ (data) Turns out, GLRT statistic equals Z t = min λ Alt( ˆµ(t)) K N i (t) KL(ˆµ i (t) λ i ) i=1 i.e. lower bound with ˆµ(t) plug-in.

29 Stopping Rule When do we have enough evidence to stop? Generalized Likelihood Ratio Test (GLRT) P ˆµ(t) (data) Z t = ln max λ Alt( ˆµ(t)) P λ (data) Turns out, GLRT statistic equals Z t = min λ Alt( ˆµ(t)) K N i (t) KL(ˆµ i (t) λ i ) i=1 i.e. lower bound with ˆµ(t) plug-in. Roughly: stop when Z t ln 1 δ. Make precise with careful universal coding (MDL) argument.

30 All in all Final result: for Track-and-Stop algorithms E µ [τ] lim sup δ 0 ln 1 δ = T (µ) Very similar optimality result for Top Two Thompson Sampling by Russo [2016]

31 Outline 1 Intro 2 Model 3 Statistician s toolbox 4 Sample Complexity Lower Bound 5 Algorithms 6 Extensions

32 Beyond asymptotic bounds Okay, so good algorithms have E µ [τ] T (µ) ln 1 δ + small. What about lower-order terms? Moderate confidence regime! Dependence on ln ln 1 δ Dependence on ln K. [Simchowitz et al., 2017, Chen et al., 2017b]

33 Beyond Best Arm Practical and fundamental question: solving more complex pure exploration problems. : Pure Exploration Problems general Monte Carlo Tree Search Maximin Action Identification (max-min)* Combinatorial Pure Exploration BAI max max-min max-sum Fully Dense Fixed Sparsity Variable Sparsity

34 Combinatorial Pure Exploration Best k-set Shortest path Spanning tree...

35 Combinatorial Pure Exploration Best k-set Shortest path Spanning tree... Combinatorial collection F of subsets of [K]. i = i (ν) = argmax S F i S [Chen et al., 2017a] Track-and-stop-like algorithms. Can compute lower bound. Dense. µ i.

36 Game Tree Search max 1 2 min min µ 1,1 µ 1,2 µ 2,1 µ 2,2 Goal: find maximin action i := arg max i min µ i,j j

37 Sparsity in the Lower Bound (depth 2) Kaufmann and Koolen [2017] Sparsity Pattern max min Oracle weights w supported on only 7 of the 13 leaves. Open problem: algorithms incorporating appropriate pruning?

38 Sparsity in the Lower Bound (depth 3) max min max optimal weights µ 1 µ 2 µ 3 µ w 1 w 2 w 3 w 4 oracle weights w = (w 1, w 2, w 3, w 4 ) as a function of µ 3 for µ = (16, 5, µ 3, 0) It s complicated. But not intractable.

39 Conclusion Pure Exploration is an interesting, hot, promising area. : Pure Exploration Problems general Monte Carlo Tree Search Maximin Action Identification (max-min)* Combinatorial Pure Exploration BAI max max-min max-sum Fully Dense Fixed Sparsity Variable Sparsity

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

Monte-Carlo Tree Search by. MCTS by Best Arm Identification

Monte-Carlo Tree Search by. MCTS by Best Arm Identification Monte-Carlo Tree Search by Best Arm Identification and Wouter M. Koolen Inria Lille SequeL team CWI Machine Learning Group Inria-CWI workshop Amsterdam, September 20th, 2017 Part of...... a new Associate

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration

Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration JMLR: Workshop and Conference Proceedings vol 65: 55, 207 30th Annual Conference on Learning Theory Nearly Optimal Sampling Algorithms for Combinatorial Pure Exploration Editor: Under Review for COLT 207

More information

arxiv: v2 [stat.ml] 14 Nov 2016

arxiv: v2 [stat.ml] 14 Nov 2016 Journal of Machine Learning Research 6 06-4 Submitted 7/4; Revised /5; Published /6 On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models arxiv:407.4443v [stat.ml] 4 Nov 06 Emilie Kaufmann

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

On Sequential Decision Problems

On Sequential Decision Problems On Sequential Decision Problems Aurélien Garivier Séminaire du LIP, 14 mars 2018 Équipe-projet AOC: Apprentissage, Optimisation, Complexité Institut de Mathématiques de Toulouse LabeX CIMI Université Paul

More information

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conugate Priors Yichi Zhou 1 Jun Zhu 1 Jingwe Zhuo 1 Abstract Thompson sampling has impressive empirical performance for many multi-armed

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

arxiv: v3 [cs.lg] 7 Nov 2017

arxiv: v3 [cs.lg] 7 Nov 2017 ESAIM: PROCEEDINGS AND SURVEYS, Vol.?, 2017, 1-10 Editors: Will be set by the publisher arxiv:1702.00001v3 [cs.lg] 7 Nov 2017 LEARNING THE DISTRIBUTION WITH LARGEST MEAN: TWO BANDIT FRAMEWORKS Emilie Kaufmann

More information

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling Emilie Kaufmann 1 Wouter M. Koolen 2 Aurélien Garivier 3 1 CNRS & U. Lille, CRIStAL / SequeL Inria Lille, emilie.kaufmann@univ-lille.fr

More information

On the Complexity of A/B Testing

On the Complexity of A/B Testing JMLR: Workshop and Conference Proceedings vol 35:1 3, 014 On the Complexity of A/B Testing Emilie Kaufmann LTCI, Télécom ParisTech & CNRS KAUFMANN@TELECOM-PARISTECH.FR Olivier Cappé CAPPE@TELECOM-PARISTECH.FR

More information

Optimal Best Arm Identification with Fixed Confidence

Optimal Best Arm Identification with Fixed Confidence JMLR: Workshop and Conference Proceedings vol 49:1 30, 2016 Optimal Best Arm Identification with Fixed Confidence Aurélien Garivier Institut de Mathématiques de Toulouse; UMR5219 Université de Toulouse;

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

arxiv: v1 [stat.ml] 27 May 2016

arxiv: v1 [stat.ml] 27 May 2016 An optimal algorithm for the hresholding Bandit Problem Andrea Locatelli Maurilio Gutzeit Alexandra Carpentier Department of Mathematics, University of Potsdam, Germany ANDREA.LOCAELLI@UNI-POSDAM.DE MGUZEI@UNI-POSDAM.DE

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

arxiv: v1 [cs.lg] 14 Nov 2018 Abstract

arxiv: v1 [cs.lg] 14 Nov 2018 Abstract Sample complexity of partition identification using multi-armed bandits Sandeep Juneja Subhashini Krishnasamy TIFR, Mumbai November 15, 2018 arxiv:1811.05654v1 [cs.lg] 14 Nov 2018 Abstract Given a vector

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Multiple Identifications in Multi-Armed Bandits

Multiple Identifications in Multi-Armed Bandits Multiple Identifications in Multi-Armed Bandits arxiv:05.38v [cs.lg] 4 May 0 Sébastien Bubeck Department of Operations Research and Financial Engineering, Princeton University sbubeck@princeton.edu Tengyao

More information

Bayesian optimization for automatic machine learning

Bayesian optimization for automatic machine learning Bayesian optimization for automatic machine learning Matthew W. Ho man based o work with J. M. Hernández-Lobato, M. Gelbart, B. Shahriari, and others! University of Cambridge July 11, 2015 Black-bo optimization

More information

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Mingxi Li (s1720554) First Advisor: Dr. Wouter M.Koolen Secondary Advisor: Dr. Tim van Erven master thesis Defended on October

More information

The knowledge gradient method for multi-armed bandit problems

The knowledge gradient method for multi-armed bandit problems The knowledge gradient method for multi-armed bandit problems Moving beyond inde policies Ilya O. Ryzhov Warren Powell Peter Frazier Department of Operations Research and Financial Engineering Princeton

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Combinatorial Pure Exploration of Multi-Armed Bandits

Combinatorial Pure Exploration of Multi-Armed Bandits Combinatorial Pure Exploration of Multi-Armed Bandits Shouyuan Chen 1 Tian Lin 2 Irwin King 1 Michael R. Lyu 1 Wei Chen 3 1 The Chinese University of Hong Kong 2 Tsinghua University 3 Microsoft Research

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

Stat 890 Design of computer experiments

Stat 890 Design of computer experiments Stat 890 Design of computer experiments Will introduce design concepts for computer experiments Will look at more elaborate constructions next day Experiment design In computer experiments, as in many

More information

Adaptive Multiple-Arm Identification

Adaptive Multiple-Arm Identification Adaptive Multiple-Arm Identification Jiecao Chen Computer Science Department Indiana University at Bloomington jiecchen@umail.iu.edu Qin Zhang Computer Science Department Indiana University at Bloomington

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits C&A Workshop 2016, Hangzhou Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction 2 Arms Best Arm Identification

More information

Lecture 6: Non-stochastic best arm identification

Lecture 6: Non-stochastic best arm identification CSE599i: Online and Adaptive Machine Learning Winter 08 Lecturer: Kevin Jamieson Lecture 6: Non-stochastic best arm identification Scribes: Anran Wang, eibin Li, rian Chan, Shiqing Yu, Zhijin Zhou Disclaimer:

More information

Pure Exploration Stochastic Multi-armed Bandits

Pure Exploration Stochastic Multi-armed Bandits CAS2016 Pure Exploration Stochastic Multi-armed Bandits Jian Li Institute for Interdisciplinary Information Sciences Tsinghua University Outline Introduction Optimal PAC Algorithm (Best-Arm, Best-k-Arm):

More information

Ordinal Optimization and Multi Armed Bandit Techniques

Ordinal Optimization and Multi Armed Bandit Techniques Ordinal Optimization and Multi Armed Bandit Techniques Sandeep Juneja. with Peter Glynn September 10, 2014 The ordinal optimization problem Determining the best of d alternative designs for a system, on

More information

arxiv: v1 [cs.lg] 15 Oct 2014

arxiv: v1 [cs.lg] 15 Oct 2014 THOMPSON SAMPLING WITH THE ONLINE BOOTSTRAP By Dean Eckles and Maurits Kaptein Facebook, Inc., and Radboud University, Nijmegen arxiv:141.49v1 [cs.lg] 15 Oct 214 Thompson sampling provides a solution to

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence

Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence Maryam Aziz, Jesse Anderton, Emilie Kaufmann, Javed Aslam To cite this version: Maryam Aziz, Jesse Anderton, Emilie Kaufmann, Javed

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Lecture 4 January 23

Lecture 4 January 23 STAT 263/363: Experimental Design Winter 2016/17 Lecture 4 January 23 Lecturer: Art B. Owen Scribe: Zachary del Rosario 4.1 Bandits Bandits are a form of online (adaptive) experiments; i.e. samples are

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning

On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning Matthew W. Hoffman Bobak Shahriari Nando de Freitas University of Cambridge University

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Dynamic resource allocation: Bandit problems and extensions

Dynamic resource allocation: Bandit problems and extensions Dynamic resource allocation: Bandit problems and extensions Aurélien Garivier Institut de Mathématiques de Toulouse MAD Seminar, Université Toulouse 1 October 3rd, 2014 The Bandit Model Roadmap 1 The Bandit

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Pure Exploration in Finitely Armed and Continuous Armed Bandits

Pure Exploration in Finitely Armed and Continuous Armed Bandits Pure Exploration in Finitely Armed and Continuous Armed Bandits Sébastien Bubeck INRIA Lille Nord Europe, SequeL project, 40 avenue Halley, 59650 Villeneuve d Ascq, France Rémi Munos INRIA Lille Nord Europe,

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods

Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Ordinal optimization - Empirical large deviations rate estimators, and multi-armed bandit methods Sandeep Juneja Tata Institute of Fundamental Research Mumbai, India joint work with Peter Glynn Applied

More information

arxiv: v2 [math.st] 14 Nov 2016

arxiv: v2 [math.st] 14 Nov 2016 On Explore-hen-Commit Strategies arxiv:1605.08988v math.s] 1 Nov 016 Aurélien Garivier Institut de Mathématiques de oulouse; UMR519 Université de oulouse; CNRS UPS IM, F-3106 oulouse Cedex 9, France aurelien.garivier@math.univ-toulouse.fr

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

Hypothesis Testing. Rianne de Heide. April 6, CWI & Leiden University

Hypothesis Testing. Rianne de Heide. April 6, CWI & Leiden University Hypothesis Testing Rianne de Heide CWI & Leiden University April 6, 2018 Me PhD-student Machine Learning Group Study coordinator M.Sc. Statistical Science Peter Grünwald Jacqueline Meulman Projects Bayesian

More information

arxiv: v1 [stat.ml] 31 Jan 2015

arxiv: v1 [stat.ml] 31 Jan 2015 Sparse Dueling Bandits arxiv:500033v [statml] 3 Jan 05 Kevin Jamieson, Sumeet Katariya, Atul Deshpande and Robert Nowak Department of Electrical and Computer Engineering University of Wisconsin Madison

More information

On the distinguishability of random quantum states

On the distinguishability of random quantum states 1 1 Department of Computer Science University of Bristol Bristol, UK quant-ph/0607011 Distinguishing quantum states Distinguishing quantum states This talk Question Consider a known ensemble E of n quantum

More information

On Sequential Elimination Algorithms for Best-Arm Identification in Multi-Armed Bandits

On Sequential Elimination Algorithms for Best-Arm Identification in Multi-Armed Bandits 1 On Sequential Elimination Algorithms for Best-Arm Identification in Multi-Armed Bandits Shahin Shahrampour, Mohammad Noshad, Vahid Tarokh arxiv:169266v2 [statml] 13 Apr 217 Abstract We consider the best-arm

More information

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/

More information

arxiv: v1 [cs.lg] 27 Feb 2015

arxiv: v1 [cs.lg] 27 Feb 2015 Kevin Jamieson KGJAMIESON@WISC.EDU Electrical and Computer Engineering Department, University of Wisconsin, Madison, WI 53706 Ameet Talwalkar AMEET@CS.UCLA.EDU Computer Science Department, UCLA, Boelter

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Wei Chen Microsoft Research Asia, Beijing, China Yajun Wang Microsoft Research Asia, Beijing, China Yang Yuan Computer Science

More information

Probability Models of Information Exchange on Networks Lecture 5

Probability Models of Information Exchange on Networks Lecture 5 Probability Models of Information Exchange on Networks Lecture 5 Elchanan Mossel (UC Berkeley) July 25, 2013 1 / 22 Informational Framework Each agent receives a private signal X i which depends on S.

More information

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION Submitted to the Annals of Statistics arxiv: math.pr/0000000 KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION By Olivier Cappé 1, Aurélien Garivier 2, Odalric-Ambrym Maillard

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

arxiv: v1 [cs.ds] 4 Mar 2016

arxiv: v1 [cs.ds] 4 Mar 2016 Sequential ranking under random semi-bandit feedback arxiv:1603.01450v1 [cs.ds] 4 Mar 2016 Hossein Vahabi, Paul Lagrée, Claire Vernade, Olivier Cappé March 7, 2016 Abstract In many web applications, a

More information

arxiv: v3 [stat.ml] 6 Nov 2017

arxiv: v3 [stat.ml] 6 Nov 2017 On Bayesian index policies for sequential resource allocation Emilie Kaufmann arxiv:60.090v3 [stat.ml] 6 Nov 07 CNRS & Univ. Lille, UMR 989 CRIStAL, Inria SequeL emilie.kaufmann@univ-lille.fr Abstract

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, 2016

More information

Bayesian reinforcement learning

Bayesian reinforcement learning Bayesian reinforcement learning Markov decision processes and approximate Bayesian computation Christos Dimitrakakis Chalmers April 16, 2015 Christos Dimitrakakis (Chalmers) Bayesian reinforcement learning

More information

Lecture 8. Instructor: Haipeng Luo

Lecture 8. Instructor: Haipeng Luo Lecture 8 Instructor: Haipeng Luo Boosting and AdaBoost In this lecture we discuss the connection between boosting and online learning. Boosting is not only one of the most fundamental theories in machine

More information

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit European Worshop on Reinforcement Learning 14 (2018 October 2018, Lille, France. Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit Réda Alami Orange Labs 2 Avenue Pierre Marzin 22300,

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

Tsinghua Machine Learning Guest Lecture, June 9,

Tsinghua Machine Learning Guest Lecture, June 9, Tsinghua Machine Learning Guest Lecture, June 9, 2015 1 Lecture Outline Introduction: motivations and definitions for online learning Multi-armed bandit: canonical example of online learning Combinatorial

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Adaptive Concentration Inequalities for Sequential Decision Problems

Adaptive Concentration Inequalities for Sequential Decision Problems Adaptive Concentration Inequalities for Sequential Decision Problems Shengjia Zhao Tsinghua University zhaosj12@stanford.edu Ashish Sabharwal Allen Institute for AI AshishS@allenai.org Enze Zhou Tsinghua

More information

Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls

Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls Kwang-Sung Jun Kevin Jamieson Robert Nowak Xiaojin Zhu UW-Madison UC Berkeley UW-Madison UW-Madison Abstract We introduce a new multi-armed

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

PAC Subset Selection in Stochastic Multi-armed Bandits

PAC Subset Selection in Stochastic Multi-armed Bandits In Langford, Pineau, editors, Proceedings of the 9th International Conference on Machine Learning, pp 655--66, Omnipress, New York, NY, USA, 0 PAC Subset Selection in Stochastic Multi-armed Bandits Shivaram

More information

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Madhav Mohandas, Richard Zhu, Vincent Zhuang May 5, 2016 Table of Contents 1. Intro to Crowdsourcing 2. The Problem 3. Knowledge Gradient Algorithm

More information

Bayesian Social Learning with Random Decision Making in Sequential Systems

Bayesian Social Learning with Random Decision Making in Sequential Systems Bayesian Social Learning with Random Decision Making in Sequential Systems Yunlong Wang supervised by Petar M. Djurić Department of Electrical and Computer Engineering Stony Brook University Stony Brook,

More information

An Asymptotically Optimal Algorithm for the Max k-armed Bandit Problem

An Asymptotically Optimal Algorithm for the Max k-armed Bandit Problem An Asymptotically Optimal Algorithm for the Max k-armed Bandit Problem Matthew J. Streeter February 27, 2006 CMU-CS-06-110 Stephen F. Smith School of Computer Science Carnegie Mellon University Pittsburgh,

More information

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019 Reinforcement Learning and Optimal Control ASU, CSE 691, Winter 2019 Dimitri P. Bertsekas dimitrib@mit.edu Lecture 8 Bertsekas Reinforcement Learning 1 / 21 Outline 1 Review of Infinite Horizon Problems

More information