On Bayesian bandit algorithms

Size: px
Start display at page:

Download "On Bayesian bandit algorithms"

Transcription

1 On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

2 1 Bayesian bandits versus Frequentist Bandit Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

3 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

4 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution 3 The Bayes-UCB algorithm Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

5 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution 3 The Bayes-UCB algorithm 4 Thompson Sampling Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

6 Bayesian bandits versus Frequentist Bandit Two probablistic modelling 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution 3 The Bayes-UCB algorithm 4 Thompson Sampling Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

7 Bayesian bandits versus Frequentist Bandit Two probabilistic modelling Two probablistic modelling K independent arms. µ = µ j Frequentist : θ 1,..., θ K unknown parameters (Y j,t ) t is i.i.d. with distribution ν θj with mean µ j highest expectation of reward. Bayesian : i.i.d. θ j π j (Y j,t ) t is i.i.d. conditionally to θ j with distribution ν θj At time t, arm I t is chosen and reward X t = Y It,t is observed Two measures of performance Minimize (classic) regret [ n ] R n (θ) = E θ µ µ It t=1 Minimize bayesian regret R n = R n (θ)dπ(θ) Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

8 Our goal Bayesian bandits versus Frequentist Bandit Bayesian versus frequentist bandit algorithms Design Bayesian bandit algorithms which are optimal in terms of frequentist regret Lai and Robbins asymptotic rate for the regret: lim inf E θ[n n (j)] log(n) lim inf E θ [R n ] log(n) 1 if j is non optimal KL(ν θj, ν θ ) µ µ j KL(ν θj, ν θ ) j non optimal Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

9 Bayesian bandits versus Frequentist Bandit Bayesian versus frequentist bandit algorithms Some Bayesian and frequentist algorithms Π t = (π t 1,..., πt K ) the current posterior over (θ 1,..., θ K ) Λ t = (λ t 1,..., λt K ) the current posterior over the means (µ 1,..., µ K ) A Bayesian algorithm uses Π t 1 to determine action I t. Frequentist algorithms: Bayesian algorithms: upper confidence bound on the empirical mean (UCB) [Auer at al. 2002] UCB based on KL-divergence (KL-UCB) [Garivier, Cappé 2011] Gittins indices [Gittins, 1979] quantiles of the posterior samples from the posterior [Thompson, 1933] Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

10 Gittins Bayesian solution 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution 3 The Bayes-UCB algorithm 4 Thompson Sampling Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

11 Gittins Bayesian solution The Finite-Horizon Gittins algorithm Often heard : Gittins solved the Bayesian MAB ONLY PARTIALLY TRUE gives an optimal policy for bayesian discounted regret only for simple parametric cases Finite-Horizon Gittins algorithm : is Bayesian optimal for the finite horizon problem involves indices hard to compute is heavily horizon-dependent no theoretical proof of its frequentist optimality Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

12 The Bayes-UCB algorithm The algorithm 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution 3 The Bayes-UCB algorithm 4 Thompson Sampling Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

13 The general algorithm The Bayes-UCB algorithm The algorithm Recall : Λ t = (λ t 1,..., λt K ) is the current posterior over the means (µ 1,..., µ K ) The Bayes-UCB algorithm is the index policy associated with: ( ) 1 q j (t) = Q 1 t(log t) c, λt 1 j ie, at time t choose I t = argmax j=1...k q j (t) Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

14 The Bayes-UCB algorithm The algorithm An illustration for Bernoulli bandits Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

15 The Bayes-UCB algorithm The Bernoulli case Theoretical results for the Bernoulli case ν θj is the Bernoulli distribution B(µ j ), π 0 j the (conjugate) prior Beta(1, 1) Bayes-UCB is frequentist optimal in this case Theorem (Kaufmann,Cappé,Garivier 2012) Let ɛ > 0; for the Bayes-UCB algorithm with parameter c 5, the number of draws of a suboptimal arm j is such that : 1 + ɛ E θ [N n (j)] KL (B(µ j ), B(µ )) log(n) + o ɛ,c (log(n)) Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

16 The Bayes-UCB algorithm The Bernoulli case Link to a frequentist algorithm: Bayes-UCB index is close to KL-UCB index: ũ j (t) q j (t) u j (t) with: { ( ) } St (j) d N t (j), x log(t) + c log(log(t)) N t (j) u j (t) = argmax x> S t (j) N j (t) ũ j (t) = argmax x> S t (j) N t (j)+1 ( ( ) d St (j) log N t (j) + 1, x where d(x, y) = KL (B(x), B(y)) = x log x y t N t(j)+2 ) + c log(log(t)) (N t (j) + 1) + (1 x) log 1 x 1 y Bayes-UCB appears to build automatically confidence intervals based on Kullback-Leibler divergence, that are adapted to the geometry of the problem in this specific case. Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

17 The Bayes-UCB algorithm Where does it come from? The Bernoulli case First element: link between Beta and Binomial distribution: P(X a,b x) = P(S a+b 1,x a 1) Second element: Sanov inequality leads to the following inequality: e nd( k n,x) n + 1 P(S n,x k) e nd( k n,x) Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

18 Experimental results The Bayes-UCB algorithm The Bernoulli case UCB KL UCB Bayes UCB FH Gittins UCB KL UCB Bayes UCB FH Gittins θ 1 = 0.1, θ 2 = 0.2 θ 1 = 0.45, θ 2 = 0.55 Cumulated regret curves for several strategies (estimated with N = 5000 repetitions of the bandit game with horizon n = 500) for two different problems Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

19 The Bayes-UCB algorithm Beyond the Bernoulli case Beyond the Bernoulli case In more general cases, the Bayes-UCB algorithm is very close to existing frequentist algorithms: bandits with rewards in a one parameter exponential familly Gaussian bandits with unknown mean and variance Linear Bandit setting with prior over the parameter Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

20 Thompson Sampling 1 Bayesian bandits versus Frequentist Bandit 2 Gittins Bayesian solution 3 The Bayes-UCB algorithm 4 Thompson Sampling Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

21 Thompson Sampling The algorithm The algorithm A very simple algorithm: j {1..K}, s j,t λ t j I t = argmax j s j,t (Recent) interest for this algorithm: a very old algorithm : dates back to 1933 partial analysis proposed [Granmo 2010][May, Korda, Lee, Leslie 2011] extensive numerical study beyond the Bernoulli case [Chapelle, Li 2011] first logarithmic upper bound on the regret [Agrawal,Goyal COLT 2012] Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

22 Thompson Sampling Theoretical analysis An optimal regret bound for the Bernoulli case Assume the first arm is the unique optimal and a = µ 1 µ a. First upper bound : Theorem (Agrawal,Goyal, 2012) K E[R n ] C 1 j=2 j First optimal upper bound : Theorem (Kaufmann,Korda,Munos 2012) log(n) + o θ (log(n)) ɛ > 0 K E[R n ] (1 + ɛ) j log(n) + o θ,ɛ (log(n)) KL (B(µ j ), B(µ 1 )) j=2 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

23 Sketch of the analysis Thompson Sampling Theoretical analysis Bound the expected number of draws of a suboptimal arm j (1 is optimal) A usual decomposition in an index policy analysis is T T E[N t (j)] P (ind 1,t < µ 1 ) + P (ind j,t ind 1,t > µ 1, I t = j) t=1 t=1 Decomposisition used for Thompson Sampling is ( ) T 6 ln(t) E[N t (j)] P s 1,t µ 1 N t=1 t (1) ( ) T 6 ln(t) + P s j,t > µ 1 N t (1), I t = j t=1 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

24 Sketch of the analysis Thompson Sampling Theoretical analysis An extra deviation inequality is needed Proposition There exists constants b = b(µ 1, µ j ) (0, 1) and C b = C b (µ 1, µ j ) < such that ( P N t (1) t b) C b. t=1 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

25 Thompson Sampling Where does it come from? Theoretical analysis ( N t (1) t b) ( = exists a time range of length at least t 1 b 1 with no draw of arm 1) µ µ + ε µ Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

26 Numerical summary Thompson Sampling Theoretical analysis 500 UCB 500 UCB V 500 DMED R n KL UCB 500 Bayes UCB 500 Thompson R n n (log scale) n (log scale) n (log scale) Regret as a function of time (on a log scale) in a ten arms problem with low rewards, horizon n = 20000, average over N = trials. Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

27 Thompson Sampling Theoretical analysis Conclusion and perspectives You are now aware that: Bayesian algorithms are efficient for the frequentist MAB problem Bayes-UCB show striking similarity with frequentist algorithms Bayes-UCB and Thompson Sampling are optimal for Bernoulli bandits Some perspectives: A better understanding of the Finite-Horizon Gittins indices Using Thompson with more involved priors A more general analysis of Bayes-UCB and Thompson Sampling Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

28 Thompson Sampling Summary of the contributions Theoretical analysis Gittins and Bayes-UCB algorithm: Emilie Kaufmann, Olivier Cappé and Aurélien Garivier On Bayesian upper confidence bounds for bandits problem AISTATS Analysis of Thompson Sampling: Emilie Kaufmann, Nathaniel Korda and Rémi Munos Thompson Sampling : an optimal finite time analysis Submitted. Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms July 1st, / 25

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

arxiv: v2 [stat.ml] 19 Jul 2012

arxiv: v2 [stat.ml] 19 Jul 2012 Thompson Sampling: An Asymptotically Optimal Finite Time Analysis Emilie Kaufmann, Nathaniel Korda and Rémi Munos arxiv:105.417v [stat.ml] 19 Jul 01 Telecom Paristech UMR CNRS 5141 & INRIA Lille - Nord

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION

KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION Submitted to the Annals of Statistics arxiv: math.pr/0000000 KULLBACK-LEIBLER UPPER CONFIDENCE BOUNDS FOR OPTIMAL SEQUENTIAL ALLOCATION By Olivier Cappé 1, Aurélien Garivier 2, Odalric-Ambrym Maillard

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Thompson sampling Bernoulli strategy Regret bounds Extensions the flexibility of Bayesian strategies 1 Bayesian bandit strategies

More information

Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation

Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, Gilles Stoltz To cite this version: Olivier Cappé, Aurélien

More information

arxiv: v4 [math.pr] 26 Aug 2013

arxiv: v4 [math.pr] 26 Aug 2013 The Annals of Statistics 2013, Vol. 41, No. 3, 1516 1541 DOI: 10.1214/13-AOS1119 c Institute of Mathematical Statistics, 2013 arxiv:1210.1136v4 [math.pr] 26 Aug 2013 KULLBACK LEIBLER UPPER CONFIDENCE BOUNDS

More information

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors Junya Honda Akimichi Takemura The University of Tokyo {honda, takemura}@stat.t.u-tokyo.ac.jp Abstract In stochastic bandit problems,

More information

Dynamic resource allocation: Bandit problems and extensions

Dynamic resource allocation: Bandit problems and extensions Dynamic resource allocation: Bandit problems and extensions Aurélien Garivier Institut de Mathématiques de Toulouse MAD Seminar, Université Toulouse 1 October 3rd, 2014 The Bandit Model Roadmap 1 The Bandit

More information

On the Complexity of A/B Testing

On the Complexity of A/B Testing JMLR: Workshop and Conference Proceedings vol 35:1 3, 014 On the Complexity of A/B Testing Emilie Kaufmann LTCI, Télécom ParisTech & CNRS KAUFMANN@TELECOM-PARISTECH.FR Olivier Cappé CAPPE@TELECOM-PARISTECH.FR

More information

arxiv: v2 [stat.ml] 14 Nov 2016

arxiv: v2 [stat.ml] 14 Nov 2016 Journal of Machine Learning Research 6 06-4 Submitted 7/4; Revised /5; Published /6 On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models arxiv:407.4443v [stat.ml] 4 Nov 06 Emilie Kaufmann

More information

arxiv: v3 [stat.ml] 6 Nov 2017

arxiv: v3 [stat.ml] 6 Nov 2017 On Bayesian index policies for sequential resource allocation Emilie Kaufmann arxiv:60.090v3 [stat.ml] 6 Nov 07 CNRS & Univ. Lille, UMR 989 CRIStAL, Inria SequeL emilie.kaufmann@univ-lille.fr Abstract

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

Anytime optimal algorithms in stochastic multi-armed bandits

Anytime optimal algorithms in stochastic multi-armed bandits Rémy Degenne LPMA, Université Paris Diderot Vianney Perchet CREST, ENSAE REMYDEGENNE@MATHUNIV-PARIS-DIDEROTFR VIANNEYPERCHET@NORMALESUPORG Abstract We introduce an anytime algorithm for stochastic multi-armed

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems Sébastien Bubeck Theory Group Part 1: i.i.d., adversarial, and Bayesian bandit models i.i.d. multi-armed bandit, Robbins [1952]

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

Complex Bandit Problems and Thompson Sampling

Complex Bandit Problems and Thompson Sampling Complex Bandit Problems and Aditya Gopalan Department of Electrical Engineering Technion, Israel aditya@ee.technion.ac.il Shie Mannor Department of Electrical Engineering Technion, Israel shie@ee.technion.ac.il

More information

arxiv: v1 [cs.lg] 15 Oct 2014

arxiv: v1 [cs.lg] 15 Oct 2014 THOMPSON SAMPLING WITH THE ONLINE BOOTSTRAP By Dean Eckles and Maurits Kaptein Facebook, Inc., and Radboud University, Nijmegen arxiv:141.49v1 [cs.lg] 15 Oct 214 Thompson sampling provides a solution to

More information

Stat 260/CS Learning in Sequential Decision Problems.

Stat 260/CS Learning in Sequential Decision Problems. Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Exponential families. Cumulant generating function. KL-divergence. KL-UCB for an exponential

More information

Optimistic Gittins Indices

Optimistic Gittins Indices Optimistic Gittins Indices Eli Gutin Operations Research Center, MIT Cambridge, MA 0242 gutin@mit.edu Vivek F. Farias MIT Sloan School of Management Cambridge, MA 0242 vivekf@mit.edu Abstract Starting

More information

Optimistic Bayesian Sampling in Contextual-Bandit Problems

Optimistic Bayesian Sampling in Contextual-Bandit Problems Journal of Machine Learning Research volume (2012) 2069-2106 Submitted 7/11; Revised 5/12; Published 6/12 Optimistic Bayesian Sampling in Contextual-Bandit Problems Benedict C. May School of Mathematics

More information

Thompson Sampling for Contextual Bandits with Linear Payoffs

Thompson Sampling for Contextual Bandits with Linear Payoffs Thompson Sampling for Contextual Bandits with Linear Payoffs Shipra Agrawal Microsoft Research Navin Goyal Microsoft Research Abstract Thompson Sampling is one of the oldest heuristics for multi-armed

More information

Learning to Optimize via Information-Directed Sampling

Learning to Optimize via Information-Directed Sampling Learning to Optimize via Information-Directed Sampling Daniel Russo Stanford University Stanford, CA 94305 djrusso@stanford.edu Benjamin Van Roy Stanford University Stanford, CA 94305 bvr@stanford.edu

More information

A minimax and asymptotically optimal algorithm for stochastic bandits

A minimax and asymptotically optimal algorithm for stochastic bandits Proceedings of Machine Learning Research 76:1 15, 017 Algorithmic Learning heory 017 A minimax and asymptotically optimal algorithm for stochastic bandits Pierre Ménard Aurélien Garivier Institut de Mathématiques

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

arxiv: v3 [cs.lg] 7 Nov 2017

arxiv: v3 [cs.lg] 7 Nov 2017 ESAIM: PROCEEDINGS AND SURVEYS, Vol.?, 2017, 1-10 Editors: Will be set by the publisher arxiv:1702.00001v3 [cs.lg] 7 Nov 2017 LEARNING THE DISTRIBUTION WITH LARGEST MEAN: TWO BANDIT FRAMEWORKS Emilie Kaufmann

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com Navin Goyal Microsoft Research India navingo@microsoft.com Abstract The multi-armed

More information

Stochastic Regret Minimization via Thompson Sampling

Stochastic Regret Minimization via Thompson Sampling JMLR: Workshop and Conference Proceedings vol 35:1 22, 2014 Stochastic Regret Minimization via Thompson Sampling Sudipto Guha Department of Computer and Information Sciences, University of Pennsylvania,

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Exploration and exploitation of scratch games

Exploration and exploitation of scratch games Mach Learn (2013) 92:377 401 DOI 10.1007/s10994-013-5359-2 Exploration and exploitation of scratch games Raphaël Féraud Tanguy Urvoy Received: 10 January 2013 / Accepted: 12 April 2013 / Published online:

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Corrupt Bandits. Abstract

Corrupt Bandits. Abstract Corrupt Bandits Pratik Gajane Orange labs/inria SequeL Tanguy Urvoy Orange labs Emilie Kaufmann INRIA SequeL pratik.gajane@inria.fr tanguy.urvoy@orange.com emilie.kaufmann@inria.fr Editor: Abstract We

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Value Directed Exploration in Multi-Armed Bandits with Structured Priors

Value Directed Exploration in Multi-Armed Bandits with Structured Priors Value Directed Exploration in Multi-Armed Bandits with Structured Priors Bence Cserna Marek Petrik Reazul Hasan Russel Wheeler Ruml University of New Hampshire Durham, NH 03824 USA bence, mpetrik, rrussel,

More information

Robustness of Anytime Bandit Policies

Robustness of Anytime Bandit Policies Robustness of Anytime Bandit Policies Antoine Salomon, Jean-Yves Audibert To cite this version: Antoine Salomon, Jean-Yves Audibert. Robustness of Anytime Bandit Policies. 011. HAL Id:

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed CS 683 Learning, Games, and Electronic Markets Spring 007 Notes from Week 9: Multi-Armed Bandit Problems II Instructor: Robert Kleinberg 6-30 Mar 007 1 Information-theoretic lower bounds for multiarmed

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits 1 On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits Naumaan Nayyar, Dileep Kalathil and Rahul Jain Abstract We consider the problem of learning in single-player and multiplayer

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Multi-armed bandit (MAB) problems, models and algorithms

Multi-armed bandit (MAB) problems, models and algorithms Vas. Klonias Memorial Conference in Statistics June 26-27, 2015 Multi-armed bandit (MAB) problems, models and algorithms Michael N. Katehakis Rutgers University June 27, 2015 Talk based on joint work with

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

An Information-Theoretic Analysis of Thompson Sampling

An Information-Theoretic Analysis of Thompson Sampling Journal of Machine Learning Research (2015) Submitted ; Published An Information-Theoretic Analysis of Thompson Sampling Daniel Russo Department of Management Science and Engineering Stanford University

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION

THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION THE MULTI-ARMED BANDIT PROBLEM: AN EFFICIENT NON-PARAMETRIC SOLUTION Hock Peng Chan stachp@nus.edu.sg Department of Statistics and Applied Probability National University of Singapore Abstract Lai and

More information

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conugate Priors Yichi Zhou 1 Jun Zhu 1 Jingwe Zhuo 1 Abstract Thompson sampling has impressive empirical performance for many multi-armed

More information

Chapter 2 Stochastic Multi-armed Bandit

Chapter 2 Stochastic Multi-armed Bandit Chapter 2 Stochastic Multi-armed Bandit Abstract In this chapter, we present the formulation, theoretical bound, and algorithms for the stochastic MAB problem. Several important variants of stochastic

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

arxiv: v1 [cs.ds] 4 Mar 2016

arxiv: v1 [cs.ds] 4 Mar 2016 Sequential ranking under random semi-bandit feedback arxiv:1603.01450v1 [cs.ds] 4 Mar 2016 Hossein Vahabi, Paul Lagrée, Claire Vernade, Olivier Cappé March 7, 2016 Abstract In many web applications, a

More information

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits

On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits 1 On Regret-Optimal Learning in Decentralized Multi-player Multi-armed Bandits Naumaan Nayyar, Dileep Kalathil and Rahul Jain arxiv:1505.00553v2 [stat.ml 1 Dec 2016 Abstract We consider the problem of

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 3: RL problems, sample complexity and regret Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce the

More information

On Sequential Decision Problems

On Sequential Decision Problems On Sequential Decision Problems Aurélien Garivier Séminaire du LIP, 14 mars 2018 Équipe-projet AOC: Apprentissage, Optimisation, Complexité Institut de Mathématiques de Toulouse LabeX CIMI Université Paul

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be Chapter 3: Parametric families of univariate distributions CHAPTER 3: PARAMETRIC

More information

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning

Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Introduction to Reinforcement Learning Part 3: Exploration for decision making, Application to games, optimization, and planning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/

More information

Regional Multi-Armed Bandits

Regional Multi-Armed Bandits School of Information Science and Technology University of Science and Technology of China {wzy43, zrd7}@mail.ustc.edu.cn, congshen@ustc.edu.cn Abstract We consider a variant of the classic multiarmed

More information

Stochastic Bandit Models for Delayed Conversions

Stochastic Bandit Models for Delayed Conversions Stochastic Bandit Models for Delayed Conversions Claire Vernade LTCI, Telecom ParisTech, Université Paris-Saclay Olivier Cappé LIMSI, CNRS, Université Paris-Saclay Vianney Perchet CMLA, ENS Paris-Saclay,

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

Exploiting Correlation in Finite-Armed Structured Bandits

Exploiting Correlation in Finite-Armed Structured Bandits Exploiting Correlation in Finite-Armed Structured Bandits Samarth Gupta Carnegie Mellon University Pittsburgh, PA 1513 Gauri Joshi Carnegie Mellon University Pittsburgh, PA 1513 Osman Yağan Carnegie Mellon

More information

Foundations of Nonparametric Bayesian Methods

Foundations of Nonparametric Bayesian Methods 1 / 27 Foundations of Nonparametric Bayesian Methods Part II: Models on the Simplex Peter Orbanz http://mlg.eng.cam.ac.uk/porbanz/npb-tutorial.html 2 / 27 Tutorial Overview Part I: Basics Part II: Models

More information

Introduction to Reinforcement Learning and multi-armed bandits

Introduction to Reinforcement Learning and multi-armed bandits Introduction to Reinforcement Learning and multi-armed bandits Rémi Munos INRIA Lille - Nord Europe Currently on leave at MSR-NE http://researchers.lille.inria.fr/ munos/ NETADIS Summer School 2013, Hillerod,

More information

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search Wouter M. Koolen Machine Learning and Statistics for Structures Friday 23 rd February, 2018 Outline 1 Intro 2 Model

More information

Bandits with Delayed, Aggregated Anonymous Feedback

Bandits with Delayed, Aggregated Anonymous Feedback Ciara Pike-Burke 1 Shipra Agrawal 2 Csaba Szepesvári 3 4 Steffen Grünewälder 1 Abstract We study a variant of the stochastic K-armed bandit problem, which we call bandits with delayed, aggregated anonymous

More information

Thompson Sampling for the MNL-Bandit

Thompson Sampling for the MNL-Bandit JMLR: Workshop and Conference Proceedings vol 65: 3, 207 30th Annual Conference on Learning Theory Thompson Sampling for the MNL-Bandit author names withheld Editor: Under Review for COLT 207 Abstract

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

arxiv: v2 [math.st] 14 Nov 2016

arxiv: v2 [math.st] 14 Nov 2016 On Explore-hen-Commit Strategies arxiv:1605.08988v math.s] 1 Nov 016 Aurélien Garivier Institut de Mathématiques de oulouse; UMR519 Université de oulouse; CNRS UPS IM, F-3106 oulouse Cedex 9, France aurelien.garivier@math.univ-toulouse.fr

More information

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification Mingxi Li (s1720554) First Advisor: Dr. Wouter M.Koolen Secondary Advisor: Dr. Tim van Erven master thesis Defended on October

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Boundary Crossing for General Exponential Families

Boundary Crossing for General Exponential Families Proceedings of Machine Learning Research 76:1 34, 017 Algorithmic Learning Theory 017 Boundary Crossing for General Exponential Families Odalric-Ambrym Maillard INRIA Lille - Nord Europe, Villeneuve d

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information