Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Size: px
Start display at page:

Download "Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang"

Transcription

1 Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27

2 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 2 / 27

3 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 3 / 27

4 Exploration vs. Exploitation Dilemma Online decision-making involves a fundamental choice: Exploitation Make the best decision given current information Exploration Gather more information The best long-term strategy may involve short-term sacrifices Gather enough information to make the best overall decisions Examples: Online Banner Advertisements: Exploitation Show the most successful advert; Exploration Show a different advert Game Playing: Exploitation Play the move you believe is best; Exploration Play an experimental move Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 4 / 27

5 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 5 / 27

6 How to do Exploration Random exploration: ɛ-greedy: Pull a random chosen arm a fraction ɛ of the time and the other 1 ɛ time, pull the arm which estimated to be the most profitable.(devote a fraction ɛ of resources to testing) Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 6 / 27

7 How to do Exploration Random exploration: ɛ-greedy: Pull a random chosen arm a fraction ɛ of the time and the other 1 ɛ time, pull the arm which estimated to be the most profitable.(devote a fraction ɛ of resources to testing) Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 6 / 27

8 How to do Exploration Optimism in the face of uncertainty: Estimate uncertainty on value Prefer to explore states/actions with highest uncertainty Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 7 / 27

9 How to do Exploration Information state space(most correct but computationally difficult): Consider agent s information as part of its state Look ahead to see how information helps reward Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 8 / 27

10 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 9 / 27

11 The Multi-Armed Bandit A multi-armed bandit is a tuple < A, R > A is a known set of m actions(or arms ) R a (r) = P[r a] is an unknown probability distribution over rewards At each step t the agent selects an action a t A The environment generates a reward r t R at The goal is to maximise cumulative reward Σ t τ=1 r τ Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 10 / 27

12 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 11 / 27

13 Regret The action-value is the mean reward for action a: The optimal value V is Q(a) = E[r a] V = Q(a ) = max a A Q(a) The regret is the opportunity loss for one step: I t = E[V Q(a t )] The total regret is the total opportunity loss L t = E[Σ t τ=1v Q(a τ )] Maximise cumulative reward minimise total regret Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 12 / 27

14 Counting Regret The count N t (a) is expected number of selections for action a The gap a is the difference in value between action a and optimal action a, = V Q(a) Regret is a function of gaps and the counts: L t = E[Σ t τ=1v Q(a τ )] = Σ a A E[N t (a)](v Q(a)) = Σ a A E[N t (a)] a (1) A good algorithm ensures small counts for large gaps Problem: gaps are not known. Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 13 / 27

15 Linear or Sublinear regret If an algorithm forever explores it will have linear total regret If an algorithm never explores it will have linear total regret Is it possible to achieve sublinear total regret? Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 14 / 27

16 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 15 / 27

17 Greedy Algorithm We consider algorithms that estimate ˆQ t (a) Q(a) Estimate the value of each action by Monte-Carlo evaluation: ˆQ t (a) = 1 N t (a) ΣT t=1r t 1(a t = a) The greedy algorithm selects action with highest value: a t = argmax a A ˆQ t (a) Greedy can lock onto a suboptimal action forever Greedy has linear total regret Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 16 / 27

18 ɛ-greedy Algorithm The ɛ-greedy algorithm continues to explore forever With probability 1 ɛ select a = argmax a A ˆQ(a) With probability ɛ select a random action Constant ɛ ensures minimum regret: ɛ-greedy has linear total regret I t ɛ A Σ a A a Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 17 / 27

19 Optimistic Initialisation Initialise Q(a) to high value Update action value by incremental Monte-Carlo evaluation: ˆQ t (a t ) = ˆQ t N t (a t ) (r t ˆQ t 1 ) Encourages systematic exploration early on But can still lock onto suboptimal action greedy(ɛ-greedy) + optimistic initialisation has linear total regret Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 18 / 27

20 Decaying ɛ t -Greedy Algorithm Pick a decay schedule for ɛ 1, ɛ 2,... Consider the following schedule: c > 0 d = min a a>0 a ɛ t = min{1, c A d 2 t } Logarithmic asymptotic total regret Requires advance knowledge of gaps Goal: find an algorithm with sublinear regret for any multi-armed bandit (without knowledge of R) Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 19 / 27

21 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 20 / 27

22 Lower Bound The performance of any algorithm is determined by similarity between optimal arm and other arms Hard problems have similar-looking arms with different means This is described formally by the gap a and the similarity in distributions KL(R a R a ) Theorem (Lai and Robbins) Asymptotic total regret is at least logarithmic in number of steps a lim L t log tσ a a>0 t KL(R a R a ) Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 21 / 27

23 Outline 1 Introduction Exploration vs. Exploitation Dilemma How to do Exploration 2 Multi-Armed Bandits The Multi-Armed Bandit Regret Greedy and ɛ-greedy algorithms Lower Bound Upper Confidence Bound Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 22 / 27

24 Upper Confidence Bound Which action should we pick? The more uncertain we are about an action-value The more important it is to explore that action It could turn out to be the best action Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 23 / 27

25 Upper Confidence Bound Estimate an upper confidence Û t (a) for each action value Such that Q(a) ˆQ t (a) + Û t (a) with high probability This depends on the number of times N(a) has been selected Small N t (a) largeû t (a)(estimated value is uncertain) Large N t (a) smallût(a)(estimated value is accurate) Select action maximising Upper Confidence Bound (UCB) a t = argmax a A ˆQt (a) + Ût(a) Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 24 / 27

26 Upper Confidence Bound Theorem (Hoeffding s Inequality) Let X 1,..., X t be i.i.d. random variables in [0,1], and let X t = 1 τ Σt τ=1 X τ be the sample mean. Then P[E[X ] > X t + u] e 2tu2 We will apply Hoeffdings Inequality to rewards of the bandit conditioned on selecting action a P[Q(a) > ˆQ t (a) + U t (a)] e 2Nt(a)Ut(a)2 Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 25 / 27

27 Calculating Upper Confidence Bounds Pick a probability p that true value exceeds UCB Now solve for U t (a): e 2Nt(a)Ut(a)2 = p log p U t (a) = 2N t (a) Reduce p as we observe more rewards, e.g. p = t 4 Ensures we select optimal action as t Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 26 / 27

28 UCB1 This leads to the UCB1 algorithm a t = argmax a A Q(a) + 2 log t N t (a) Theorem The UCB algorithm achieves logarithmic asymptotic total regret lim t L t 8 log tσ a a>0 a Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 27 / 27

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Learning Optimal Online Advertising Portfolios with Periodic Budgets

Learning Optimal Online Advertising Portfolios with Periodic Budgets Learning Optimal Online Advertising Portfolios with Periodic Budgets Lennart Baardman Operations Research Center, MIT, Cambridge, MA 02139, baardman@mit.edu Elaheh Fata Department of Aeronautics and Astronautics,

More information

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems Lecture 2: Learning from Evaluative Feedback or Bandit Problems 1 Edward L. Thorndike (1874-1949) Puzzle Box 2 Learning by Trial-and-Error Law of Effect: Of several responses to the same situation, those

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Large-scale Information Processing, Summer Recommender Systems (part 2)

Large-scale Information Processing, Summer Recommender Systems (part 2) Large-scale Information Processing, Summer 2015 5 th Exercise Recommender Systems (part 2) Emmanouil Tzouridis tzouridis@kma.informatik.tu-darmstadt.de Knowledge Mining & Assessment SVM question When a

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Online Learning Schemes for Power Allocation in Energy Harvesting Communications

Online Learning Schemes for Power Allocation in Energy Harvesting Communications Online Learning Schemes for Power Allocation in Energy Harvesting Communications Pranav Sakulkar and Bhaskar Krishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Pure Exploration in Finitely Armed and Continuous Armed Bandits

Pure Exploration in Finitely Armed and Continuous Armed Bandits Pure Exploration in Finitely Armed and Continuous Armed Bandits Sébastien Bubeck INRIA Lille Nord Europe, SequeL project, 40 avenue Halley, 59650 Villeneuve d Ascq, France Rémi Munos INRIA Lille Nord Europe,

More information

Lower PAC bound on Upper Confidence Bound-based Q-learning with examples

Lower PAC bound on Upper Confidence Bound-based Q-learning with examples Lower PAC bound on Upper Confidence Bound-based Q-learning with examples Jia-Shen Boon, Xiaomin Zhang University of Wisconsin-Madison {boon,xiaominz}@cs.wisc.edu Abstract Abstract Recently, there has been

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Computational Oracle Inequalities for Large Scale Model Selection Problems

Computational Oracle Inequalities for Large Scale Model Selection Problems for Large Scale Model Selection Problems University of California at Berkeley Queensland University of Technology ETH Zürich, September 2011 Joint work with Alekh Agarwal, John Duchi and Clément Levrard.

More information

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities Lecture 15: Bandit problems. Markov Processes Bandit problems Action values (and now to compute them) Exploration-exploitation trade-off Simple exploration strategies -greedy Softmax (Boltzmann) exploration

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Thompson sampling for web optimisation. 29 Jan 2016 David S. Leslie

Thompson sampling for web optimisation. 29 Jan 2016 David S. Leslie Thompson sampling for web optimisation 29 Jan 2016 David S. Leslie Plan Contextual bandits on the web Thompson sampling in bandits Selecting multiple adverts Plan Contextual bandits on the web Thompson

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Approximate Universal Artificial Intelligence

Approximate Universal Artificial Intelligence Approximate Universal Artificial Intelligence A Monte-Carlo AIXI Approximation Joel Veness Kee Siong Ng Marcus Hutter David Silver University of New South Wales National ICT Australia The Australian National

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Online regret in reinforcement learning

Online regret in reinforcement learning University of Leoben, Austria Tübingen, 31 July 2007 Undiscounted online regret I am interested in the difference (in rewards during learning) between an optimal policy and a reinforcement learner: T T

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION c 2015 Chong Jiang ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS BY CHONG JIANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and

More information

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Emile Contal David Buffoni Alexandre Robicquet Nicolas Vayatis CMLA, ENS Cachan, France September 25, 2013 Motivating

More information

arxiv: v1 [cs.lg] 25 Jul 2018

arxiv: v1 [cs.lg] 25 Jul 2018 Variational Bayesian Reinforcement Learning with Regret Bounds Brendan O Donoghue DeepMind bodonoghue@google.com arxiv:1807.09647v1 [cs.lg] 25 Jul 2018 July 25, 2018 Abstract We consider the exploration-exploitation

More information

RL 3: Reinforcement Learning

RL 3: Reinforcement Learning RL 3: Reinforcement Learning Q-Learning Michael Herrmann University of Edinburgh, School of Informatics 20/01/2015 Last time: Multi-Armed Bandits (10 Points to remember) MAB applications do exist (e.g.

More information

Online Learning with Gaussian Payoffs and Side Observations

Online Learning with Gaussian Payoffs and Side Observations Online Learning with Gaussian Payoffs and Side Observations Yifan Wu 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science University of Alberta 2 Department of Electrical and Electronic

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen

Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search. Wouter M. Koolen Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search Wouter M. Koolen Machine Learning and Statistics for Structures Friday 23 rd February, 2018 Outline 1 Intro 2 Model

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

Learning Algorithms for Minimizing Queue Length Regret

Learning Algorithms for Minimizing Queue Length Regret Learning Algorithms for Minimizing Queue Length Regret Thomas Stahlbuhk Massachusetts Institute of Technology Cambridge, MA Brooke Shrader MIT Lincoln Laboratory Lexington, MA Eytan Modiano Massachusetts

More information

Optimistic Bayesian Sampling in Contextual-Bandit Problems

Optimistic Bayesian Sampling in Contextual-Bandit Problems Journal of Machine Learning Research volume (2012) 2069-2106 Submitted 7/11; Revised 5/12; Published 6/12 Optimistic Bayesian Sampling in Contextual-Bandit Problems Benedict C. May School of Mathematics

More information

Improved Algorithms for Linear Stochastic Bandits

Improved Algorithms for Linear Stochastic Bandits Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-Yadkori abbasiya@ualberta.ca Dept. of Computing Science University of Alberta Dávid Pál dpal@google.com Dept. of Computing Science University

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1 Reinforcement Learning Mainly based on Reinforcement Learning An Introduction by Richard Sutton and Andrew Barto Slides are mainly based on the course material provided by the

More information

Approximation Methods in Reinforcement Learning

Approximation Methods in Reinforcement Learning 2018 CS420, Machine Learning, Lecture 12 Approximation Methods in Reinforcement Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Reinforcement

More information

Edward L. Thorndike #1874$1949% Lecture 2: Learning from Evaluative Feedback. or!bandit Problems" Learning by Trial$and$Error.

Edward L. Thorndike #1874$1949% Lecture 2: Learning from Evaluative Feedback. or!bandit Problems Learning by Trial$and$Error. Lecture 2: Learning from Evaluative Feedback Edward L. Thorndike #1874$1949% or!bandit Problems" Puzzle Box 1 2 Learning by Trial$and$Error Law of E&ect:!Of several responses to the same situation, those

More information

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5 Table of contents 1 Introduction 2 2 Markov Decision Processes 2 3 Future Cumulative Reward 3 4 Q-Learning 4 4.1 The Q-value.............................................. 4 4.2 The Temporal Difference.......................................

More information

ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control

ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

An Analysis of Model-Based Interval Estimation for Markov Decision Processes

An Analysis of Model-Based Interval Estimation for Markov Decision Processes An Analysis of Model-Based Interval Estimation for Markov Decision Processes Alexander L. Strehl, Michael L. Littman astrehl@gmail.com, mlittman@cs.rutgers.edu Computer Science Dept. Rutgers University

More information

Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time

Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time 26.11.2015 Fachbereich Informatik Knowledge Engineering Group David Fischer 1 Table of Contents Problem and Motivation Algorithm

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Lecture 5: Regret Bounds for Thompson Sampling

Lecture 5: Regret Bounds for Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/2/6 Lecture 5: Regret Bounds for Thompson Sampling Instructor: Alex Slivkins Scribed by: Yancy Liao Regret Bounds for Thompson Sampling For each round t, we defined

More information

Journal of Computer and System Sciences. An analysis of model-based Interval Estimation for Markov Decision Processes

Journal of Computer and System Sciences. An analysis of model-based Interval Estimation for Markov Decision Processes Journal of Computer and System Sciences 74 (2008) 1309 1331 Contents lists available at ScienceDirect Journal of Computer and System Sciences www.elsevier.com/locate/jcss An analysis of model-based Interval

More information

Bits of Machine Learning Part 2: Unsupervised Learning

Bits of Machine Learning Part 2: Unsupervised Learning Bits of Machine Learning Part 2: Unsupervised Learning Alexandre Proutiere and Vahan Petrosyan KTH (The Royal Institute of Technology) Outline of the Course 1. Supervised Learning Regression and Classification

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Robustness of Anytime Bandit Policies

Robustness of Anytime Bandit Policies Robustness of Anytime Bandit Policies Antoine Salomon, Jean-Yves Audibert To cite this version: Antoine Salomon, Jean-Yves Audibert. Robustness of Anytime Bandit Policies. 011. HAL Id:

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Lecture 10 - Planning under Uncertainty (III)

Lecture 10 - Planning under Uncertainty (III) Lecture 10 - Planning under Uncertainty (III) Jesse Hoey School of Computer Science University of Waterloo March 27, 2018 Readings: Poole & Mackworth (2nd ed.)chapter 12.1,12.3-12.9 1/ 34 Reinforcement

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information