Reinforcement Learning

Size: px
Start display at page:

Download "Reinforcement Learning"

Transcription

1 Reinforcement Learning March May, 2013

2 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha ed.24 RL in finite MDPs 03/25/2015 (10:15-12:15) PT1 RL in finite MDPs 03/27/2015 (10:15-12:15) PT1 RL in continuous MDPs 04/01/2015 (10:15-12:15) Sala conferenze RL in continuous MDPs 04/08/2015 (10:15-12:15) Sala conferenze RL in POMDPs 04/10/2015 (10:15-12:15) Sala conferenze Multi agent RL 04/15/2015 ( 10:15-12:15) Sala conferenze Applications 04/17/2015 ( 10:15-12:15) Sala conferenze

3 Modelling the Environment Deterministic vs Stochastic Finite vs Continuous States Finite vs Continuous Actions Discrete vs Continuous Time Fully vs Partially Observable Stationary vs Non Stationary

4 Introduction to MDPs formally describe an environment for reinforcement learning The environment is fully observable the current state completely characterizes the process Almost all RL problems can be formalized as MDPs Optimal control primarily deals with continuous MDPs Partially observable problems can be converted into MDPs Bandits are MDPs with one state

5 Stochastic A stochastic process is an indexed collection of random variables {X t} e.g., time series of weekly demands for a product Discrete case: At a particular time t, labeled by integers, system is found in exactly one of a finite number of mutually exclusive and exhaustive categories or states, labeled by integers, too Process could be embedded in that time points correspond to occurrence of specific events (or time may be evenly spaced) Random variables may depend on others, e.g., { max{(3 D t+1 ), 0} if X t 0 X t+1 = max{(x t D t+1 ), 0} if X t 0 or K X t+1 = α k X t k + ξ t with ξ t N (µ, σ 2 ) k=0

6 Examples of Stochastic Exchange rates Photon emission Epidemic models Earthquakes Budding yeast

7 Assumption The future is independent of the past given the present Definition A stochastic process X t is said to be ian if and only if P(X t+1 = j X t = i, X t 1 = k t 1,..., X 1 = k 1, X 0 = k 0 ) = P(X t+1 = j X t = i) The state captures all the information from history Once the state is known, the history may be thrown away The state is a sufficient statistic for the future The conditional probabilities are transition probabilities If the probabilities are stationary (time invariant), we can write: p ij = P(X t+1 = j X t = i) = P(X 1 = j X 0 = i)

8 A process (or chain) is a memoryless stochastic process, i.e., a sequence of random states s 1, s 2,... with the property Definition A Process is a tuple S, P, µ S is a (finite) set of states P is a state transition probability matrix, P ss = P(s s) a set of initial probabilities µ 0 i = P(X 0 = i) for all i Looking forward in time, n step transition probabilities p (n) i,j = P(X t+n = j X t = i) = P(X n = j X 0 = i)

9 Process Example 1 Student process

10 Process Example 1 Student process Sample paths C1 C2 C3 Pass Sleep C1 FB FB C1 C2 Sleep C1 C2 C3 Pub C2 C3 Pass Sleep C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 Sleep

11 Process Example 1 Student process FB C1 C2 C3 Pub Pass Sleep P =

12 Process Example 2 Land of Oz Rain Nice Snow P = Rain Nice Snow

13 Chapman Kolmogorov n step transition probabilities can be obtained from 1 step transition probabilities recursively p (n) ij = M k=0 p (v) ik p(n v) kj, i, j, n; 0 v n We can get this via the matrix too P (n) = P } {{ P } = P n = PP n 1 = P n 1 P n times Given the transition matrix P and the starting distribution represented by the probability vector µ, the probability distribution over the state space after n steps is: µ (n) = µp n

14 Chapman Kolmogorov for Student Process FB C C P = C Pub Pass Sleep FB C C P 2 = C Pub Pass Sleep FB C C P 10 = C Pub Pass Sleep FB C C P 100 = C Pub Pass Sleep

15 Chapman Kolmogorov for Land of Oz P = P 2 = P 3 = P 4 = P 5 = P 6 =

16 First Passage Times Number of transitions to go from i to j for the first time if i = j, this is the recurrence time First Passage Times are random variables n step recursive relationship for first passage probability f (1) ij = p (1) ij = p ij f (2) ij = p (2) ij f (1) ij. f (n) ij = p (n) ij f (1) ij p jj p (n 1) jj f (2) ij p (n 2) jj f (n 1) ij p jj For fixed i and j, these f (n) ij so that n=1 f (n) ij 1 are non negative numbers If n=1 f (n) ii = 1 that state is a recurrent state

17 Classification of States State j is accessible from i if p (n) ij > 0 (for some n 0) If state j is accessible from i and vice versa, the two states are said to communicate As a result of communication, one may partition the general process into states in disjoint classes Positive recurrent: a state that is recurrent and has a finite expected return time If the process can only visit the state at integer multiples of t, we call it periodic Positive recurrent states that are aperiodic are called ergodic states A state j is said to be an absorbing state if p jj = 1 A state which is not absorbing is called transient

18 Classification of Absorbing A process is called absorbing if it has at least one absorbing state and if that state can be reached from every other state (not necessarily in one step) Ergodic A process is called ergodic (or irreducible) if it is possible to go from every state to every state (not necessarily in one move) Regular A process is called regular if some power of the transition matrix has only positive elements

19 Examples Drunkard s Walk P =

20 Examples Switching Process P = 1 [ ]

21 Examples Land of Oz Rain Nice Snow P =

22 Stationary Distribution Theorem Consider process with transition probability matrix P. A probability vector p is called a stationary distribution of the process if: pp = p Let P be the transition matrix for a regular chain. Then, as n, the powers P n approach a limiting matrix W with all rows the same vector w. The vector w is a strictly positive probability vector (i.e., the components are all positive and they sum to one).

23 Stationary Distribution Theorem Let P be a regular transition matrix, w be the common row of W, and let c be the column vector all of whose components are 1. Then wp = w, and any row vector v such that vp = v is a constant multiple of w Pc = c, and any column vector x such that Px = x is a multiple of c. Theorem Let P be the transition matrix for a regular chain and v an arbitrary probability vector. Then lim n vpn = w, where w is the stationary distribution of the chain.

24 Fundamental Matrix Absorbing Canonical form: renumber the states so that transient states come first: [ ] Q R P = 0 I Q n n 0 Theorem For an absorbing process the matrix I Q has an inverse N (called fundamental matrix) and N = i=0 Qi. The ij entry n ij of the matrix N is the expected number of times the chain is in state s j, given that it starts in state s i. The initial state is counted if i = j.

25 Fundamental Matrix Drunkard s Walk Example 1 P = [ Q R 0 I ] = 0.5 N = (I Q) 1 = Canonical form

26 Fundamental Matrix Ergodic Proposition Let P be the transition matrix of an ergodic chain, and let W be the matrix all of whose rows are the fixed probability row vector for P. Then the matrix I P + W has an inverse Z that is called fundamental matrix. Theorem The mean first passage matrix M for an ergodic chain is determined from the fundamental matrix Z and the fixed row probability vector w by m ij = z jj z ij w j.

27 Fundamental Matrix Land of Oz Example I P + W = Z = w = [ ] m 12 = z 22 z 12 w 2 = = 4

28 Mixing Rate Definition The total variation distance between two probability distributions µ and ν on Ω is Definition Given ɛ, the mixing time is τ(ɛ) = min t µ ν TV = 1 µ(x) ν(x) 2 x Ω { max x Ω Pt (x, ) w TV < ɛ, } t t Definition A chain is rapidly mixing if τ(ɛ) is O(poly(log( S ɛ )))

29 Spectral gap Definition A process is time reversible if w i P ij = w j P ji. The eigenvalues of P are 1 = λ 1 > λ 2 λ 3 λ S 1 Definition The spectral gap β of a process defined by transition matrix P is 1 max( λ 2, λ S ) Theorem (Alon, Sinclair) ( ) 1 β 1 β log τ(ɛ) 1β ( ) 2ɛ log 1 ɛ min i w i

30 A reward process is a process with values. Definition A Process is a tuple S, P, R, γ, µ S is a (finite) set of states P is a state transition probability matrix, P ss = P(s s) R is a reward function, R s = E[r s] γ is a discount factor, γ [0, 1] a set of initial probabilities µ 0 i = P(X 0 = i) for all i

31 Example Student MRP

32 Return Time horizon finite: finite and fixed number of steps indefinite: until some stopping criteria is met (absorbing states) infinite: forever Cumulative reward total reward: V = average reward: i=1 r r n V = lim n n discounted reward: V = γ i 1 r i mean variance reward i=1 r i

33 Infinite horizon Discounted Return Definition The return v t is the total discounted reward from time step t. v t = r t+1 + γr t+2 + = γ k r t+k+1 k=0 The discount γ [0, 1) is the present value of future rewards The value of receiving reward r after k + 1 time steps is γ k r Immediate reward vs delayed reward γ close to 0 leads to myopic evaluation γ close to 1 leads to far sighted evaluation γ can be also interpreted as the probability that the process will go on

34 Why discount? Most reward (and decision) processes are discounted, why? Mathematically convenient to discount rewards Avoids infinite returns in cyclic processes Uncertainty about the future may not be fully represented If the reward is financial, immediate rewards may earn more interest than delayed rewards Animal/human behavior shows preference for immediate reward It is sometimes possible to use undiscounted reward processes (i.e. γ = 1), e.g. if all sequences terminate

35 Value Function The value function V (s) gives the long term value of state s Definition The state value function V (s) of an MRP is the expected return starting from state s V (s) = E[v t s t = s]

36 Example

37 Example

38 Example

39 Bellman Equation for MRPs The value function can be decomposed into two parts: immediate reward r discounted value of successor state γv (s ) V (s) = E[v t s t = s] = E[r t+1 + γr t+2 + γ 2 r t s t = s] = E[r t+1 + γ(r t+2 + γr t ) s t = s] = E[r t+1 + γv t+1 s t = s] = E[r t+1 + γv (s t+1 ) s t = s] Bellman Equation V (s) = E[r + γv (s ) s] = R s + γ s S P ss V (s )

40 Bellman Equation in Matrix Form The Bellman equation can be expressed concisely using matrices V = R + γpv where V and R are column vectors with one entry per state and P is the state transition matrix. V (1) R(1) P 11 P 1n V (1). =. + γ V (n) R(n) P n1 P nn V (n)

41 Solving the Bellman Equation The Bellman equation is a linear equation It can be solved directly V = R + γpv (I γp)v = R V = (I γp) 1 R Computational complexity is O(n 3 ) for n states Direct solution only possible for small MRPs There are many iterative methods for large MRPs, e.g., Dynamic programming Monte Carlo evaluation Temporal Difference learning

42 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition A Process is a tuple S, A, P, R, γ, µ S is a (finite) set of states A is a (finite) set of actions P is a state transition probability matrix, P(s s, a) R is a reward function, R(s, a) = E[r s, a] γ is a discount factor, γ [0, 1] a set of initial probabilities µ 0 i = P(X 0 = i) for all i

43 Example: Student MDP

44 Goals and s Is a scalar reward an adequate notion of a goal? Sutton hypothesis: That all of what we mean by goals and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (reward) Probably ultimately wrong, but so simple and flexible we have to disprove it before considering anything more complicated A goal should specify what we want to achieve, not how we want to achieve it The same goal can be specified by (infinite) different reward functions A goal must be outside the agent s direct control thus outside the agent The agent must be able to measure success: explicitly frequently during her lifespan

45 Policies A policy, at any given point in time, decides which action the agent selects A policy fully defines the behavior of an agent Policies can be: ian History dependent Deterministic Stochastic Stationary Non stationary

46 Stationary Stochastic ian Policies Definition A policy π is a distribution over actions given the state: π(a s) = P[a s] MDP policies depend on the current state (not the history) i.e., Policies are stationary (time independent) Given an MDP M = S, A, P, R, γ, µ and a policy π The state sequence s 1, s 2,... is a process S, P π, µ The state and reward sequence s 1, r 2, s 2,... is a reward process S, P π, R π, γ, µ, where P π = π(a s)p(s s, a) R π = π(a s)r(s, a) a A a A

47 Value Functions Given a policy π, it is possible to define the utility of each state: Policy Evaluation Definition The state value function V π (s) of an MDP is the expected return starting from state s, and then following policy π V π (s) = E π[v t s t = s] For control purposes, rather than the value of each state, it is easier to consider the value of each action in each state Definition The action value function Q π (s, a) is the expected return starting from state s, taking action a, and then following policy π Q π (s, a) = E π[v t s t = s, a t = a]

48 Example: Value Function of Student MDP

49 Bellman Expectation Equation The state value function can again be decomposed into immediate reward plus discounted value of successor state, V π (s) = E π [r t+1 + γv π (s t+1 ) s t = s] ( = a A π(a s) R(s, a) + γ s S P(s s, a)v π (s ) The action-value function can similarly be decomposed ) Q π (s, a) = E π [r t+1 + γq π (s t+1, a t+1 ) s t = s, a t = a] = R(s, a) + γ P(s s, a)v π (s ) s S = R(s, a) + γ P(s s, a) π(a s )Q π (s, a ) s S a A

50 Bellman Expectation Equation (Matrix Form) The Bellman expectation equation can be expressed concisely using the induced MRP with direct solution V π = R π + γp π V π V π = (I γp π ) 1 R π

51 Bellman operators for V π Definition The Bellman operator for V π is defined as T π : R S R S (maps value functions to value functions): ( ) (T π V π )(s) = a A π(a s) R(s, a) + γ s S P(s s, a)v π (s ) Using Bellman operator, Bellman expectation equation can be compactly written as: T π V π = V π V π is a fixed point of the Bellman operator T π This is a linear equation in V π and T π If 0 < γ < 1 then T π is a contraction w.r.t. the maximum norm

52 Bellman operators for Q π Definition The Bellman operator for Q π is defined as T π : R S A R S A (maps action value functions to action value functions): (T π Q π )(s, a) = R(s, a) + γ s S P(s s, a) a A π(a s ) (Q π (s, a )) Using Bellman operator, Bellman expectation equation can be compactly written as: T π Q π = Q π Q π is a fixed point of the Bellman operator T π This is a linear equation in Q π and T π If 0 < γ < 1 then T π is a contraction w.r.t. the maximum norm

53 Optimal Value Function Definition The optimal state value function V (s) is the maximum value function over all policies V (s) = max V π (s) π The optimal action value function Q (s, a) is the maximum action value function over all policies Q (s, a) = max Q π (s, a) π The optimal value function specifies the best possible performance in the MDP An MDP is solved when we know the optimal value function

54 Example: Optimal Value Function of Student MDP

55 Optimal Policy Value functions define a partial ordering over policies Theorem π π if V π (s) V π (s), For any Process s S There exists an optimal policy π that is better than or equal to all other policies π π, π All optimal policies achieve the optimal value function, V π (s) = V (s) All optimal policies achieve the optimal action value function, Q π (s) = Q (s) There is always a deterministic optimal policy for any MDP A deterministic optimal policy can be found by maximizing over Q (s, a) { π 1 if a = arg max a A Q (s, a) (a s) = 0 otherwise

56 Example: Optimal Policy for Student MDP

57 Bellman Optimality Equation Bellman Optimality Equation for V V (s) = max a = max a Q (s, a) { R(s, a) + γ s S P(s s, a)v (s ) } Bellman Optimality Equation for Q Q (s) = R(s, a) + γ s S P(s s, a)v (s ) = R(s, a) + γ s S P(s s, a) max a Q (s, a )

58 Example: Bellman Optimality Equation in Student MDP

59 Bellman Optimality Operator Definition The Bellman optimality operator for V is defined as T : R S R S (maps value functions to value functions): ( ) (T V )(s) = max a A R(s, a) + γ s S P(s s, a)v (s ) Definition The Bellman optimality operator for Q is defined as T : R S A R S A (maps action value functions to action value functions): (T Q )(s, a) = R(s, a) + γ s S P(s s, a) max a Q (s, a )

60 Properties of Bellman Operators Monotonicity: if f 1 f 2 component wise T π f 1 T π f 2, T f 1 T f 2 Max Norm Contraction: for two vectors f 1 anf f 2 T π f 1 T π f 2 γ f 1 f 2 T f 1 T f 2 γ f 1 f 2 V π is the unique fixed point of T π V is the unique fixed point of T For any vector f R S and any policy π, we have lim k (T π ) k f = V π, lim k (T ) k f = V

61 Solving the Bellman Optimality Equation Bellman optimality equation is non linear No closed form solution for the general case Many iterative solution methods Dynamic Programming Value Iteration Policy Iteration Linear Programming Reinforcement Learning Q learning SARSA

62 Extensions to MDP Undiscounted, average reward MDPs Infinite and continuous MDPs Partially observable MDPs Semi-MDPs Non stationary MDPs, games

63 Exercises Model the following problems But who s counting Blackjack

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning and Deep Reinforcement Learning Reinforcement Learning and Deep Reinforcement Learning Ashis Kumer Biswas, Ph.D. ashis.biswas@ucdenver.edu Deep Learning November 5, 2018 1 / 64 Outlines 1 Principles of Reinforcement Learning 2 The Q

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

The Markov Decision Process (MDP) model

The Markov Decision Process (MDP) model Decision Making in Robots and Autonomous Agents The Markov Decision Process (MDP) model Subramanian Ramamoorthy School of Informatics 25 January, 2013 In the MAB Model We were in a single casino and the

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Markov Decision Processes and Dynamic Programming

Markov Decision Processes and Dynamic Programming Markov Decision Processes and Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) Ecole Centrale - Option DAD SequeL INRIA Lille EC-RL Course In This Lecture A. LAZARIC Markov Decision Processes

More information

Lecture notes for Analysis of Algorithms : Markov decision processes

Lecture notes for Analysis of Algorithms : Markov decision processes Lecture notes for Analysis of Algorithms : Markov decision processes Lecturer: Thomas Dueholm Hansen June 6, 013 Abstract We give an introduction to infinite-horizon Markov decision processes (MDPs) with

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B.

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B. Advanced Topics in Machine Learning, GI13, 2010/11 Advanced Topics in Machine Learning, GI13, 2010/11 Answer any THREE questions. Each question is worth 20 marks. Use separate answer books Answer any THREE

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING ERIC SHANG Abstract. This paper provides an introduction to Markov chains and their basic classifications and interesting properties. After establishing

More information

Markov Decision Processes and Dynamic Programming

Markov Decision Processes and Dynamic Programming Markov Decision Processes and Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course How to model an RL problem The Markov Decision Process

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Q-Learning for Markov Decision Processes*

Q-Learning for Markov Decision Processes* McGill University ECSE 506: Term Project Q-Learning for Markov Decision Processes* Authors: Khoa Phan khoa.phan@mail.mcgill.ca Sandeep Manjanna sandeep.manjanna@mail.mcgill.ca (*Based on: Convergence of

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Reinforcement Learning. Spring 2018 Defining MDPs, Planning

Reinforcement Learning. Spring 2018 Defining MDPs, Planning Reinforcement Learning Spring 2018 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Machine Learning Reinforcement learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1396 1 / 32 Table of contents 1 Introduction

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo MLR, University of Stuttgart

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Discrete Markov Chain. Theory and use

Discrete Markov Chain. Theory and use Discrete Markov Chain. Theory and use Andres Vallone PhD Student andres.vallone@predoc.uam.es 2016 Contents 1 Introduction 2 Concept and definition Examples Transitions Matrix Chains Classification 3 Empirical

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

ISM206 Lecture, May 12, 2005 Markov Chain

ISM206 Lecture, May 12, 2005 Markov Chain ISM206 Lecture, May 12, 2005 Markov Chain Instructor: Kevin Ross Scribe: Pritam Roy May 26, 2005 1 Outline of topics for the 10 AM lecture The topics are: Discrete Time Markov Chain Examples Chapman-Kolmogorov

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

Motivation for introducing probabilities

Motivation for introducing probabilities for introducing probabilities Reaching the goals is often not sufficient: it is important that the expected costs do not outweigh the benefit of reaching the goals. 1 Objective: maximize benefits - costs.

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI Temporal Difference Learning KENNETH TRAN Principal Research Engineer, MSR AI Temporal Difference Learning Policy Evaluation Intro to model-free learning Monte Carlo Learning Temporal Difference Learning

More information

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS 63 2.1 Introduction In this chapter we describe the analytical tools used in this thesis. They are Markov Decision Processes(MDP), Markov Renewal process

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

The convergence limit of the temporal difference learning

The convergence limit of the temporal difference learning The convergence limit of the temporal difference learning Ryosuke Nomura the University of Tokyo September 3, 2013 1 Outline Reinforcement Learning Convergence limit Construction of the feature vector

More information

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 11: Markov Decision Processes II Teacher: Gianni A. Di Caro RECAP: DEFINING MDPS Markov decision processes: o Set of states S o Start state s 0 o Set of actions A o Transitions P(s s,a)

More information

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage.

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage. Course basics CSE 190: Reinforcement Learning: An Introduction The website for the class is linked off my homepage. Grades will be based on programming assignments, homeworks, and class participation.

More information

Lecture 9 Classification of States

Lecture 9 Classification of States Lecture 9: Classification of States of 27 Course: M32K Intro to Stochastic Processes Term: Fall 204 Instructor: Gordan Zitkovic Lecture 9 Classification of States There will be a lot of definitions and

More information

Real Time Value Iteration and the State-Action Value Function

Real Time Value Iteration and the State-Action Value Function MS&E338 Reinforcement Learning Lecture 3-4/9/18 Real Time Value Iteration and the State-Action Value Function Lecturer: Ben Van Roy Scribe: Apoorva Sharma and Tong Mu 1 Review Last time we left off discussing

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Temporal difference learning

Temporal difference learning Temporal difference learning AI & Agents for IET Lecturer: S Luz http://www.scss.tcd.ie/~luzs/t/cs7032/ February 4, 2014 Recall background & assumptions Environment is a finite MDP (i.e. A and S are finite).

More information

Reinforcement Learning. Summer 2017 Defining MDPs, Planning

Reinforcement Learning. Summer 2017 Defining MDPs, Planning Reinforcement Learning Summer 2017 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning Introduction to Reinforcement Learning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe Machine Learning Summer School, September 2011,

More information

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices Discrete time Markov chains Discrete Time Markov Chains, Limiting Distribution and Classification DTU Informatics 02407 Stochastic Processes 3, September 9 207 Today: Discrete time Markov chains - invariant

More information

Notes on Reinforcement Learning

Notes on Reinforcement Learning 1 Introduction Notes on Reinforcement Learning Paulo Eduardo Rauber 2014 Reinforcement learning is the study of agents that act in an environment with the goal of maximizing cumulative reward signals.

More information

Lecture 17: Reinforcement Learning, Finite Markov Decision Processes

Lecture 17: Reinforcement Learning, Finite Markov Decision Processes CSE599i: Online and Adaptive Machine Learning Winter 2018 Lecture 17: Reinforcement Learning, Finite Markov Decision Processes Lecturer: Kevin Jamieson Scribes: Aida Amini, Kousuke Ariga, James Ferguson,

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Abstract Dynamic Programming

Abstract Dynamic Programming Abstract Dynamic Programming Dimitri P. Bertsekas Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Overview of the Research Monograph Abstract Dynamic Programming"

More information

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < +

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < + Random Walks: WEEK 2 Recurrence and transience Consider the event {X n = i for some n > 0} by which we mean {X = i}or{x 2 = i,x i}or{x 3 = i,x 2 i,x i},. Definition.. A state i S is recurrent if P(X n

More information

Markov Chains (Part 3)

Markov Chains (Part 3) Markov Chains (Part 3) State Classification Markov Chains - State Classification Accessibility State j is accessible from state i if p ij (n) > for some n>=, meaning that starting at state i, there is

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Understanding (Exact) Dynamic Programming through Bellman Operators

Understanding (Exact) Dynamic Programming through Bellman Operators Understanding (Exact) Dynamic Programming through Bellman Operators Ashwin Rao ICME, Stanford University January 15, 2019 Ashwin Rao (Stanford) Bellman Operators January 15, 2019 1 / 11 Overview 1 Value

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Stuart Russell, UC Berkeley Stuart Russell, UC Berkeley 1 Outline Sequential decision making Dynamic programming algorithms Reinforcement learning algorithms temporal difference

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel Reinforcement Learning with Function Approximation Joseph Christian G. Noel November 2011 Abstract Reinforcement learning (RL) is a key problem in the field of Artificial Intelligence. The main goal is

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Markov Chains for Everybody

Markov Chains for Everybody Markov Chains for Everybody An Introduction to the theory of discrete time Markov chains on countable state spaces. Wilhelm Huisinga, & Eike Meerbach Fachbereich Mathematik und Informatik Freien Universität

More information

Reinforcement Learning: the basics

Reinforcement Learning: the basics Reinforcement Learning: the basics Olivier Sigaud Université Pierre et Marie Curie, PARIS 6 http://people.isir.upmc.fr/sigaud August 6, 2012 1 / 46 Introduction Action selection/planning Learning by trial-and-error

More information

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019 Reinforcement Learning and Optimal Control ASU, CSE 691, Winter 2019 Dimitri P. Bertsekas dimitrib@mit.edu Lecture 8 Bertsekas Reinforcement Learning 1 / 21 Outline 1 Review of Infinite Horizon Problems

More information

6 Basic Convergence Results for RL Algorithms

6 Basic Convergence Results for RL Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 6 Basic Convergence Results for RL Algorithms We establish here some asymptotic convergence results for the basic RL algorithms, by showing

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

Lecture 8: Policy Gradient

Lecture 8: Policy Gradient Lecture 8: Policy Gradient Hado van Hasselt Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Introduction Vapnik s rule Never solve

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information