Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Size: px
Start display at page:

Download "Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017"

Transcription

1 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29

2 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29

3 At each iteration t, the player chooses x t K. A convex loss function f t F : K R is revealed. A cost f t (x t ) is incurred. F is a set of bounded functions. f t is revealed after choosing x t. f t can be adversarially chosen. s (OCO) Convex 4/29

4 Regret Given an algorithm A. Regret of A after T iterations is defined as: regret T (A) := sup { {f i } T i=1 F T t=1 Online Gradient Descent O(GD T ). f t (x t ) min x K T f t (x)} t=1 If f i is α-strongly convex then O( G 2 2α (1 + log(t )). s (OCO) Convex 6/29

5 Convex 1 In OCO we had access to f t (x t ). in BCO we only observe f t (x t ). further constrains the BCO setting. s (OCO) Convex 1 Material from [1]. 7/29

6 Convex In data networks, the decision maker can measure the RTD of a packet, but rarely has access to the congestion pattern of the entire network. In ad-placement, the search engine can inspect which ads were clicked through, but cannot know whether different ads, had they been chosen, would have been click through or not. Given a fixed budget, how to allocate resources among the research projects whose outcome is only partially known at the time of allocation and may change through time. Wikipedia. Originally considered by Allied scientists in World War II, it proved so intractable that, according to Peter Whittle, the problem was proposed to be dropped over Germany so that German scientists could also waste their time on it. 9/29 s (OCO) Convex

7 (MAB) On each iteration t, the player choses an action i t from a predefined set of discrete actions {1,..., n}. An adversary, independently, chooses a loss [0, 1] for each action. The loss associated with i t is then revealed to the player. There are a variety of MAB specifications with various assumptions and constraints. This definition is similar to the multi-expert problem, except we do not observe the loss associated with the other experts. s (OCO) Convex 11/29

8 MAB as a BCO The algorithms usually choose an action w.r.t a distribution over the actions. If we define K = n, an n-dimensional simplex then f t (x) = l t x = n l t (i)x(i) i=1 x K We have an exploration-exploitation trade-off. A simple approach would be to Exploration With some probability, explore by choosing actions uniformly at random. Construct an estimate of the actions losses with the feedback. Exploitation Otherwise, use the estimates to make a decision. s (OCO) Convex 12/29

9 An algorithm can be constructed: s (OCO) Convex 14/29

10 Analysis This algorithm guarantees: T E[ l t (i t ) min i t=1 T l t (i)] O(T 3 4 n) t=1 E[ˆl t (i)] = P[b t = 1] P[i t = i b t = 1] n δ l t(i) = l t (i) s (OCO) Convex ˆl t 2 n δ l t(i t ) n δ E[ˆf t ] = f t 15/29

11 Analysis s (OCO) Convex 16/29

12 s Has a worst-case near-optimal regret bound of O( Tn log n). See P104 of the OCO book for proof. (OCO) Convex 18/29

13 Stochastic On each iteration t, the player choses an action i t from a predefined set of discrete actions {1,..., n}. Each action i has an underlying (fixed) probability distribution P i with mean µ i. The loss associated with i t is then revealed to the player. (A sample is taken from P it ). P i s could be a simple Bernoulli variable. A more complex version could assume a Markov process for each action, within which the state of one or all processes change after each iteration. We still have the exploration-exploitation trade-off. s (OCO) Convex 20/29

14 Bernoulli 2 N[a] The number of times arm a is pulled. Q[a] The running average of rewards for arm a. S[a] The number of successes for arm a. F [a] The number of failures for arm a. The same notion of regret, except the optimal strategy is to pull the arm with the largest mean, µ. s (OCO) Convex 2 Material from [2]. 22/29

15 Random Selection O(T ). Greedy Selection O(T ). ɛ-greedy Selection O(T ). Boltzmann Exploration O(T ). Upper-Confidence Bound O(ln(T )). Thompson Sampling O(ln(T )). s (OCO) Convex 24/29

16 Empirical Evaluation s (OCO) Convex 25/29

17 There are scenarios within which we can have access to more information. The extra information can be encoded as a context vector. In online advertising, the behaviour of each user, or the search context for instance, can provide valuable information. One simple way is to treat each context having its own bandit problem. Variations of the previous algorithms relate the context vector with the expected reward through linear models, neural networks, kernels, or random forests. s (OCO) Convex 27/29

18 Thanks s Thanks! Questions? (OCO) Convex 28/29

19 References I s E. Hazan. Introduction to. S. Raja. s and Exploration Strategies. (OCO) Convex 29/29

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm

Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Annealing-Pareto Multi-Objective Multi-Armed Bandit Algorithm Saba Q. Yahyaa, Madalina M. Drugan and Bernard Manderick Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2, 1050 Brussels,

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits John Langford and Tong Zhang Presentation by Terry Lam 02/2011 Outline The Contextual Bandit Problem Prior Works The Epoch Greedy Algorithm

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Bandit Online Convex Optimization

Bandit Online Convex Optimization March 31, 2015 Outline 1 OCO vs Bandit OCO 2 Gradient Estimates 3 Oblivious Adversary 4 Reshaping for Improved Rates 5 Adaptive Adversary 6 Concluding Remarks Review of (Online) Convex Optimization Set-up

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Bandits for Online Optimization

Bandits for Online Optimization Bandits for Online Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 1 / 16 The multiarmed bandit problem... K slot machines Each

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 Online Convex Optimization Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 The General Setting The General Setting (Cover) Given only the above, learning isn't always possible Some Natural

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade

Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Bandits and Exploration: How do we (optimally) gather information? Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for Big data 1 / 22

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Sparse Linear Contextual Bandits via Relevance Vector Machines

Sparse Linear Contextual Bandits via Relevance Vector Machines Sparse Linear Contextual Bandits via Relevance Vector Machines Davis Gilton and Rebecca Willett Electrical and Computer Engineering University of Wisconsin-Madison Madison, WI 53706 Email: gilton@wisc.edu,

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks

Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks Reward Maximization Under Uncertainty: Leveraging Side-Observations Reward Maximization Under Uncertainty: Leveraging Side-Observations on Networks Swapna Buccapatnam AT&T Labs Research, Middletown, NJ

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Online Learning under Full and Bandit Information

Online Learning under Full and Bandit Information Online Learning under Full and Bandit Information Artem Sokolov Computerlinguistik Universität Heidelberg 1 Motivation 2 Adversarial Online Learning Hedge EXP3 3 Stochastic Bandits ε-greedy UCB Real world

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Stochastic Contextual Bandits with Known. Reward Functions

Stochastic Contextual Bandits with Known. Reward Functions Stochastic Contextual Bandits with nown 1 Reward Functions Pranav Sakulkar and Bhaskar rishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern

More information

Large-scale Information Processing, Summer Recommender Systems (part 2)

Large-scale Information Processing, Summer Recommender Systems (part 2) Large-scale Information Processing, Summer 2015 5 th Exercise Recommender Systems (part 2) Emmanouil Tzouridis tzouridis@kma.informatik.tu-darmstadt.de Knowledge Mining & Assessment SVM question When a

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Multi-armed Bandit with Additional Observations

Multi-armed Bandit with Additional Observations Multi-armed Bandit with Additional Observations DOGGYU YU, aver Corporation ALEXADRE PROUTIERE, KTH SUMYEOG AH, JIWOO SHI, and YUG YI, KAIST We study multi-armed bandit (MAB) problems with additional observations,

More information

Notes on AdaGrad. Joseph Perla 2014

Notes on AdaGrad. Joseph Perla 2014 Notes on AdaGrad Joseph Perla 2014 1 Introduction Stochastic Gradient Descent (SGD) is a common online learning algorithm for optimizing convex (and often non-convex) functions in machine learning today.

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Bandit Convex Optimization

Bandit Convex Optimization March 7, 2017 Table of Contents 1 (BCO) 2 Projection Methods 3 Barrier Methods 4 Variance reduction 5 Other methods 6 Conclusion Learning scenario Compact convex action set K R d. For t = 1 to T : Predict

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Linear Scalarized Knowledge Gradient in the Multi-Objective Multi-Armed Bandits Problem

Linear Scalarized Knowledge Gradient in the Multi-Objective Multi-Armed Bandits Problem ESANN 04 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 3-5 April 04, i6doc.com publ., ISBN 978-8749095-7. Available from

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

arxiv: v3 [cs.gt] 17 Jun 2015

arxiv: v3 [cs.gt] 17 Jun 2015 An Incentive Compatible Multi-Armed-Bandit Crowdsourcing Mechanism with Quality Assurance Shweta Jain, Sujit Gujar, Satyanath Bhat, Onno Zoeter, Y. Narahari arxiv:1406.7157v3 [cs.gt] 17 Jun 2015 June 18,

More information

Online learning with feedback graphs and switching costs

Online learning with feedback graphs and switching costs Online learning with feedback graphs and switching costs A Proof of Theorem Proof. Without loss of generality let the independent sequence set I(G :T ) formed of actions (or arms ) from to. Given the sequence

More information

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION

ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS CHONG JIANG DISSERTATION c 2015 Chong Jiang ONLINE ADVERTISEMENTS AND MULTI-ARMED BANDITS BY CHONG JIANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and

More information

A survey: The convex optimization approach to regret minimization

A survey: The convex optimization approach to regret minimization A survey: The convex optimization approach to regret minimization Elad Hazan September 10, 2009 WORKING DRAFT Abstract A well studied and general setting for prediction and decision making is regret minimization

More information

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Combinatorial Multi-Armed Bandit: General Framework, Results and Applications Wei Chen Microsoft Research Asia, Beijing, China Yajun Wang Microsoft Research Asia, Beijing, China Yang Yuan Computer Science

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

Trade-Offs in Distributed Learning and Optimization

Trade-Offs in Distributed Learning and Optimization Trade-Offs in Distributed Learning and Optimization Ohad Shamir Weizmann Institute of Science Includes joint works with Yossi Arjevani, Nathan Srebro and Tong Zhang IHES Workshop March 2016 Distributed

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

1 Problem Formulation

1 Problem Formulation Book Review Self-Learning Control of Finite Markov Chains by A. S. Poznyak, K. Najim, and E. Gómez-Ramírez Review by Benjamin Van Roy This book presents a collection of work on algorithms for learning

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Mathematical Theory of Networks and Systems

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Tsinghua Machine Learning Guest Lecture, June 9,

Tsinghua Machine Learning Guest Lecture, June 9, Tsinghua Machine Learning Guest Lecture, June 9, 2015 1 Lecture Outline Introduction: motivations and definitions for online learning Multi-armed bandit: canonical example of online learning Combinatorial

More information

Multi-Armed Bandit Formulations for Identification and Control

Multi-Armed Bandit Formulations for Identification and Control Multi-Armed Bandit Formulations for Identification and Control Cristian R. Rojas Joint work with Matías I. Müller and Alexandre Proutiere KTH Royal Institute of Technology, Sweden ERNSI, September 24-27,

More information

Convergence and No-Regret in Multiagent Learning

Convergence and No-Regret in Multiagent Learning Convergence and No-Regret in Multiagent Learning Michael Bowling Department of Computing Science University of Alberta Edmonton, Alberta Canada T6G 2E8 bowling@cs.ualberta.ca Abstract Learning in a multiagent

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Lecture 6: Non-stochastic best arm identification

Lecture 6: Non-stochastic best arm identification CSE599i: Online and Adaptive Machine Learning Winter 08 Lecturer: Kevin Jamieson Lecture 6: Non-stochastic best arm identification Scribes: Anran Wang, eibin Li, rian Chan, Shiqing Yu, Zhijin Zhou Disclaimer:

More information

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks Yingfei Wang, Chu Wang and Warren B. Powell Princeton University Yingfei Wang Optimal Learning Methods June 22, 2016

More information

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities Lecture 15: Bandit problems. Markov Processes Bandit problems Action values (and now to compute them) Exploration-exploitation trade-off Simple exploration strategies -greedy Softmax (Boltzmann) exploration

More information

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang

Multi-Armed Bandits. Credit: David Silver. Google DeepMind. Presenter: Tianlu Wang Multi-Armed Bandits Credit: David Silver Google DeepMind Presenter: Tianlu Wang Credit: David Silver (DeepMind) Multi-Armed Bandits Presenter: Tianlu Wang 1 / 27 Outline 1 Introduction Exploration vs.

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Learning and Selecting the Right Customers for Reliability: A Multi-armed Bandit Approach

Learning and Selecting the Right Customers for Reliability: A Multi-armed Bandit Approach Learning and Selecting the Right Customers for Reliability: A Multi-armed Bandit Approach Yingying Li, Qinran Hu, and Na Li Abstract In this paper, we consider residential demand response (DR) programs

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Online Learning with Gaussian Payoffs and Side Observations

Online Learning with Gaussian Payoffs and Side Observations Online Learning with Gaussian Payoffs and Side Observations Yifan Wu 1 András György 2 Csaba Szepesvári 1 1 Department of Computing Science University of Alberta 2 Department of Electrical and Electronic

More information

Learning Optimal Online Advertising Portfolios with Periodic Budgets

Learning Optimal Online Advertising Portfolios with Periodic Budgets Learning Optimal Online Advertising Portfolios with Periodic Budgets Lennart Baardman Operations Research Center, MIT, Cambridge, MA 02139, baardman@mit.edu Elaheh Fata Department of Aeronautics and Astronautics,

More information

Convergence rate of SGD

Convergence rate of SGD Convergence rate of SGD heorem: (see Nemirovski et al 09 from readings) Let f be a strongly convex stochastic function Assume gradient of f is Lipschitz continuous and bounded hen, for step sizes: he expected

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Southern California Optimization Day UC San

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

Mean field equilibria of multiarmed bandit games

Mean field equilibria of multiarmed bandit games Mean field equilibria of multiarmed bandit games Ramesh Johari Stanford University Joint work with Ramki Gummadi (Stanford University) and Jia Yuan Yu (IBM Research) A look back: SN 2000 2 Overview What

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems

Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Mechanisms with Learning for Stochastic Multi-armed Bandit Problems Shweta Jain 1, Satyanath Bhat 1, Ganesh Ghalme 1, Divya Padmanabhan 1, and Y. Narahari 1 Department of Computer Science and Automation,

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

Online (and Distributed) Learning with Information Constraints. Ohad Shamir

Online (and Distributed) Learning with Information Constraints. Ohad Shamir Online (and Distributed) Learning with Information Constraints Ohad Shamir Weizmann Institute of Science Online Algorithms and Learning Workshop Leiden, November 2014 Ohad Shamir Learning with Information

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #16: Gradient Descent February 18, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #16: Gradient Descent February 18, 2015 5-859E: Advanced Algorithms CMU, Spring 205 Lecture #6: Gradient Descent February 8, 205 Lecturer: Anupam Gupta Scribe: Guru Guruganesh In this lecture, we will study the gradient descent algorithm and

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Introducing strategic measure actions in multi-armed bandits

Introducing strategic measure actions in multi-armed bandits 213 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Workshop on Cognitive Radio Medium Access Control and Network Solutions Introducing strategic measure actions

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

An Analytic Solution to Discrete Bayesian Reinforcement Learning

An Analytic Solution to Discrete Bayesian Reinforcement Learning An Analytic Solution to Discrete Bayesian Reinforcement Learning Pascal Poupart (U of Waterloo) Nikos Vlassis (U of Amsterdam) Jesse Hoey (U of Toronto) Kevin Regan (U of Waterloo) 1 Motivation Automated

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Multi-Attribute Bayesian Optimization under Utility Uncertainty

Multi-Attribute Bayesian Optimization under Utility Uncertainty Multi-Attribute Bayesian Optimization under Utility Uncertainty Raul Astudillo Cornell University Ithaca, NY 14853 ra598@cornell.edu Peter I. Frazier Cornell University Ithaca, NY 14853 pf98@cornell.edu

More information

Multi-armed Bandits with Limited Exploration

Multi-armed Bandits with Limited Exploration Multi-armed Bandits with Limited Exploration Sudipto Guha Kamesh Munagala Abstract A central problem to decision making under uncertainty is the trade-off between exploration and exploitation: between

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information