An Analytic Solution to Discrete Bayesian Reinforcement Learning

Size: px
Start display at page:

Download "An Analytic Solution to Discrete Bayesian Reinforcement Learning"

Transcription

1 An Analytic Solution to Discrete Bayesian Reinforcement Learning Pascal Poupart (U of Waterloo) Nikos Vlassis (U of Amsterdam) Jesse Hoey (U of Toronto) Kevin Regan (U of Waterloo) 1

2 Motivation Automated assistant [Boger et al. IJCAI-05] Use RL to adapt to users Learn through user interactions (no simulation) Bear cost of actions Cannot explore too much Real-time response 2

3 Model-Based Bayesian RL Model-based Bayesian RL: Naturally optimize exploration/exploitation tradeoff Reduce exploration with prior knowledge Mathematically and computationally complex Contributions: Optimal value function has simple parameterization i.e., upper envelope of a set of multivariate polynomials BEETLE: Bayesian Exploration/Exploitation Tradeoff in LEarning Exploit polynomial parameterization 3

4 Outline Bayesian reinforcement learning Value function parameterization BEETLE algorithm Experiments Conclusion 4

5 Reinforcement Learning Markov Decision Process: S: set of states A: set of actions R: set of rewards T(s,a,s ) = Pr(s s,a): transition function U(s,a) = r: reward function Reinforcement Learning Bayesian Model-based Reinforcement Learning Encode unknown prob. by random variables θ i.e., θ sas = Pr(s s,a): random variable in [0,1] i.e., θ sa = Pr( s,a): multinomial distribution 5

6 Model Learning Assume prior b(θ sa ) = Pr(θ sa ) Learning: compute posterior given s,a,s b sas (θ sa ) = k Pr(θ sa ) Pr(s s,a,θ sa ) = k b(θ sa ) θ sas Conjugate prior: Dirichlet prior Dirichlet posterior b(θ sa ) = Dir(θ sa ;n sa ) = k Π s (θ sas ) n sas 1 b sas (θ sa ) = k b(θ sa ) θ sas = k Π s (θ sas ) n sas 1 + δ(s,s ) = k Dir(θ sa ; n sa + δ(s,s )) 6

7 Structural priors Prior Knowledge Tie identical parameters If Pr( s,a) = Pr( s,a ) then θ sa = θ s a Factored representation DBN: unknown conditional dist. Informative priors No knowledge: uniform Dirichlet If (θ 1, θ 2 ) ~ (0.2, 0.8) then set (n 1, n 2 ) to (0.2k, 0.8k) k indicates the level of confidence Pr(p) Dir(p; 1, 1) Dir(p; 2, 8) Dir(p; 20, 80) p 7

8 Classic RL: Policy Optimization V*(s) = max a U(s,a) + Σ s Pr(s s,a) V*(s ) Hard to tell what needs to be explored Exploration heuristics: ε-greedy, Boltzmann, etc. Bayesian RL: V*(s,b) = max a U(s,a) + Σ s Pr(s s,b,a) V*(s,b sas ) Belief b tells us what parts of the model are not well known and therefore worth exploring Optimal exploration/exploitation tradeoff [Dearden 98,99], [Strens 00], [Duff 02], [Wang 05] 8

9 Value Function Parameterization Theorem: V* is the upper envelope of a set of multivariate polynomials (V s (θ) = max i poly i (θ)) Proof: by induction Define value function in terms of θ instead of b i.e. V*(s,b) = θ b(θ) V s (θ) dθ Bellman s equation V s (θ) = max a U(s,a) + Σ s Pr(s s,a,θ) V s (θ) = max a k a + Σ s θ sas max i poly i (θ) = max j poly j (θ) 9

10 BEETLE Algorithm Sample a set of reachable belief points B V {0} Repeat V {} For each b in B compute multivariate polynomial poly as (θ) argmax poly V θ b sas (θ) poly(θ) dθ a* argmax a θ b sas (θ) R(s,a) + Σ s θ sas poly as (θ) dθ poly(θ) U(s,a*) + Σ s θ sa*s poly a*s (θ) V V {poly} V V 10

11 Polynomials Computational issue: # of monomials in each polynomial grows by O( S ) at each iteration poly(θ) = U(s,a*) + Σ s θ sa*s poly a*s (θ) = U(s,a*) + Σ s θ sas Σ i mono i (θ) = U(s,a*) + Σ i,s mono i,s (θ) After n iterations: polynomials have O( S n ) monomials! 11

12 Projection Scheme Approximate polynomials by a linear combination of a fixed set of monomial basis functions φ i (θ): i.e. poly(θ) Σ i c i φ i (θ) Find best coefficients c i by minimizing L n norm: Min c θ poly(θ) - Σ i c i φ i (θ) n dθ For the Euclidean norm (L 2 ), this can be done by solving a system of linear equations Ax = b such that A ij = θ φ i (θ) φ j (θ) dθ b i = θ poly(θ) φ j (θ) dθ x i = c i 12

13 Basis functions Which monomials should we use as basis functions? Recall that: b sas (θ) = k b(θ) θ sas poly(θ) U(s,a) + Σ s θ sas poly as (θ) Hence we use beliefs as basis functions 13

14 Beetle summary Offline: optimize policy at sampled belief points Time: minutes to hours Online: learn transition model by belief monitoring Time: fraction of a second Advantages: Fast enough for online learning Optimizes exploration/exploitation tradeoff Easy to encode prior knowledge in initial belief Disadvantage: Policy may not be good for all belief points 14

15 Empirical Evaluation Comparison with two heuristics Exploit: pure exploitation strategy Greedily select best action of the mean model at each time step Slow execution: must solve an MDP at each time step Discrete POMDP: discretize θ Discretization leads to an exponential number of states Intractable for medium to large problems 15

16 Empirical Evaluation Problem S A Free params Opt Discrete POMDP Exploit Beetle Beetle time (minutes) Chain ± ± ± Chain ± ± ± Chain na-m 3078 ± ± Handw ± ± ± Handw ± ± ± Handw na-m 297 ± ±

17 Informative Priors Problem Opt k = 0 Informative priors k = 10 k = 20 k = 30 Chain ± ± ± ± 32 Handw ± ± ± ± 16 Handw ± ± ± ± 12 17

18 Learning Curves cumulative reward Optimal (utopic) Beetle (prior 0) Beetle (prior 30) Exploit Handw steps 18

19 Conclusion Motivation Learning by interaction with environment (no simulation) Bear consequence of actions Minimal exploration Real-time execution Bayesian RL Optimizes exploration/exploitation tradeoff Can easily encode prior knowledge to reduce exploration Contributions Optimal value function parameterization: as the upper envelope of multivariate polynomials BEETLE algorithm 19

20 Future work Learn user behaviors for assistive technologies Consider partially observable domains Learn dynamic transition models Consider correlated Dirichlets priors 20

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Pascal Poupart David R. Cheriton School of Computer Science University of Waterloo 1 Outline Review Markov Models

More information

Bayesian Methods in Reinforcement Learning

Bayesian Methods in Reinforcement Learning Bayesian Methods in Reinforcement Learning Wednesday, June 20th, 2007 ICML-07 tutorial Corvallis, Oregon, USA (Univ. of Waterloo) Mohammad Ghavamzadeh (Univ. of Alberta) Yaakov Engel (Univ. of Alberta)

More information

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Pascal Poupart (University of Waterloo) INFORMS 2009 1 Outline Dynamic Pricing as a POMDP Symbolic Perseus

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Bayes-Adaptive POMDPs 1

Bayes-Adaptive POMDPs 1 Bayes-Adaptive POMDPs 1 Stéphane Ross, Brahim Chaib-draa and Joelle Pineau SOCS-TR-007.6 School of Computer Science McGill University Montreal, Qc, Canada Department of Computer Science and Software Engineering

More information

Active Learning of MDP models

Active Learning of MDP models Active Learning of MDP models Mauricio Araya-López, Olivier Buffet, Vincent Thomas, and François Charpillet Nancy Université / INRIA LORIA Campus Scientifique BP 239 54506 Vandoeuvre-lès-Nancy Cedex France

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Preference Elicitation for Sequential Decision Problems

Preference Elicitation for Sequential Decision Problems Preference Elicitation for Sequential Decision Problems Kevin Regan University of Toronto Introduction 2 Motivation Focus: Computational approaches to sequential decision making under uncertainty These

More information

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24 and partially observable Markov decision processes Christos Dimitrakakis EPFL November 6, 2013 Bayesian reinforcement learning and partially observable Markov decision processes November 6, 2013 1 / 24

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes

A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes Journal of Machine Learning Research 12 (2011) 1729-1770 Submitted 10/08; Revised 11/10; Published 5/11 A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes Stéphane

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Bayesian Reinforcement Learning

Bayesian Reinforcement Learning Bayesian Reinforcement Learning Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor, Pascal Poupart To cite this version: Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor, Pascal Poupart. Bayesian Reinforcement

More information

Outline. Lecture 13. Sequential Decision Making. Sequential Decision Making. Markov Decision Process. Stationary Preferences

Outline. Lecture 13. Sequential Decision Making. Sequential Decision Making. Markov Decision Process. Stationary Preferences Outline Lecture 3 October 27, 2009 C 486/686 Markov Decision Processes Dynamic Decision Networks Russell and Norvig: ect 7., 7.2 (up to p. 620), 7.4, 7.5 2 equential Decision Making tatic Decision Making

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Constrained Bayesian Reinforcement Learning via Approximate Linear Programming

Constrained Bayesian Reinforcement Learning via Approximate Linear Programming Constrained Bayesian Reinforcement Learning via Approximate Linear Programming Jongmin Lee, Youngsoo Jang, Pascal Poupart, Kee-Eung Kim School of Computing, KAIST, Republic of Korea David R. Cheriton School

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Reinforcement Learning Active Learning

Reinforcement Learning Active Learning Reinforcement Learning Active Learning Alan Fern * Based in part on slides by Daniel Weld 1 Active Reinforcement Learning So far, we ve assumed agent has a policy We just learned how good it is Now, suppose

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Scalable and Efficient Bayes-Adaptive Reinforcement Learning Based on Monte-Carlo Tree Search

Scalable and Efficient Bayes-Adaptive Reinforcement Learning Based on Monte-Carlo Tree Search Journal of Artificial Intelligence Research 48 (2013) 841-883 Submitted 06/13; published 11/13 Scalable and Efficient Bayes-Adaptive Reinforcement Learning Based on Monte-Carlo Tree Search Arthur Guez

More information

Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time

Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time Seminar in Artificial Intelligence Near-Bayesian Exploration in Polynomial Time 26.11.2015 Fachbereich Informatik Knowledge Engineering Group David Fischer 1 Table of Contents Problem and Motivation Algorithm

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague Partially observable Markov decision processes Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Model-Based Reinforcement Learning (Day 1: Introduction)

Model-Based Reinforcement Learning (Day 1: Introduction) Model-Based Reinforcement Learning (Day 1: Introduction) Michael L. Littman Rutgers University Department of Computer Science Rutgers Laboratory for Real-Life Reinforcement Learning Plan Day 1: Introduction

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Bayesian Active Learning With Basis Functions

Bayesian Active Learning With Basis Functions Bayesian Active Learning With Basis Functions Ilya O. Ryzhov and Warren B. Powell Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 Abstract A common technique for

More information

Model Transfer for Markov Decision Tasks via Parameter Matching

Model Transfer for Markov Decision Tasks via Parameter Matching Model Transfer for Markov Decision Tasks via Parameter Matching Funlade T. Sunmola Wolfson Computer Laboratory, University Hospital Birmingham, NHS Foundation Trust, Edgbaston, Birmingham, B15 2TH. UK.

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Beetle Bandit: Evaluation of a Bayesian-adaptive reinforcement learning algorithm for bandit problems with Bernoulli rewards. A Thesis presented

Beetle Bandit: Evaluation of a Bayesian-adaptive reinforcement learning algorithm for bandit problems with Bernoulli rewards. A Thesis presented Beetle Bandit: Evaluation of a Bayesian-adaptive reinforcement learning algorithm for bandit problems with Bernoulli rewards. A Thesis presented by Bart Jan Buter in partial fulllment of the requirements

More information

Elements of Reinforcement Learning

Elements of Reinforcement Learning Elements of Reinforcement Learning Policy: way learning algorithm behaves (mapping from state to action) Reward function: Mapping of state action pair to reward or cost Value function: long term reward,

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

MAP Inference for Bayesian Inverse Reinforcement Learning

MAP Inference for Bayesian Inverse Reinforcement Learning MAP Inference for Bayesian Inverse Reinforcement Learning Jaedeug Choi and Kee-Eung Kim bdepartment of Computer Science Korea Advanced Institute of Science and Technology Daejeon 305-701, Korea jdchoi@ai.kaist.ac.kr,

More information

The Planning-by-Inference view on decision making and goal-directed behaviour

The Planning-by-Inference view on decision making and goal-directed behaviour The Planning-by-Inference view on decision making and goal-directed behaviour Marc Toussaint Machine Learning & Robotics Lab FU Berlin marc.toussaint@fu-berlin.de Nov. 14, 2011 1/20 pigeons 2/20 pigeons

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Lecture 10 - Planning under Uncertainty (III)

Lecture 10 - Planning under Uncertainty (III) Lecture 10 - Planning under Uncertainty (III) Jesse Hoey School of Computer Science University of Waterloo March 27, 2018 Readings: Poole & Mackworth (2nd ed.)chapter 12.1,12.3-12.9 1/ 34 Reinforcement

More information

Optimally Solving Dec-POMDPs as Continuous-State MDPs

Optimally Solving Dec-POMDPs as Continuous-State MDPs Optimally Solving Dec-POMDPs as Continuous-State MDPs Jilles Dibangoye (1), Chris Amato (2), Olivier Buffet (1) and François Charpillet (1) (1) Inria, Université de Lorraine France (2) MIT, CSAIL USA IJCAI

More information

Bayes-Adaptive POMDPs: Toward an Optimal Policy for Learning POMDPs with Parameter Uncertainty

Bayes-Adaptive POMDPs: Toward an Optimal Policy for Learning POMDPs with Parameter Uncertainty Bayes-Adaptive POMDPs: Toward an Optimal Policy for Learning POMDPs with Parameter Uncertainty Stéphane Ross School of Computer Science McGill University, Montreal (Qc), Canada, H3A 2A7 stephane.ross@mail.mcgill.ca

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Bayesian Reinforcement Learning in Continuous POMDPs with Application to Robot Navigation

Bayesian Reinforcement Learning in Continuous POMDPs with Application to Robot Navigation 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 2008 Bayesian Reinforcement Learning in Continuous POMDPs with Application to Robot Navigation Stéphane Ross

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Module 8 Linear Programming. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 8 Linear Programming. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 8 Linear Programming CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Policy Optimization Value and policy iteration Iterative algorithms that implicitly solve

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search

Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search Arthur Guez aguez@gatsby.ucl.ac.uk David Silver d.silver@cs.ucl.ac.uk Peter Dayan dayan@gatsby.ucl.ac.uk arxiv:1.39v4 [cs.lg] 18

More information

Introduction to Reinforcement Learning Part 1: Markov Decision Processes

Introduction to Reinforcement Learning Part 1: Markov Decision Processes Introduction to Reinforcement Learning Part 1: Markov Decision Processes Rowan McAllister Reinforcement Learning Reading Group 8 April 2015 Note I ve created these slides whilst following Algorithms for

More information

Bayesian Active Learning With Basis Functions

Bayesian Active Learning With Basis Functions Bayesian Active Learning With Basis Functions Ilya O. Ryzhov Warren B. Powell Operations Research and Financial Engineering Princeton University Princeton, NJ 08544, USA IEEE ADPRL April 13, 2011 1 / 29

More information

Efficient Learning in Linearly Solvable MDP Models

Efficient Learning in Linearly Solvable MDP Models Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Efficient Learning in Linearly Solvable MDP Models Ang Li Department of Computer Science, University of Minnesota

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 12: Probability 3/2/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. 1 Announcements P3 due on Monday (3/7) at 4:59pm W3 going out

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

University of Alberta

University of Alberta University of Alberta NEW REPRESENTATIONS AND APPROXIMATIONS FOR SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY by Tao Wang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Optimistic Planning for Belief-Augmented Markov Decision Processes

Optimistic Planning for Belief-Augmented Markov Decision Processes Optimistic Planning for Belief-Augmented Markov Decision Processes Raphael Fonteneau, Lucian Buşoniu, Rémi Munos Department of Electrical Engineering and Computer Science, University of Liège, BELGIUM

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Some AI Planning Problems

Some AI Planning Problems Course Logistics CS533: Intelligent Agents and Decision Making M, W, F: 1:00 1:50 Instructor: Alan Fern (KEC2071) Office hours: by appointment (see me after class or send email) Emailing me: include CS533

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

The Monte Carlo Method: Bayesian Networks

The Monte Carlo Method: Bayesian Networks The Method: Bayesian Networks Dieter W. Heermann Methods 2009 Dieter W. Heermann ( Methods)The Method: Bayesian Networks 2009 1 / 18 Outline 1 Bayesian Networks 2 Gene Expression Data 3 Bayesian Networks

More information

2534 Lecture 4: Sequential Decisions and Markov Decision Processes

2534 Lecture 4: Sequential Decisions and Markov Decision Processes 2534 Lecture 4: Sequential Decisions and Markov Decision Processes Briefly: preference elicitation (last week s readings) Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. Norman,Y.

More information

Food delivered. Food obtained S 3

Food delivered. Food obtained S 3 Press lever Enter magazine * S 0 Initial state S 1 Food delivered * S 2 No reward S 2 No reward S 3 Food obtained Supplementary Figure 1 Value propagation in tree search, after 50 steps of learning the

More information

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy.

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy. Page 1 Markov decision processes (MDP) CS 416 Artificial Intelligence Lecture 21 Making Complex Decisions Chapter 17 Initial State S 0 Transition Model T (s, a, s ) How does Markov apply here? Uncertainty

More information

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI Temporal Difference Learning KENNETH TRAN Principal Research Engineer, MSR AI Temporal Difference Learning Policy Evaluation Intro to model-free learning Monte Carlo Learning Temporal Difference Learning

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Bayes Adaptive Reinforcement Learning versus Off-line Prior-based Policy Search: an Empirical Comparison

Bayes Adaptive Reinforcement Learning versus Off-line Prior-based Policy Search: an Empirical Comparison Bayes Adaptive Reinforcement Learning versus Off-line Prior-based Policy Search: an Empirical Comparison Michaël Castronovo University of Liège, Institut Montefiore, B28, B-4000 Liège, BELGIUM Damien Ernst

More information

Reinforcement Learning as Variational Inference: Two Recent Approaches

Reinforcement Learning as Variational Inference: Two Recent Approaches Reinforcement Learning as Variational Inference: Two Recent Approaches Rohith Kuditipudi Duke University 11 August 2017 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing

More information

AM 121: Intro to Optimization Models and Methods: Fall 2018

AM 121: Intro to Optimization Models and Methods: Fall 2018 AM 11: Intro to Optimization Models and Methods: Fall 018 Lecture 18: Markov Decision Processes Yiling Chen Lesson Plan Markov decision processes Policies and value functions Solving: average reward, discounted

More information

Learning from Sequential and Time-Series Data

Learning from Sequential and Time-Series Data Learning from Sequential and Time-Series Data Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/? Sequential and Time-Series Data Many real-world applications

More information

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems Lecture 2: Learning from Evaluative Feedback or Bandit Problems 1 Edward L. Thorndike (1874-1949) Puzzle Box 2 Learning by Trial-and-Error Law of Effect: Of several responses to the same situation, those

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Robust Policy Computation in Reward-uncertain MDPs using Nondominated Policies

Robust Policy Computation in Reward-uncertain MDPs using Nondominated Policies Robust Policy Computation in Reward-uncertain MDPs using Nondominated Policies Kevin Regan University of Toronto Toronto, Ontario, Canada, M5S 3G4 kmregan@cs.toronto.edu Craig Boutilier University of Toronto

More information

Journal of Computer and System Sciences. An analysis of model-based Interval Estimation for Markov Decision Processes

Journal of Computer and System Sciences. An analysis of model-based Interval Estimation for Markov Decision Processes Journal of Computer and System Sciences 74 (2008) 1309 1331 Contents lists available at ScienceDirect Journal of Computer and System Sciences www.elsevier.com/locate/jcss An analysis of model-based Interval

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Madhav Mohandas, Richard Zhu, Vincent Zhuang May 5, 2016 Table of Contents 1. Intro to Crowdsourcing 2. The Problem 3. Knowledge Gradient Algorithm

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes. Pascal Poupart

Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes. Pascal Poupart Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes by Pascal Poupart A thesis submitted in conformity with the requirements for the degree of Doctor of

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

An Analysis of Model-Based Interval Estimation for Markov Decision Processes

An Analysis of Model-Based Interval Estimation for Markov Decision Processes An Analysis of Model-Based Interval Estimation for Markov Decision Processes Alexander L. Strehl, Michael L. Littman astrehl@gmail.com, mlittman@cs.rutgers.edu Computer Science Dept. Rutgers University

More information

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam CSE 573 Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming Slides adapted from Andrey Kolobov and Mausam 1 Stochastic Shortest-Path MDPs: Motivation Assume the agent pays cost

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

Factored State Spaces 3/2/178

Factored State Spaces 3/2/178 Factored State Spaces 3/2/178 Converting POMDPs to MDPs In a POMDP: Action + observation updates beliefs Value is a function of beliefs. Instead we can view this as an MDP where: There is a state for every

More information

Bellmanian Bandit Network

Bellmanian Bandit Network Bellmanian Bandit Network Antoine Bureau TAO, LRI - INRIA Univ. Paris-Sud bldg 50, Rue Noetzlin, 91190 Gif-sur-Yvette, France antoine.bureau@lri.fr Michèle Sebag TAO, LRI - CNRS Univ. Paris-Sud bldg 50,

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Autonomous Helicopter Flight via Reinforcement Learning

Autonomous Helicopter Flight via Reinforcement Learning Autonomous Helicopter Flight via Reinforcement Learning Authors: Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry Presenters: Shiv Ballianda, Jerrolyn Hebert, Shuiwang Ji, Kenley Malveaux, Huy

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 6: RL algorithms 2.0 Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Present and analyse two online algorithms

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information