The Planning-by-Inference view on decision making and goal-directed behaviour

Size: px
Start display at page:

Download "The Planning-by-Inference view on decision making and goal-directed behaviour"

Transcription

1 The Planning-by-Inference view on decision making and goal-directed behaviour Marc Toussaint Machine Learning & Robotics Lab FU Berlin Nov. 14, /20

2 pigeons 2/20

3 pigeons Wolfgang Köhler (1917) Intelligenzprüfungen am Menschenaffen The Mentality of Apes 2/20

4 Richard E. Bellman ( ) Bellman s principle of optimality B A A opt B opt V(s) = max a [R(a,s)+γ ] s P(s a,s) V(s ) π(s) = argmax a [R(a,s)+γ ] s P(s a,s) V(s ) Dynamic Programming, recursing backward Reinforcement Learning (Q-learning, etc) the paradigm of goal-directed decision making nowadays value function over full state space curse of dimensionality distinguished role of rewards 3/20

5 4/20

6 von Neumann ( ) Morgenstern ( ) utility/reward/success just another state (random) variable Shachter (Stanford) Cooper (Pittsburgh) Shachter/Cooper/Peot (1988): inference P(behavior R = 1) I think: idea was sleeping for 15 years should have had great influence on thinking about behavior! a group of MLs independently rediscovered this recently 5/20

7 Planning by Inference X Y Z things you know/ current state A things to do/ actions things you want to see in the future We condition on goals/desired observations and infer actions/motion. 6/20

8 CURRENT STATE CONSTRAINTS GOALS ACTIONS OBSERVATIONS assume permanent relaxation process 7/20

9 CURRENT STATE CONSTRAINTS GOALS ACTIONS OBSERVATIONS assume permanent relaxation process imagining a goal means conditioning a variable the network relaxes into a new posterior, implying new actions 7/20

10 CURRENT STATE CONSTRAINTS GOALS ACTIONS OBSERVATIONS assume permanent relaxation process imagining a goal means conditioning a variable the network relaxes into a new posterior, implying new actions works for networks of goals, constraints, observations, etc. 7/20

11 CURRENT STATE CONSTRAINTS GOALS ACTIONS OBSERVATIONS assume permanent relaxation process imagining a goal means conditioning a variable the network relaxes into a new posterior, implying new actions works for networks of goals, constraints, observations, etc. doesn t distinguish between sensor/motor, perception/action 7/20

12 CURRENT STATE CONSTRAINTS GOALS ACTIONS OBSERVATIONS assume permanent relaxation process imagining a goal means conditioning a variable the network relaxes into a new posterior, implying new actions works for networks of goals, constraints, observations, etc. doesn t distinguish between sensor/motor, perception/action we got rid of notion of state as one big variable 7/20

13 Markov Decision Processes a 0 a 1 a 2 s 0 s 1 s 2 r 0 r 1 r 2 Problem: Find argmax π V π = E{ t=0 γt r t ;π}, γ [0,1] 8/20

14 Markov Decision Processes a 0 a 1 a 2 s 0 s 1 s 2 r 0 r 1 r 2 Problem: Find argmax π V π = E{ t=0 γt r t ;π}, γ [0,1] Planning by Inference: Define another stochastic process (mixture of finite-time MDPs) s.t. Max. Likelihood L π = P(R = 1;π) in this process Max. Value V π in the MDP (Toussaint & Storkey, ICML 2006) 8/20

15 Stochastic Optimal Control z 0 z 1 z 2 z T x 0 x 1 x 2 x T u 0 u 1 u 2 u T prior P(x 0:T,u 0:T) := P(x 0) controlled q π(x 0:T,u 0:T) := P(x 0) posterior p(x 0:T,u 0:T) := P(x0) P(z=1) T P(u t x t) t=0 T t=0 δ ut =π t (x t ) T P(x t u t-1x t-1) t=1 T P(u t x t) t=0 T P(x t u t-1x t-1) t=1 T P(x t u t-1x t-1) t=1 T exp{ c t(x t,u t)} t=0 For uniform P(u t x t): D ( ) q π p = logp(z 0:T =1)+E qπ(x 0:T ){C(x 0:T,π(x 0:T ))} ( General Kalman Duality ; Rawlik & Toussaint 2010) 9/20

16 MDPs (Toussaint, Storkey, ICML 2006) a0 s0 r Network-Distributed POMDP (Kumar, Toussaint, Zilberstein, IJCAI 2011) a0 a1 r s0 s1 a0 a1 a2 r s0 s1 s2 a0 a1 a2 at r s0 s1 s2 Relational RL (Lang, Toussaint, ICML 2009) s xt hierarchical POMDP (Charlin, Poupart, Toussaint, UAI 2008) n 2 n 1 e 1 n 2 n 1 e 0 n 0 n 0 y a y s s 10/20

17 Planning by Inference... An alternative framework when exact Bellman is infeasible approximate inference can exploit structure Literature on reductions to Probabilistic Inference: Toussaint & Storkey: Probabilistic inference for solving discrete and continuous state Markov Decision Processes (ICML 2006). Todorov: General duality between optimal control and estimation (Decision and Control, 2008) Toussaint: Robot Trajectory Optimization using Approximate Inference (ICML 2009). Kappen, Gomez & Opper: Optimal control as a graphical model inference problem (arxiv: , 2009) Rawlik, Toussaint & Vijayakumar: Approximate Inference and Stochastic Optimal Control (arxiv: , 2010) 11/20

18 Random exploration: Planning: Relational explore-exploit: Real-world: 12/20

19 Neural perspective 13/20

20 Neural perspective Goal-directed decision making in prefrontal cortex: A computational framework (NIPS 2008) Matthew Botvinick (Princeton) We take three empirically motivated points as founding premises: (1) Neurons in dorsolateral prefrontal cortex represent action policies, (2) Neurons in orbitofrontal cortex represent rewards, and (3) Neural computation, across domains, can be appropriately understood as performing structured probabilistic inference. [...]... essentially proposes Planning by Inference 13/20

21 Karl J. Friston, Jean Daunizeau, James Kilner, Stefan J. Kiebel: Action and behavior: a free-energy formulation, Biol Cyb. Karl Friston (UCL) minimize sensory prediction error (free-energy) through action Expectation Maximization and Free Energy Minimization are equivalent. 14/20

22 15/20

23 Inference in neural systems Bayesian Brain: Probabilistic Approaches to Neural Coding. K. Doya, S. Ishii, A. Pouget, RPN. Rao (editors), MIT Press (2007) Hierarchical Bayesian Inference in Networks of Spiking Neurons. Rajesh P. N. Rao (NIPS 2004) The Neurodynamics of Belief Propagation on Binary Markov Random Fields. T. Ott, R. Stoop (NIPS 2006) current work by Wolfgang Maas... 16/20

24 Johnson & Redish (J o Neuroscience, 2007): Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point 17/20

25 Theories of thought Rick Grush (Behavioral and Brain Sciences, 2004): The emulation theory of representation: motor control, imagery, and perception. (20 pages + 46 pages commentary & response!) Keywords: Kalman filters, overt & covert actions, imagery 18/20

26 Theories of thought G. Hesslow (Trends in Cog Sciences, 2002): Conscious thought as simulation of behaviour and perception. A simulation theory of cognitive function can be based on three assumptions about brain function. (1) First, behaviour can be simulated by activating motor structures, as during an overt action but suppressing its execution. (2) Second, perception can be simulated by internal activation of sensory cortex, as during normal perception of external stimuli. (3) Third, both overt and covert actions can elicit perceptual simulation of their normal consequences. A large body of evidence supports these assumptions. It is argued that the simulation approach can explain the relations between motor, sensory and cognitive functions and the appearance of an inner world. 19/20

27 Thanks to all collaborators: PhD students: Tobias Lang, Nikolay Jetchev, Stanio Dragiev Pascal Poupart, Laurent Charlin (U Waterloo) Nikos Vlassis (U Crete) Michael Gienger, Christian Goerick (Honda, Offenbach) Klaus-Robert Müller, Manfred Opper (TU Berlin) Amos Storkey, Stefan Harmeling, Sethu Vijayakumar (U Edinburgh) thanks for your attention! Source code: on my webpage: code for AICO, DDP/iLQG, EM-POMDP solver on Tobias webpage: code for PRADA 20/20

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

On Reward Function for Survival

On Reward Function for Survival On Reward Function for Survival Naoto Yoshida Tohoku University, Sendai, Japan E-mail: naotoyoshida@pfsl.mech.thoku.ac.jp arxiv:1606.05767v2 [cs.ai] 24 Jul 2016 Abstract Obtaining a survival strategy (policy)

More information

Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage:

Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: http://wcms.inf.ed.ac.uk/ipab/rss Control Theory Concerns controlled systems of the form: and a controller of the

More information

An Analytic Solution to Discrete Bayesian Reinforcement Learning

An Analytic Solution to Discrete Bayesian Reinforcement Learning An Analytic Solution to Discrete Bayesian Reinforcement Learning Pascal Poupart (U of Waterloo) Nikos Vlassis (U of Amsterdam) Jesse Hoey (U of Toronto) Kevin Regan (U of Waterloo) 1 Motivation Automated

More information

Probabilistic inference for computing optimal policies in MDPs

Probabilistic inference for computing optimal policies in MDPs Probabilistic inference for computing optimal policies in MDPs Marc Toussaint Amos Storkey School of Informatics, University of Edinburgh Edinburgh EH1 2QL, Scotland, UK mtoussai@inf.ed.ac.uk, amos@storkey.org

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

EM-based Reinforcement Learning

EM-based Reinforcement Learning EM-based Reinforcement Learning Gerhard Neumann 1 1 TU Darmstadt, Intelligent Autonomous Systems December 21, 2011 Outline Expectation Maximization (EM)-based Reinforcement Learning Recap : Modelling data

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Active inference with function learning for robot body perception

Active inference with function learning for robot body perception Active inference with function learning for robot body perception Pablo Lanillos* and Gordon Cheng Insitute for Cognitive Systems Technical University of Munich Munich, Germany *p.lanillos@tum.de Index

More information

Learning in Zero-Sum Team Markov Games using Factored Value Functions

Learning in Zero-Sum Team Markov Games using Factored Value Functions Learning in Zero-Sum Team Markov Games using Factored Value Functions Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 mgl@cs.duke.edu Ronald Parr Department of Computer

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

School of Informatics, University of Edinburgh

School of Informatics, University of Edinburgh T E H U N I V E R S I T Y O H F R G School of Informatics, University of Edinburgh E D I N B U Institute for Adaptive and Neural Computation Probabilistic inference for solving (PO)MDPs by Marc Toussaint,

More information

Reinforced Variational Inference

Reinforced Variational Inference Reinforced Variational Inference Theophane Weber 1 Nicolas Heess 1 S. M. Ali Eslami 1 John Schulman 2 David Wingate 3 David Silver 1 1 Google DeepMind 2 University of California, Berkeley 3 Brigham Young

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Path Integral Control by Reproducing Kernel Hilbert Space Embedding

Path Integral Control by Reproducing Kernel Hilbert Space Embedding Path Integral Control by Reproducing Kernel Hilbert Space Embedding Konrad Rawlik School of Informatics University of Edinburgh Marc Toussaint Inst. für Parallele und Verteilte Systeme Universität Stuttgart

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

arxiv: v3 [math.oc] 18 Jan 2012

arxiv: v3 [math.oc] 18 Jan 2012 Optimal control as a graphical model inference problem Hilbert J. Kappen Vicenç Gómez Manfred Opper arxiv:0901.0633v3 [math.oc] 18 Jan 01 Abstract We reformulate a class of non-linear stochastic optimal

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

arxiv: v1 [cs.lg] 20 Sep 2010

arxiv: v1 [cs.lg] 20 Sep 2010 Approximate Inference and Stochastic Optimal Control Konrad Rawlik 1, Marc Toussaint 2, and Sethu Vijayakumar 1 1 Statistical Machine Learning and Motor Control Group, University of Edinburgh 2 Machine

More information

Optimal Control with Learned Forward Models

Optimal Control with Learned Forward Models Optimal Control with Learned Forward Models Pieter Abbeel UC Berkeley Jan Peters TU Darmstadt 1 Where we are? Reinforcement Learning Data = {(x i, u i, x i+1, r i )}} x u xx r u xx V (x) π (u x) Now V

More information

Preference Elicitation for Sequential Decision Problems

Preference Elicitation for Sequential Decision Problems Preference Elicitation for Sequential Decision Problems Kevin Regan University of Toronto Introduction 2 Motivation Focus: Computational approaches to sequential decision making under uncertainty These

More information

Logic, Knowledge Representation and Bayesian Decision Theory

Logic, Knowledge Representation and Bayesian Decision Theory Logic, Knowledge Representation and Bayesian Decision Theory David Poole University of British Columbia Overview Knowledge representation, logic, decision theory. Belief networks Independent Choice Logic

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

Information, Utility & Bounded Rationality

Information, Utility & Bounded Rationality Information, Utility & Bounded Rationality Pedro A. Ortega and Daniel A. Braun Department of Engineering, University of Cambridge Trumpington Street, Cambridge, CB2 PZ, UK {dab54,pao32}@cam.ac.uk Abstract.

More information

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley A Tour of Reinforcement Learning The View from Continuous Control Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study

More information

Trading value and information in MDPs

Trading value and information in MDPs Trading value and information in MDPs Jonathan Rubin, Ohad Shamir and Naftali Tishby Abstract Interactions between an organism and its environment are commonly treated in the framework of Markov Decision

More information

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Pascal Poupart David R. Cheriton School of Computer Science University of Waterloo 1 Outline Review Markov Models

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

Dynamic Causal Modelling for EEG and MEG

Dynamic Causal Modelling for EEG and MEG Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Ma Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic

More information

MAP Inference for Bayesian Inverse Reinforcement Learning

MAP Inference for Bayesian Inverse Reinforcement Learning MAP Inference for Bayesian Inverse Reinforcement Learning Jaedeug Choi and Kee-Eung Kim bdepartment of Computer Science Korea Advanced Institute of Science and Technology Daejeon 305-701, Korea jdchoi@ai.kaist.ac.kr,

More information

Inference strategies for solving semi-markov decision processes

Inference strategies for solving semi-markov decision processes Inference strategies for solving semi-markov decision processes Matthew Hoffman Nando de Freitas Department of Computer Science University of British Columbia, Canada Abstract Semi-Markov decision processes

More information

Maximum Margin Planning

Maximum Margin Planning Maximum Margin Planning Nathan Ratliff, Drew Bagnell and Martin Zinkevich Presenters: Ashesh Jain, Michael Hu CS6784 Class Presentation Theme 1. Supervised learning 2. Unsupervised learning 3. Reinforcement

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets

On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets Pablo Samuel Castro pcastr@cs.mcgill.ca McGill University Joint work with: Doina Precup and Prakash

More information

Efficient Inference in Markov Control Problems

Efficient Inference in Markov Control Problems Efficient Inference in Markov Control Problems Thomas Furmston Computer Science Department University College London London, WC1E 6BT David Barber Computer Science Department University College London

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Module 8 Linear Programming. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 8 Linear Programming. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 8 Linear Programming CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Policy Optimization Value and policy iteration Iterative algorithms that implicitly solve

More information

New inference strategies for solving Markov Decision Processes using reversible jump MCMC

New inference strategies for solving Markov Decision Processes using reversible jump MCMC New inference strategies for solving Markov Decision Processes using reversible jump MCMC Matt Hoffman, Hendrik Kueck, Nando de Freitas, Arnaud Doucet {hoffmanm,kueck,nando,arnaud}@cs.ubc.ca University

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

State Space Abstraction for Reinforcement Learning

State Space Abstraction for Reinforcement Learning State Space Abstraction for Reinforcement Learning Rowan McAllister & Thang Bui MLG, Cambridge Nov 6th, 24 / 26 Rowan s introduction 2 / 26 Types of abstraction [LWL6] Abstractions are partitioned based

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Pascal Poupart (University of Waterloo) INFORMS 2009 1 Outline Dynamic Pricing as a POMDP Symbolic Perseus

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning and Deep Reinforcement Learning Reinforcement Learning and Deep Reinforcement Learning Ashis Kumer Biswas, Ph.D. ashis.biswas@ucdenver.edu Deep Learning November 5, 2018 1 / 64 Outlines 1 Principles of Reinforcement Learning 2 The Q

More information

Path Integral Stochastic Optimal Control for Reinforcement Learning

Path Integral Stochastic Optimal Control for Reinforcement Learning Preprint August 3, 204 The st Multidisciplinary Conference on Reinforcement Learning and Decision Making RLDM203 Path Integral Stochastic Optimal Control for Reinforcement Learning Farbod Farshidian Institute

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Learning from Sequential and Time-Series Data

Learning from Sequential and Time-Series Data Learning from Sequential and Time-Series Data Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/? Sequential and Time-Series Data Many real-world applications

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Expectation-Maximization methods for solving (PO)MDPs and optimal control problems

Expectation-Maximization methods for solving (PO)MDPs and optimal control problems Chapter 1 Expectation-Maximization methods for solving (PO)MDPs and optimal control problems Marc Toussaint 1, Amos Storkey 2 and Stefan Harmeling 3 As this book demonstrates, the development of efficient

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Summary of Class Advanced Topics Dhruv Batra Virginia Tech HW1 Grades Mean: 28.5/38 ~= 74.9%

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

CONCEPT LEARNING WITH ENERGY-BASED MODELS

CONCEPT LEARNING WITH ENERGY-BASED MODELS CONCEPT LEARNING WITH ENERGY-BASED MODELS Igor Mordatch OpenAI San Francisco mordatch@openai.com 1 OVERVIEW Many hallmarks of human intelligence, such as generalizing from limited experience, abstract

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Online Algorithms for Sum-Product

Online Algorithms for Sum-Product Online Algorithms for Sum-Product Networks with Continuous Variables Priyank Jaini Ph.D. Seminar Consistent/Robust Tensor Decomposition And Spectral Learning Offline Bayesian Learning ADF, EP, SGD, oem

More information

Dynamic Causal Modelling for evoked responses J. Daunizeau

Dynamic Causal Modelling for evoked responses J. Daunizeau Dynamic Causal Modelling for evoked responses J. Daunizeau Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Overview 1 DCM: introduction 2 Neural

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands An efficient approach to stochastic optimal control Bert Kappen SNN Radboud University Nijmegen the Netherlands Bert Kappen Examples of control tasks Motor control Bert Kappen Pascal workshop, 27-29 May

More information

Predictive Processing in Planning:

Predictive Processing in Planning: Predictive Processing in Planning: Choice Behavior as Active Bayesian Inference Philipp Schwartenbeck Wellcome Trust Centre for Human Neuroimaging, UCL The Promise of Predictive Processing: A Critical

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Policy Search for Path Integral Control

Policy Search for Path Integral Control Policy Search for Path Integral Control Vicenç Gómez 1,2, Hilbert J Kappen 2, Jan Peters 3,4, and Gerhard Neumann 3 1 Universitat Pompeu Fabra, Barcelona Department of Information and Communication Technologies,

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

European Workshop on Reinforcement Learning A POMDP Tutorial. Joelle Pineau. McGill University

European Workshop on Reinforcement Learning A POMDP Tutorial. Joelle Pineau. McGill University European Workshop on Reinforcement Learning 2013 A POMDP Tutorial Joelle Pineau McGill University (With many slides & pictures from Mauricio Araya-Lopez and others.) August 2013 Sequential decision-making

More information

On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference

On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference Konrad Rawlik, Marc Toussaint and Sethu Vijayakumar School of Informatics, University of Edinburgh, UK Department of Computer

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary discussion 1: Most excitatory and suppressive stimuli for model neurons The model allows us to determine, for each model neuron, the set of most excitatory and suppresive features. First,

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Online Bayesian Transfer Learning for Sequential Data Modeling

Online Bayesian Transfer Learning for Sequential Data Modeling Online Bayesian Transfer Learning for Sequential Data Modeling....? Priyank Jaini Machine Learning, Algorithms and Theory Lab Network for Aging Research 2 3 Data of personal preferences (years) Data (non-existent)

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

A Study of Morphological Computation by using Probabilistic Inference for Motor Planning

A Study of Morphological Computation by using Probabilistic Inference for Motor Planning A Study of Morphological Computation by using Probabilistic Inference for Motor Planning Elmar Rückert Institute for Theoretical Computer Science Graz University of Technology Graz, 8010, Austria rueckert@igi.tugraz.at

More information

Learning a world model and planning with a self-organizing, dynamic neural system

Learning a world model and planning with a self-organizing, dynamic neural system Learning a world model and planning with a self-organizing, dynamic neural system Marc Toussaint Institut für Neuroinformatik Ruhr-Universität Bochum, ND 04 44780 Bochum Germany mt@neuroinformatik.rub.de

More information

arxiv: v1 [cs.ai] 10 Mar 2016

arxiv: v1 [cs.ai] 10 Mar 2016 Hierarchical Linearly-Solvable Markov Decision Problems (Extended Version with Supplementary Material) Anders Jonsson and Vicenç Gómez Department of Information and Communication Technologies Universitat

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague Partially observable Markov decision processes Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Natural Language Processing Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Projects Project descriptions due today! Last class Sequence to sequence models Attention Pointer networks Today Weak

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Bayesian Inference. 2 CS295-7 cfl Michael J. Black,

Bayesian Inference. 2 CS295-7 cfl Michael J. Black, Population Coding Now listen to me closely, young gentlemen. That brain is thinking. Maybe it s thinking about music. Maybe it has a great symphony all thought out or a mathematical formula that would

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Data Structures for Efficient Inference and Optimization

Data Structures for Efficient Inference and Optimization Data Structures for Efficient Inference and Optimization in Expressive Continuous Domains Scott Sanner Ehsan Abbasnejad Zahra Zamani Karina Valdivia Delgado Leliane Nunes de Barros Cheng Fang Discrete

More information