Dynamic Causal Modelling for EEG and MEG

Size: px
Start display at page:

Download "Dynamic Causal Modelling for EEG and MEG"

Transcription

1 Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Ma Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany

2 Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications

3 Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications

4 Mismatch negativity (MMN) Paradigm standards deviants pseudo-random auditory sequence 80% standard tones 500 Hz 20% deviant tones 550 Hz time Raw data (e.g., 128 sensors) Preprocessing (SPM8) Evoked responses (here: single sensor) μv time (ms) Garrido et al., NeuroImage, 2007

5 Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications

6 Electroencephalography (EEG) amplitude (μv) time (ms) Modelling aim: Eplain all data with few parameters How to: Assume data are caused by few interacting brain sources

7 Probabilistic inference Forward problem p( y, m) Likelihood Posterior distribution p( y, m) Inverse problem

8 Connectivity models Conventional analysis: Which regions are involved in task? DCM analysis: How do regions communicate? STG STG STG STG A1 A1 A1 A1 Input (stimulus) Input (stimulus)

9 Model for auditory evoked response Garrido et al., PNAS, 2007

10 Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications

11 Inference at meso-scale macro-scale meso-scale micro-scale eternal granular layer eternal pyramidal layer internal granular layer internal pyramidal layer AP generation zone synapses

12 Neural mass equations and connectivity Etrinsic forward connections spiny stellate cells inhibitory interneurons pyramidal cells ) ) ( ) (( e e L F e e Cu S I A A H 1 2 ( 0 ) A F S ( 0 ) A L S ( 0 ) A B S Etrinsic backward connections Intrinsic connections Etrinsic lateral connections,u, f )) ( ) (( e e L B e e S I A A H ) ( 2 )) ( ) ( ) (( i i i i e e L B e e S H S S A A H Jansen et Rit, Biol Cybern,1995 David et al., NeuroImage, 2006

13 Source activity over time Source dynamics f Forward Backward Lateral Input u f (, u, ) states parameters θ

14 Spatial forward model Kiebel et al., NeuroImage, 2006 Daunizeau et al., NeuroImage, 2009

15 The generative model Source dynamics f Spatial forward model g f (, u, ) states parameters θ y g(, ) Evoked responses Input u David et al., NeuroImage, 2006 Kiebel et al., Human Brain Mapping, 2009

16 Probabilistic inference Forward problem p( y, m) Likelihood Posterior distribution p( y, m) Inverse problem

17 Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications

18 Bayesian inference Evoked responses Specify generative forward model (with prior distributions of parameters) Variational (Bayesian) algorithm Iterative procedure: 1. Compute model response using current set of parameters 2. Compare model response with data 3. Improve parameters, if possible 1. Posterior distributions of parameters p( y, m) 2. Model evidence p( y m)

19 best? Model selection: Which model is the best? data y Model 1 Model 2 p( y m1 ) p y, m ) ( 1 p( y m2 ) p y, m ( 2 ) Model selection: Select model with highest model evidence... p( y mi ) best? Model n p( y mn ) p y, m ( n ) Stephan et al., NeuroImage, 2009 Penny et al., PLoS Comp Biol, 2010

20 Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications

21 Auditory evoked potential Garrido et al., PNAS, 2007

22 Auditory evoked potential time (ms) time (ms) Garrido et al., PNAS, 2007

23 Mismatch negativity: EEG IFG IFG IFG Forward - F Backward - B Forward and Backward - FB STG STG STG STG STG STG STG A1 A1 A1 A1 A1 A1 input input input Forward Backward Lateral Forward Backward Lateral Forward Backward Lateral modulation of effective connectivity Garrido et al., NeuroImage, 2007

24 log-evidence MMN: Group model comparison Bayesian Model Comparison Group level Forward (F) subjects Backward (B) Forward and Backward (FB) Garrido et al., NeuroImage, 2007

25 Mismatch negativity: MEG Standard D1 D2 D3 CVC Bart Bart Burt beat Tone Matched to formants of vowel Schofield et al., PNAS, 2009

26 Mismatch negativity: MEG Schofield et al., PNAS, 2009

27 Summary DCM enables testing of hypotheses about how brain sources communicate. Differences between conditions or groups are modelled as modulation of connectivity. Bayesian inference is used to take into account the variability over models and parameters.

28 Thanks to: Marta Garrido Jean Daunizeau Karl Friston Jeremie Mattout Christophe Phillips Thank you!

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications Overview

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Dynamic Causal Modelling for evoked responses J. Daunizeau

Dynamic Causal Modelling for evoked responses J. Daunizeau Dynamic Causal Modelling for evoked responses J. Daunizeau Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Overview 1 DCM: introduction 2 Neural

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Dynamic Modeling of Brain Activity

Dynamic Modeling of Brain Activity 0a Dynamic Modeling of Brain Activity EIN IIN PC Thomas R. Knösche, Leipzig Generative Models for M/EEG 4a Generative Models for M/EEG states x (e.g. dipole strengths) parameters parameters (source positions,

More information

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses The The 21st April 2011 Jansen and Rit (1995), building on the work of Lopes Da Sliva and others, developed a biologically inspired model of EEG activity. It was originally developed to explain alpha activity

More information

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation.

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation. 26th May 2011 Dynamic Causal Modelling Dynamic Causal Modelling is a framework studying large scale brain connectivity by fitting differential equation models to brain imaging data. DCMs differ in their

More information

Will Penny. SPM short course for M/EEG, London 2015

Will Penny. SPM short course for M/EEG, London 2015 SPM short course for M/EEG, London 2015 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure The model evidence is given by integrating out the dependence on model parameters p(y m) = p(y,

More information

Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses

Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses Jakob Heinzle Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering University and ETH Zürich

More information

Dynamic causal modeling for fmri

Dynamic causal modeling for fmri Dynamic causal modeling for fmri Methods and Models for fmri, HS 2015 Jakob Heinzle Structural, functional & effective connectivity Sporns 2007, Scholarpedia anatomical/structural connectivity - presence

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Dynamic Causal Models

Dynamic Causal Models Dynamic Causal Models V1 SPC Will Penny V1 SPC V5 V5 Olivier David, Karl Friston, Lee Harrison, Andrea Mechelli, Klaas Stephan Wellcome Department of Imaging Neuroscience, ION, UCL, UK. Mathematics in

More information

An Implementation of Dynamic Causal Modelling

An Implementation of Dynamic Causal Modelling An Implementation of Dynamic Causal Modelling Christian Himpe 24.01.2011 Overview Contents: 1 Intro 2 Model 3 Parameter Estimation 4 Examples Motivation Motivation: How are brain regions coupled? Motivation

More information

Dynamic causal models of neural system dynamics:current state and future extensions.

Dynamic causal models of neural system dynamics:current state and future extensions. Dynamic causal models of neural system dynamics:current state and future extensions. Klaas Stephan, Lee Harrison, Stefan Kiebel, Olivier David, Will Penny, Karl Friston To cite this version: Klaas Stephan,

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

Dynamic causal models of neural system dynamics. current state and future extensions

Dynamic causal models of neural system dynamics. current state and future extensions Dynamic causal models of neural system dynamics: current state and future etensions Klaas E. Stephan 1, Lee M. Harrison 1, Stefan J. Kiebel 1, Olivier David, Will D. Penny 1 & Karl J. Friston 1 1 Wellcome

More information

NeuroImage 51 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 51 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 51 (010) 91 101 Contents lists available at ScienceDirect NeuroImage ournal homepage: www.elsevier.com/locate/ynimg Technical Note A dynamic causal model study of neuronal population dynamics

More information

Empirical Bayes for DCM: A Group Inversion Scheme

Empirical Bayes for DCM: A Group Inversion Scheme METHODS published: 27 November 2015 doi: 10.3389/fnsys.2015.00164 : A Group Inversion Scheme Karl Friston*, Peter Zeidman and Vladimir Litvak The Wellcome Trust Centre for Neuroimaging, University College

More information

Neural mass model parameter identification for MEG/EEG

Neural mass model parameter identification for MEG/EEG Neural mass model parameter identification for MEG/EEG Jan Kybic a, Olivier Faugeras b, Maureen Clerc b, Théo Papadopoulo b a Center for Machine Perception, Faculty of Electrical Engineering, Czech Technical

More information

Causal modeling of fmri: temporal precedence and spatial exploration

Causal modeling of fmri: temporal precedence and spatial exploration Causal modeling of fmri: temporal precedence and spatial exploration Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University Intro: What is Brain

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Stochastic Dynamic Causal Modelling for resting-state fmri

Stochastic Dynamic Causal Modelling for resting-state fmri Stochastic Dynamic Causal Modelling for resting-state fmri Ged Ridgway, FIL, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London Overview Connectivity in the brain Introduction to

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Annealed Importance Sampling for Neural Mass Models

Annealed Importance Sampling for Neural Mass Models for Neural Mass Models, UCL. WTCN, UCL, October 2015. Generative Model Behavioural or imaging data y. Likelihood p(y w, Γ). We have a Gaussian prior over model parameters p(w µ, Λ) = N (w; µ, Λ) Assume

More information

Models of effective connectivity & Dynamic Causal Modelling (DCM)

Models of effective connectivity & Dynamic Causal Modelling (DCM) Models of effective connectivit & Dnamic Causal Modelling (DCM) Slides obtained from: Karl Friston Functional Imaging Laborator (FIL) Wellcome Trust Centre for Neuroimaging Universit College London Klaas

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Dynamic causal modeling for fmri

Dynamic causal modeling for fmri Dynamic causal modeling for fmri Methods and Models for fmri, HS 2016 Jakob Heinzle Structural, functional & effective connectivity Sporns 2007, Scholarpedia anatomical/structural connectivity - presence

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London.

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London. in Frequency and Sensor Space Oscillation Wellcome Trust Centre for Neuroimaging. University College London. Non- Workshop on Non-Invasive Imaging of Nonlinear Interactions. 20th Annual Computational Neuroscience

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Will Penny. SPM short course for M/EEG, London 2013

Will Penny. SPM short course for M/EEG, London 2013 SPM short course for M/EEG, London 2013 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated

More information

Models of effective connectivity & Dynamic Causal Modelling (DCM)

Models of effective connectivity & Dynamic Causal Modelling (DCM) Models of effective connectivit & Dnamic Causal Modelling (DCM Presented b: Ariana Anderson Slides shared b: Karl Friston Functional Imaging Laborator (FIL Wellcome Trust Centre for Neuroimaging Universit

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

DCM: Advanced topics. Klaas Enno Stephan. SPM Course Zurich 06 February 2015

DCM: Advanced topics. Klaas Enno Stephan. SPM Course Zurich 06 February 2015 DCM: Advanced topics Klaas Enno Stephan SPM Course Zurich 06 February 205 Overview DCM a generative model Evolution of DCM for fmri Bayesian model selection (BMS) Translational Neuromodeling Generative

More information

EEG/MEG Inverse Solution Driven by fmri

EEG/MEG Inverse Solution Driven by fmri EEG/MEG Inverse Solution Driven by fmri Yaroslav Halchenko CS @ NJIT 1 Functional Brain Imaging EEG ElectroEncephaloGram MEG MagnetoEncephaloGram fmri Functional Magnetic Resonance Imaging others 2 Functional

More information

DCM for fmri Advanced topics. Klaas Enno Stephan

DCM for fmri Advanced topics. Klaas Enno Stephan DCM for fmri Advanced topics Klaas Enno Stephan Overview DCM: basic concepts Evolution of DCM for fmri Bayesian model selection (BMS) Translational Neuromodeling Dynamic causal modeling (DCM) EEG, MEG

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time.

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time. Elctroncphalography EEG Dynamc Causal Modllng for M/EEG ampltud μv tm ms tral typ 1 tm channls channls tral typ 2 C. Phllps, Cntr d Rchrchs du Cyclotron, ULg, Blgum Basd on slds from: S. Kbl M/EEG analyss

More information

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y.

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. June 2nd 2011 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule p(m y) = p(y m)p(m)

More information

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010

Group analysis. Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London. SPM Course Edinburgh, April 2010 Group analysis Jean Daunizeau Wellcome Trust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric Map

More information

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG Integration of /MEG/fMRI Vince D. Calhoun, Ph.D. Director, Image Analysis & MR Research The MIND Institute Outline fmri/ data Three Approaches to integration/fusion Prediction Constraints 2 nd Level Fusion

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Bayesian Treatments of. Neuroimaging Data Will Penny and Karl Friston. 5.1 Introduction

Bayesian Treatments of. Neuroimaging Data Will Penny and Karl Friston. 5.1 Introduction Bayesian Treatments of 5 Neuroimaging Data Will Penny and Karl Friston 5.1 Introduction In this chapter we discuss the application of Bayesian methods to neuroimaging data. This includes data from positron

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Bayesian Belief Updating of Spatiotemporal Dynamics

Bayesian Belief Updating of Spatiotemporal Dynamics of Spatiotemporal Dynamics Gerald Cooray 1 2 Richard Rosch 2 3 Torsten Baldeweg 3 Louis Lemieux 1 Karl Friston 2 Biswa Sengupta 4 5 6 Abstract Epileptic seizure activity shows complicated dynamics in both

More information

The Planning-by-Inference view on decision making and goal-directed behaviour

The Planning-by-Inference view on decision making and goal-directed behaviour The Planning-by-Inference view on decision making and goal-directed behaviour Marc Toussaint Machine Learning & Robotics Lab FU Berlin marc.toussaint@fu-berlin.de Nov. 14, 2011 1/20 pigeons 2/20 pigeons

More information

Wellcome Trust Centre for Neuroimaging, UCL, UK.

Wellcome Trust Centre for Neuroimaging, UCL, UK. Bayesian Inference Will Penny Wellcome Trust Centre for Neuroimaging, UCL, UK. SPM Course, Virginia Tech, January 2012 What is Bayesian Inference? (From Daniel Wolpert) Bayesian segmentation and normalisation

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Chapter 35: Bayesian model selection and averaging

Chapter 35: Bayesian model selection and averaging Chapter 35: Bayesian model selection and averaging W.D. Penny, J.Mattout and N. Trujillo-Barreto May 10, 2006 Introduction In Chapter 11 we described how Bayesian inference can be applied to hierarchical

More information

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance

Group Analysis. Lexicon. Hierarchical models Mixed effect models Random effect (RFX) models Components of variance Group Analysis J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial filter

More information

An introduction to Bayesian inference and model comparison J. Daunizeau

An introduction to Bayesian inference and model comparison J. Daunizeau An introduction to Bayesian inference and model comparison J. Daunizeau ICM, Paris, France TNU, Zurich, Switzerland Overview of the talk An introduction to probabilistic modelling Bayesian model comparison

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

A neural mass model of spectral responses in electrophysiology

A neural mass model of spectral responses in electrophysiology www.elsevier.com/locate/ynimg NeuroImage 37 (27) 76 72 A neural mass model of spectral responses in electrophysiology R.J. Moran, a,b, S.J. Kiebel, a K.E. Stephan, a R.B. Reilly, b J. Daunizeau, a and

More information

GP CaKe: Effective brain connectivity with causal kernels

GP CaKe: Effective brain connectivity with causal kernels GP CaKe: Effective brain connectivity with causal kernels Luca Ambrogioni adboud University l.ambrogioni@donders.ru.nl Marcel A. J. van Gerven adboud University m.vangerven@donders.ru.nl Max Hinne adboud

More information

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power

Overview of SPM. Overview. Making the group inferences we want. Non-sphericity Beyond Ordinary Least Squares. Model estimation A word on power Group Inference, Non-sphericity & Covariance Components in SPM Alexa Morcom Edinburgh SPM course, April 011 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Overview

More information

Uncertainty, precision, prediction errors and their relevance to computational psychiatry

Uncertainty, precision, prediction errors and their relevance to computational psychiatry Uncertainty, precision, prediction errors and their relevance to computational psychiatry Christoph Mathys Wellcome Trust Centre for Neuroimaging at UCL, London, UK Max Planck UCL Centre for Computational

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

ATTRACTORS IN SONG. KARL FRISTON and STEFAN KIEBEL

ATTRACTORS IN SONG. KARL FRISTON and STEFAN KIEBEL Attractors in song: 1 New Mathematics and Natural Computation Vol. 5, No. 1 (9) 1-3 World Scientific Publishing Company ATTRACTORS IN SONG KARL FRISTON and STEFAN KIEBEL The Wellcome Trust Centre of Neuroimaging

More information

Steven L. Scott. Presented by Ahmet Engin Ural

Steven L. Scott. Presented by Ahmet Engin Ural Steven L. Scott Presented by Ahmet Engin Ural Overview of HMM Evaluating likelihoods The Likelihood Recursion The Forward-Backward Recursion Sampling HMM DG and FB samplers Autocovariance of samplers Some

More information

Comparing Families of Dynamic Causal Models

Comparing Families of Dynamic Causal Models Comparing Families of Dynamic Causal Models Will D. Penny 1 *, Klaas E. Stephan 1,2, Jean Daunizeau 1, Maria J. Rosa 1, Karl J. Friston 1, Thomas M. Schofield 1, Alex P. Leff 1 1 Wellcome Trust Centre

More information

Dynamic Causal Modelling : Advanced Topics

Dynamic Causal Modelling : Advanced Topics Dynamic Causal Modelling : Advanced Topics Rosalyn Moran Virginia Tech Carilion Research Institute Department of Electrical & Computer Engineering, Virginia Tech Zurich SPM Course, Feb 19 th 2016 Overview

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach

Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach Moritz Grosse-Wentrup 1, Dominik Janzing 1, Markus Siegel 2,3 and Bernhard Schölkopf 1

More information

Electroencephalography: new sensor techniques and analysis methods

Electroencephalography: new sensor techniques and analysis methods Electroencephalography: new sensor techniques and analysis methods Jens Ilmenau University of Technology, Ilmenau, Germany Introduction BACKGROUND Reconstruction of electric current sources in the brain

More information

Will Penny. SPM for MEG/EEG, 15th May 2012

Will Penny. SPM for MEG/EEG, 15th May 2012 SPM for MEG/EEG, 15th May 2012 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented using Bayes rule

More information

THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND

THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND Neural Control of Robotic Devices ELIE BIENENSTOCK, MICHAEL J. BLACK, JOHN DONOGHUE, YUN GAO, MIJAIL SERRUYA BROWN UNIVERSITY Applied Mathematics Computer Science

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Hierarchical Dirichlet Processes with Random Effects

Hierarchical Dirichlet Processes with Random Effects Hierarchical Dirichlet Processes with Random Effects Seyoung Kim Department of Computer Science University of California, Irvine Irvine, CA 92697-34 sykim@ics.uci.edu Padhraic Smyth Department of Computer

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

Bayesian modeling of learning and decision-making in uncertain environments

Bayesian modeling of learning and decision-making in uncertain environments Bayesian modeling of learning and decision-making in uncertain environments Christoph Mathys Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK Wellcome Trust Centre for

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes

Experimental Design. Rik Henson. With thanks to: Karl Friston, Andrew Holmes Experimental Design Rik Henson With thanks to: Karl Friston, Andrew Holmes Overview 1. A Taxonomy of Designs 2. Epoch vs Event-related 3. Mixed Epoch/Event Designs A taxonomy of design Categorical designs

More information

Data-Driven Network Neuroscience. Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016

Data-Driven Network Neuroscience. Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016 Data-Driven Network Neuroscience Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016 What is Network Neuroscience?! Application of network theoretical techniques to neuroscience

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Introduction to EEG/MEG and the FieldTrip toolbox. Robert Oostenveld

Introduction to EEG/MEG and the FieldTrip toolbox. Robert Oostenveld Introduction to EEG/MEG and the FieldTrip toolbox Robert Oostenveld Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, The Netherlands What is FieldTrip a MATLAB toolbox

More information

Will Penny. DCM short course, Paris 2012

Will Penny. DCM short course, Paris 2012 DCM short course, Paris 2012 Ten Simple Rules Stephan et al. Neuroimage, 2010 Model Structure Bayes rule for models A prior distribution over model space p(m) (or hypothesis space ) can be updated to a

More information

Analyzing Anatomical and Functional Brain Connectivity. - M/EEG Functional and Resting-State Connectivity Maren Grigutsch

Analyzing Anatomical and Functional Brain Connectivity. - M/EEG Functional and Resting-State Connectivity Maren Grigutsch Analyzing Anatomical and Functional Brain Connectivity - M/EEG Functional and Resting-State Connectivity Maren Grigutsch Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Functional

More information

MEG Source Localization Using an MLP With Distributed Output Representation

MEG Source Localization Using an MLP With Distributed Output Representation MEG Source Localization Using an MLP With Distributed Output Representation Sung Chan Jun, Barak A. Pearlmutter, Guido Nolte CBLL Meeting October 5, 2005 Source localization Definition: Identification

More information

Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization

Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization David Wipf 1, Rey Ramírez 2, Jason Palmer 1,2, Scott Makeig 2, & Bhaskar Rao 1 1 Signal Processing and Intelligent Systems

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

A neural mass model for MEG/EEG: coupling and neuronal dynamics

A neural mass model for MEG/EEG: coupling and neuronal dynamics NeuroImage 20 (2003) 1743 1755 www.elsevier.com/locate/ynimg A neural mass model for MEG/EEG: coupling and neuronal dynamics Olivier David* and Karl J. Friston Wellcome Department of Imaging Neuroscience,

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

MULTISCALE MODULARITY IN BRAIN SYSTEMS

MULTISCALE MODULARITY IN BRAIN SYSTEMS MULTISCALE MODULARITY IN BRAIN SYSTEMS Danielle S. Bassett University of California Santa Barbara Department of Physics The Brain: A Multiscale System Spatial Hierarchy: Temporal-Spatial Hierarchy: http://www.idac.tohoku.ac.jp/en/frontiers/column_070327/figi-i.gif

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information

A spatiotemporal dynamic distributed solution to the MEG inverse problem

A spatiotemporal dynamic distributed solution to the MEG inverse problem A spatiotemporal dynamic distributed solution to the MEG inverse problem The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

Activity types in a neural mass model

Activity types in a neural mass model Master thesis Activity types in a neural mass model Jurgen Hebbink September 19, 214 Exam committee: Prof. Dr. S.A. van Gils (UT) Dr. H.G.E. Meijer (UT) Dr. G.J.M. Huiskamp (UMC Utrecht) Contents 1 Introduction

More information

Pramod K. Varshney. EECS Department, Syracuse University This research was sponsored by ARO grant W911NF

Pramod K. Varshney. EECS Department, Syracuse University This research was sponsored by ARO grant W911NF Pramod K. Varshney EECS Department, Syracuse University varshney@syr.edu This research was sponsored by ARO grant W911NF-09-1-0244 2 Overview of Distributed Inference U i s may be 1. Local decisions 2.

More information

arxiv: v7 [stat.ap] 3 Mar 2019

arxiv: v7 [stat.ap] 3 Mar 2019 A Potts-Mixture Spatiotemporal Joint Model for Combined MEG and EEG Data arxiv:1710.0869v7 [stat.ap] 3 Mar 019 Yin Song 1, Farouk S. Nathoo 1, and Arif Babul 1 Department of Mathematics and Statistics,

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

Intelligent Systems I

Intelligent Systems I Intelligent Systems I 00 INTRODUCTION Stefan Harmeling & Philipp Hennig 24. October 2013 Max Planck Institute for Intelligent Systems Dptmt. of Empirical Inference Which Card? Opening Experiment Which

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Active inference with function learning for robot body perception

Active inference with function learning for robot body perception Active inference with function learning for robot body perception Pablo Lanillos* and Gordon Cheng Insitute for Cognitive Systems Technical University of Munich Munich, Germany *p.lanillos@tum.de Index

More information

Multi-domain Feature of Event-Related Potential Extracted by Nonnegative Tensor Factorization: 5 vs. 14 Electrodes EEG Data

Multi-domain Feature of Event-Related Potential Extracted by Nonnegative Tensor Factorization: 5 vs. 14 Electrodes EEG Data Multi-domain Feature of Event-Related Potential Extracted by Nonnegative Tensor Factorization: 5 vs. 14 Electrodes EEG Data Fengyu Cong 1, Anh Huy Phan 2, Piia Astikainen 3, Qibin Zhao 2, Jari K. Hietanen

More information

arxiv: v1 [q-bio.nc] 15 Mar 2018

arxiv: v1 [q-bio.nc] 15 Mar 2018 Effective Connectivity from Single Trial fmri Data by Sampling Biologically Plausible Models H.C. Ruiz Euler, H.J. Kappen September 16, 2018 arxiv:1803.05840v1 [q-bio.nc] 15 Mar 2018 Abstract The estimation

More information

Semi-analytical approximations to statistical moments. of sigmoid and softmax mappings of normal variables

Semi-analytical approximations to statistical moments. of sigmoid and softmax mappings of normal variables Semi-analytical approximations to statistical moments of sigmoid and softmax mappings of normal variables J. Daunizeau, Brain and Spine Institute, Paris, France ETH, Zurich, France Address for correspondence:

More information