MULTISCALE MODULARITY IN BRAIN SYSTEMS

Size: px
Start display at page:

Download "MULTISCALE MODULARITY IN BRAIN SYSTEMS"

Transcription

1 MULTISCALE MODULARITY IN BRAIN SYSTEMS Danielle S. Bassett University of California Santa Barbara Department of Physics

2 The Brain: A Multiscale System Spatial Hierarchy: Temporal-Spatial Hierarchy:

3 NETWORK MODELS

4 Complex Systems & Network Theory Network Theory: Provides a set of representational rules to describe a system in terms of its components and their interactions. Particularly useful to study systems for which continuum models, mean-field theory, and nearest neighbor interactions fail to adequately describe system dynamics And in systems in which long-range, non-homogeneous interactions are thought to play a critical role.

5 System to Graph nodes Graph edges

6 Network Diagnostics Density Hierarchy Rentian Scaling Assortativity Path-length Nodal Strength Weight Edge Diversity

7 Network Diagnostics Synchronizability Closeness Centrality Betweenness Centrality Clustering Subgraph Centrality Communicability Local Efficiency Modularity

8 Local to Global Neighbor-Scale Community-Scale Network-Scale Clustering Modularity Path-length

9 Topological to Physical Topological Space Network Embedding Euclidean Space Topological Dimension Rentian Scaling Connection Distance

10 THE HUMAN BRAIN AS A MULTISCALE NETWORK

11 Systems Biology: Complex interactions in biological systems Applied Mathematics Brain Networks Statistical Physics Neuroscience

12 The Human Brain Experiment (Large-Scale): Focus has been on system components rather than their interactions. Theory (Small-Scale): Cognitive processes stem from coherent oscillatory activity between brain regions. Benefits as a Model System: strong statistical power (ensembles of humans), complex dynamics, meaningful perturbations (cognitive effort, disease), and sophisticated function. Fries 2005 TICS

13 Noninvasive Neuroimaging Imaging Modality Measures: Structure Function MRI EEG Wiring Blood Flow Electrical Activity Temporal Resolution Spatial Resolution MEG Magnetic Flux

14 Example Brain Network Construction Diffusion Tractography Whole-Brain Parcellation Hagmann et al PLoS Biology

15 BRAIN NETWORKS ARCHITECTURES

16 Network Architectures for Function What do we know about the brain that can inform our hypotheses about what network architectures would be important for cognitive function? The brain is a dynamical system that requires flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. Izhekevich 2006

17 Architectures for Flexibility & Selectivity What architectures are consistent with both flexibility and selectivity? Modularity is a phenomenon that is studied widely in evolution and development because it provides selective adaptability.

18 Modularity in Complex Systems An important characteristic of many complex networks is that their subcomponents (nodes) are organized into communities (or modules ). Modules are groups of nodes that have more connections to one another than otherwise would be expected in a randomly sampled group of nodes. We can find modules in complex systems using community detection algorithms.

19 Modularity in the Brain Modularity in the brain system indicates that there are groups of brain regions that show coherent behavior and may therefore facilitate specific functions. Nelson et al Neuron

20 Network Statistics: Organizational Principles Network Modularity Optimize the modularity value, Q. Supposing that node i is assigned to community g i and node j is assigned to community g j, the modularity index is defined as: where A ij is the connectivity matrix of the system, δ(g i ;g j ) = 1 if g i = g j and it equals 0 otherwise, and P ij is the expected weight of the edge connecting node i and node j under a specified random network null model. Bassett et al PLoS Comp Biology Bassett et al Neuroimage Meunior et al Front Neuroinform

21 Multi-scale Organization Nodes Modules Nodes 1 0 Topological similarity Sub-Modules Sub-Sub-Modules Bassett et al PLoS Comp Biology

22 Multi-scale Structure & Function Modules Nodes Nodes 1 0 Topological similarity Audition Vision Motor Form Sub-Modules Color Motion CW Sub-Sub-Modules Stable CCW

23 Physical Constraints: Wiring Efficiency The brain represents only 2% of the human body s weight but demands up to 20% of the body s energy. Energy is needed for neuronal communication Development, maintenance, and use of wiring Bassett et al PLoS Comp Biology Log(e) p= Log(n) Rentian scaling has been found in systems that have been cost-efficiently embedded into physical space, for example brains, neuronal networks, and computer circuits.

24 MODULARITY & ADAPTIVE FUNCTION

25 Functional Network Organization Functional Imaging Functional network organization changes with behavioral /cognitive variables genetic factors experimental task age & gender drugs disease such as Alzheimer s, schizophrenia, epilepsy, multiple sclerosis, acute depression, seizures, attention deficit hyperactivity disorder, stroke, spinal cord injury, fronto-temporal lobar degeneration, and early blindness. Magnetic Electrical Flux Activity Blood Flow MRI EEG MEG Functional Networks: Nodes = Brain Regions Edges = Signals Similarities

26 Dynamic, Flexible Modules The brain as a dynamic system. Hypothesis: Flexible network structure facilitates adaptive function. Approach: Multi-layer dynamic network models Rigid Flexible Time Bassett et al PNAS

27 Modularity & Learning Audition The selective adaptability necessary for human learning could naturally be provided by dynamic modular structure. Form Vision Model System: Simple Motor Learning Paradigm Motor CW Color Stable Hypothesis: Modularity of human brain function Motion changes dynamically during learning, and that characteristics of these dynamics are associated with learning success. CCW

28 Functional Brain Network Construction

29 Multi-scale Temporal Analysis Example Multilayer Network Structure:

30 Multilayer Modularity Example Multilayer Network Structure: Multilayer Modularity:

31 Quantifying Network Flexibility Flexibility might be driven by physiological processes that facilitate the participation of cortical regions in multiple functional communities or by taskdependent processes that require the capacity to balance learning across subtasks. Bassett et al. 2011, PNAS

32 Flexibility & Learning Flexibility changes with learning. Brain regions responsible included association processing areas. Flexibility predicts learning in future experimental sessions. Learning Bassett et al. 2011, PNAS

33 SUMMARY

34 Concluding Remarks Modularity of functional connectivity may be an important organizational principle of the human brain. Facilitates adaptive function, flexibility, and selectivity Network flexiblility predicts learning on a simple motor task Can we use this for identifying who and when to train? Monitoring of treatment and neurorehabilitation Multiscale modularity is consistent with efficient use of wiring. Can we use this to understand network development and its alteration in disease states?

35 Acknowledgements University of Cambridge: Prof. Ed Bullmore Daniel Greenfield Prof. Simon Moore University of Oxford Prof. Mason A. Porter Central Institute of Mental Health Andreas Meyer-Lindenberg National Institute of Mental Health Daniel Weinberger Beth Verchinski Venkata Mattay University of California Santa Barbara Prof. Scott Grafton Prof. Jean Carlson Nick Wymbs Siemens Medical Solutions Vibhas Deshpande University of California Los Angeles Jesse Brown University of North Carolina Chapel Hill Prof. Peter Mucha

36 Questions?

Multilayer and dynamic networks

Multilayer and dynamic networks OHBM 2016 Multilayer and dynamic networks Danielle S. Bassett University of Pennsylvania Department of Bioengineering Outline Statement of the problem Statement of a solution: Multilayer Modeling Utility

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Data-Driven Network Neuroscience. Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016

Data-Driven Network Neuroscience. Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016 Data-Driven Network Neuroscience Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016 What is Network Neuroscience?! Application of network theoretical techniques to neuroscience

More information

Applications of Complex Networks

Applications of Complex Networks Javier M. Buldú http://www.complex.etsit.urjc.es/jmbuldu Complex Systems Group Universidad Rey Juan Carlos (Madrid, Spain) (1 de 48) OUTLINE OF THE COURSE 0.- Bibliography 1.- Introduction to Complex networks

More information

NCNC FAU. Modeling the Network Architecture of the Human Brain

NCNC FAU. Modeling the Network Architecture of the Human Brain NCNC 2010 - FAU Modeling the Network Architecture of the Human Brain Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex,

More information

Characterising patients and controls with brain graphs constructed from fmri data

Characterising patients and controls with brain graphs constructed from fmri data Characterising patients and controls with brain graphs constructed from fmri data September 28, 2012 Supervisors: Mason Porter Sang Hoon Lee Melissa Lever Systems Biology DTC University of Oxford Abstract

More information

Weighted Network Analysis for Groups:

Weighted Network Analysis for Groups: Weighted Network Analysis for Groups: Separating Differences in Cost from Differences in Topology Cedric E. Ginestet Department of Neuroimaging, King s College London Cedric E. Ginestet (KCL) Weighted

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

Causal modeling of fmri: temporal precedence and spatial exploration

Causal modeling of fmri: temporal precedence and spatial exploration Causal modeling of fmri: temporal precedence and spatial exploration Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University Intro: What is Brain

More information

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity WCCI 22 IEEE World Congress on Computational Intelligence June, -5, 22 - Brisbane, Australia IJCNN Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity Mark Wildie and

More information

Extracting the Core Structural Connectivity Network: Guaranteeing Network Connectedness Through a Graph-Theoretical Approach

Extracting the Core Structural Connectivity Network: Guaranteeing Network Connectedness Through a Graph-Theoretical Approach Extracting the Core Structural Connectivity Network: Guaranteeing Network Connectedness Through a Graph-Theoretical Approach Demian Wassermann, Dorian Mazauric, Guillermo Gallardo-Diez, Rachid Deriche

More information

NeuroImage 54 (2011) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 54 (2011) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 54 (2011) 1262 1279 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Conserved and variable architecture of human white matter connectivity

More information

Discovering the Human Connectome

Discovering the Human Connectome Networks and Complex Systems 2012 Discovering the Human Connectome Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex, osporns@indiana.edu

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

Brain Network Analysis

Brain Network Analysis Brain Network Analysis Foundation Themes for Advanced EEG/MEG Source Analysis: Theory and Demonstrations via Hands-on Examples Limassol-Nicosia, Cyprus December 2-4, 2009 Fabrizio De Vico Fallani, PhD

More information

arxiv: v1 [q-bio.nc] 30 Mar 2017

arxiv: v1 [q-bio.nc] 30 Mar 2017 Dynamic Graph Metrics: Tutorial, Toolbox, and Tale Ann E. Sizemore 1 and Danielle S. Bassett 1,2,* arxiv:1703.10643v1 [q-bio.nc] 30 Mar 2017 1 Department of Bioengineering, University of Pennsylvania,

More information

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain Dr. Ali Yener Mutlu Department of Electrical and Electronics Engineering, Izmir Katip Celebi

More information

Graph Frequency Analysis of Brain Signals

Graph Frequency Analysis of Brain Signals 1 Graph Frequency Analysis of Brain Signals Weiyu Huang, Leah Goldsberry, Nicholas F. Wymbs, Scott T. Grafton, Danielle S. Bassett and Alejandro Ribeiro arxiv:1512.37v1 [q-bio.nc] 2 Nov 215 Abstract This

More information

Lecture 4: Importance of Noise and Fluctuations

Lecture 4: Importance of Noise and Fluctuations Lecture 4: Importance of Noise and Fluctuations Jordi Soriano Fradera Dept. Física de la Matèria Condensada, Universitat de Barcelona UB Institute of Complex Systems September 2016 1. Noise in biological

More information

arxiv: v2 [q-bio.nc] 27 Sep 2018

arxiv: v2 [q-bio.nc] 27 Sep 2018 Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality Rodrigo P. Rocha 1,2,3,*, Loren Koçillari 2,3, Samir Suweis 2,3, Maurizio Corbetta 3,4,5, and Amos Maritan

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Mechanisms, Multilevel. USA Definition. Mechanisms are entities and activities organized such that they produce or

Mechanisms, Multilevel. USA Definition. Mechanisms are entities and activities organized such that they produce or Mechanisms, Multilevel Carl F. Craver, Philosophy/Washington University in St. Louis, St. Louis, Missouri, USA ccraver@artsci.wustl.edu Synonyms Hierarchy, Levels of Organization Definition. Mechanisms

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e Thomas Trappenberg March 21, 2009 Chapter 9: Modular networks, motor control, and reinforcement learning Mixture of experts Expert 1 Input Expert 2 Integration

More information

Spatializing Research Hypotheses a long- term research vision for

Spatializing Research Hypotheses a long- term research vision for Spatializing Research Hypotheses a long- term research vision for spatial@ucsb Werner Kuhn Center for Spatial Studies a vision for spatial Spatial computing shall reach the same level of general utility

More information

The Fruit Fly Brain Observatory

The Fruit Fly Brain Observatory The Fruit Fly Brain Observatory Aurel A. Lazar, Columbia University The Columbia University Team: Wesley Bruning Allison L. Fenichel Aurel A. Lazar (PI) Nikul H. Ukani Chung-Heng Yeh Yiyin Zhou The National

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders

Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders International Journal of Molecular Sciences Review Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders Jaya Thomas 1,2, *, Dongmin Seo 3 and Lee Sael 1,2, * 1 Department

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

Human! Brain! Networks!

Human! Brain! Networks! Human! Brain! Networks! estimated with functional connectivity" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?"

More information

腦網路連結分析 A Course of MRI

腦網路連結分析 A Course of MRI 本週課程內容 腦網路連結 (connectivity & network) 結構性與功能性連結關係 (structural/functional connectivity) 腦網路連結分析 A Course of MRI 盧家鋒助理教授國立陽明大學物理治療暨輔助科技學系 alvin01@ym.edu.tw 複雜網路 : 圖學理論 (graph theory) Brain networks Larger

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Structure of Brain Functional Networks

Structure of Brain Functional Networks Structure of Brain Functional Networks Oleksii Kuchaiev, Po T. Wang, Zoran Nenadic, and Nataša Pržulj Abstract Brain is a complex network optimized both for segregated and distributed information processing.

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK ANALYSIS. Ali Yener Mutlu

A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK ANALYSIS. Ali Yener Mutlu A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK ANALYSIS By Ali Yener Mutlu A DISSERTATION Submitted to Michigan State University in partial fulfillment

More information

Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies. Kehui Chen

Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies. Kehui Chen Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies Kehui Chen Department of Statistics, University of Pittsburgh Nonparametric Statistics Workshop, Ann Arbor, Oct 06,

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

arxiv: v3 [physics.data-an] 3 Feb 2010

arxiv: v3 [physics.data-an] 3 Feb 2010 Functional modularity of background activities in normal and epileptic brain networks M. Chavez, 1 M. Valencia, 1 V. Navarro, 2 V. Latora, 3,4 J. Martinerie, 1 1 CNRS UMR-7225, Hôpital de la Salpêtrière.

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Spectral Perturbation of Small-World Networks with Application to Brain Disease Detection

Spectral Perturbation of Small-World Networks with Application to Brain Disease Detection Spectral Perturbation of Small-World Networks with Application to Brain Disease Detection Chenhui Hu May 4, 22 Introduction Many real life systems can be described by complex networks, which usually consist

More information

Towards a Regression using Tensors

Towards a Regression using Tensors February 27, 2014 Outline Background 1 Background Linear Regression Tensorial Data Analysis 2 Definition Tensor Operation Tensor Decomposition 3 Model Attention Deficit Hyperactivity Disorder Data Analysis

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging

Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Biomedical Imaging Volume 2007, Article ID 90216, 5 pages doi:10.1155/2007/90216 Research Article Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging Ye Duan, Xiaoling Li, and Yongjian

More information

Network Theory in Neuroscience

Network Theory in Neuroscience Network Theory in Neuroscience David Papo a *, Javier M. Buldú b and Stefano Boccaletti c a Center of Biomedical Technology, Madrid, Spain b Universidad Rey Juan Carlos, Móstoles, Madrid, Spain c CNR-Institute

More information

Clustering of Pathogenic Genes in Human Co-regulatory Network. Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015

Clustering of Pathogenic Genes in Human Co-regulatory Network. Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015 Clustering of Pathogenic Genes in Human Co-regulatory Network Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015 Topics Background Genetic Background Regulatory Networks

More information

Modularity Matters: Learning Invariant Relational Reasoning Tasks

Modularity Matters: Learning Invariant Relational Reasoning Tasks Summer Review 3 Modularity Matters: Learning Invariant Relational Reasoning Tasks Jason Jo 1, Vikas Verma 2, Yoshua Bengio 1 1: MILA, Universit de Montral 2: Department of Computer Science Aalto University,

More information

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks Sections 18.6 and 18.7 Analysis of Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Univariate regression

More information

Emergent Phenomena on Complex Networks

Emergent Phenomena on Complex Networks Chapter 1 Emergent Phenomena on Complex Networks 1.0.1 More is different When many interacting elements give rise to a collective behavior that cannot be explained or predicted by considering them individually,

More information

Stochastic Dynamic Causal Modelling for resting-state fmri

Stochastic Dynamic Causal Modelling for resting-state fmri Stochastic Dynamic Causal Modelling for resting-state fmri Ged Ridgway, FIL, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London Overview Connectivity in the brain Introduction to

More information

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015

Flexible Gating of Contextual Influences in Natural Vision. Odelia Schwartz University of Miami Oct 2015 Flexible Gating of Contextual Influences in Natural Vision Odelia Schwartz University of Miami Oct 05 Contextual influences Perceptual illusions: no man is an island.. Review paper on context: Schwartz,

More information

Course Descriptions Biology

Course Descriptions Biology Course Descriptions Biology BIOL 1010 (F/S) Human Anatomy and Physiology I. An introductory study of the structure and function of the human organ systems including the nervous, sensory, muscular, skeletal,

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

Mesoscopic Organization Reveals the Constraints Governing Caenorhabditis elegans Nervous System

Mesoscopic Organization Reveals the Constraints Governing Caenorhabditis elegans Nervous System Mesoscopic Organization Reveals the Constraints Governing Caenorhabditis elegans Nervous System Raj Kumar Pan 1, Nivedita Chatterjee 2, Sitabhra Sinha 1 * 1 The Institute of Mathematical Sciences, Chennai,

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

Effective Connectivity & Dynamic Causal Modelling

Effective Connectivity & Dynamic Causal Modelling Effective Connectivity & Dynamic Causal Modelling Hanneke den Ouden Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen Advanced SPM course Zurich, Februari 13-14, 2014 Functional Specialisation

More information

How Brain Structure Constrains Brain Function. Olaf Sporns, PhD

How Brain Structure Constrains Brain Function. Olaf Sporns, PhD Symposium Cognition and Connectomics - ICON 2014 How Brain Structure Constrains Brain Function Olaf Sporns, PhD Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs

The Role of Network Science in Biology and Medicine. Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs The Role of Network Science in Biology and Medicine Tiffany J. Callahan Computational Bioscience Program Hunter/Kahn Labs Network Analysis Working Group 09.28.2017 Network-Enabled Wisdom (NEW) empirically

More information

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland

From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease. Polina Golland From Pixels to Brain Networks: Modeling Brain Connectivity and Its Changes in Disease Polina Golland MIT Computer Science and Artificial Intelligence Laboratory Joint work with Archana Venkataraman C.-F.

More information

Supplement to: Optimally controlling the human connectome: the role of network topology

Supplement to: Optimally controlling the human connectome: the role of network topology Supplement to: Optimally controlling the human connectome: the role of network topology Richard F. Betzel 1, Shi Gu 1, John D. Medaglia 1,2, Fabio Pasqualetti 3, and Danielle S. Bassett 1,4 1 Department

More information

Department Curriculum and Assessment Outline

Department Curriculum and Assessment Outline Department: Science Year Group: 10 Teaching, learning and assessment during the course: Combined Science 1 2 B1 Key concepts in Biology B2 Cells and control What are the structure and function of cells.

More information

Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks

Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks Adam Obtu lowicz Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, P.O.B.

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Dynamic Causal Modelling for EEG and MEG

Dynamic Causal Modelling for EEG and MEG Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Ma Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic

More information

Computational Models of Human Cognition

Computational Models of Human Cognition Computational Models of Human Cognition Models A model is a means of representing the structure or workings of a system or object. e.g., model car e.g., economic model e.g., psychophysics model 2500 loudness

More information

Collecting Aligned Activity & Connectomic Data Example: Mouse Vibrissal Touch Barrel Cortex Exploiting Coherence to Reduce Dimensionality Example: C.

Collecting Aligned Activity & Connectomic Data Example: Mouse Vibrissal Touch Barrel Cortex Exploiting Coherence to Reduce Dimensionality Example: C. Collecting Aligned Activity & Connectomic Data Example: Mouse Vibrissal Touch Barrel Cortex Exploiting Coherence to Reduce Dimensionality Example: C. elegans Motor Control Sequence Spatially & Temporally

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics Processing of Time Series by Neural Circuits with iologically Realistic Synaptic Dynamics Thomas Natschläger & Wolfgang Maass Institute for Theoretical Computer Science Technische Universität Graz, ustria

More information

The Trees and the Forest: Characterization of complex brain networks with minimum spanning trees.

The Trees and the Forest: Characterization of complex brain networks with minimum spanning trees. The Trees and the Forest: Characterization of complex brain networks with minimum spanning trees. C.J. Stam 1, P. Tewarie 1, E. Van Dellen 1,2, E.C.W. van Straaten 1, A. Hillebrand 1, P. Van Mieghem 3

More information

Identifying Relationships in Functional and Structural Connectome Data Using a Hypergraph Learning Method

Identifying Relationships in Functional and Structural Connectome Data Using a Hypergraph Learning Method Identifying Relationships in Functional and Structural Connectome Data Using a Hypergraph Learning Method Brent C. Munsell 1(B), Guorong Wu 2, Yue Gao 3, Nicholas Desisto 1, and Martin Styner 4 1 Department

More information

Non-Adaptive Evolvability. Jeff Clune

Non-Adaptive Evolvability. Jeff Clune Non-Adaptive Evolvability! Jeff Clune Assistant Professor Computer Science Evolving Artificial Intelligence Laboratory Evolution Fails to Optimize Mutation Rates (though it would improve evolvability)

More information

Diamond Sensors for Brain Imaging

Diamond Sensors for Brain Imaging Revolutions in Biotechnology Diamond Sensors for Brain Imaging This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force ontract No.

More information

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications Overview

More information

Eligible Fields of Study

Eligible Fields of Study Eligible Fields of Study NSF Graduate Research Fellowship CHEMISTRY Chemical Catalysis Chemical Measurement and Imaging Chemical Structure, Dynamics, and Mechanism Chemical Synthesis Chemical Theory, Models

More information

ability to analyze and interpret data: Making connections to the scientific practices

ability to analyze and interpret data: Making connections to the scientific practices ability to analyze and interpret data: Making connections to the scientific practices Claudia Lutz, Rob Wallon, Claire Scavuzzo, Sara Patterson Adamek, Barbara Hug University of Illinois Or: Nature and

More information

NeuroImage 62 (2012) Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage:

NeuroImage 62 (2012) Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage: NeuroImage 62 (2012) 1342 1353 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Full Length Articles Modeling the outcome of structural disconnection

More information

Networks in Biology and Neuroscience

Networks in Biology and Neuroscience Networks in Biology and Neuroscience CSE 5339: Topics in Network Data Analysis Samir Chowdhury January 19, 2016 Outline I The Human Connectome - challenges and open problems Example: Schizophrenia and

More information

Kantian metaphysics to mind-brain. The approach follows Bacon s investigative method

Kantian metaphysics to mind-brain. The approach follows Bacon s investigative method 82 Basic Tools and Techniques As discussed, the project is based on mental physics which in turn is the application of Kantian metaphysics to mind-brain. The approach follows Bacon s investigative method

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs artifical neural networks

More information

Clicker Question. Discussion Question

Clicker Question. Discussion Question Connectomics Networks and Graph Theory A network is a set of nodes connected by edges The field of graph theory has developed a number of measures to analyze networks Mean shortest path length: the average

More information

Dynamic Modeling of Brain Activity

Dynamic Modeling of Brain Activity 0a Dynamic Modeling of Brain Activity EIN IIN PC Thomas R. Knösche, Leipzig Generative Models for M/EEG 4a Generative Models for M/EEG states x (e.g. dipole strengths) parameters parameters (source positions,

More information

UNderstanding the large-scale connectivity of the human

UNderstanding the large-scale connectivity of the human TO APPEAR IN IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1 Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity Sugeerth Murugesan, Kristofer Bouchard, Jesse

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Research Article A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

Research Article A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain Biomedical Imaging Volume 2013, Article ID 201735, 8 pages http://dx.doi.org/10.1155/2013/201735 Research Article A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Functional brain networks: great expectations, hard times, and the big leap forward

Functional brain networks: great expectations, hard times, and the big leap forward Functional brain networks: great expectations, hard times, and the big leap forward David Papo 1 *, Massimiliano Zanin 2,3, José Angel Pineda-Pardo 1, Stefano Boccaletti 4 and Javier M. Buldú 1,5 1 Center

More information

Viewpoint invariant face recognition using independent component analysis and attractor networks

Viewpoint invariant face recognition using independent component analysis and attractor networks Viewpoint invariant face recognition using independent component analysis and attractor networks Marian Stewart Bartlett University of California San Diego The Salk Institute La Jolla, CA 92037 marni@salk.edu

More information

Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators

Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators Will Wagstaff School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated: 13 December

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs. artifical neural

More information

Name Class Date. biosphere biology metabolism biodiversity organism DNA. MAIN IDEA: Earth is home to an incredible diversity of life.

Name Class Date. biosphere biology metabolism biodiversity organism DNA. MAIN IDEA: Earth is home to an incredible diversity of life. Section 1: The Study of Life KEY CONCEPT Biologists study life in all its forms. VOCABULARY biosphere biology metabolism biodiversity organism DNA species cell MAIN IDEA: Earth is home to an incredible

More information

Mechanistic and topological explanations: an introduction

Mechanistic and topological explanations: an introduction Mechanistic and topological explanations: an introduction In the last twenty years, especially after the publication of a seminal paper by Watts and Storgatz (1998), an interest in network methods has

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography

Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Connectomics analysis and parcellation of the brain based on diffusion-weighted fiber tractography Alfred Anwander Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany What is the

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information