Multilayer and dynamic networks

Size: px
Start display at page:

Download "Multilayer and dynamic networks"

Transcription

1 OHBM 2016 Multilayer and dynamic networks Danielle S. Bassett University of Pennsylvania Department of Bioengineering

2 Outline Statement of the problem Statement of a solution: Multilayer Modeling Utility for dynamic network data Metrics for dynamic networks Null models for dynamic networks Example applications and natural extensions

3 Kivelä et al J Complex Networks Statement of the Problem Observation: Nodes connected by different types of edges.

4 Domenico et al. 2015, J Complex Networks Statement of the Problem Electrical Junction Mono Synaptic Poly Synaptic Aggregate Observation: Nodes connected by different types of edges.

5 Muldoon & Bassett 2016 Philasophy of Science A frequent observation Nodes: Brain regions Edges: Structural FA, number of streamlines, etc. Functional Different frequency bands Different measures of association Morphological Across Subjects Across Time Across Tasks or Conditions Pymnet

6 An observation or a problem? Option 1: Treat each edge type as forming a separate graph or network Assumes independence of information Neglects the potential for information to be transmitted or shared across edge types Problem!

7 An observation or a problem? Option 2: Treat the set of graphs as an ensemble, and describe ensemble properties Closer! Still ignores the dependency that nodes in one graph are the same as nodes in the other graph.

8 An observation or a problem? Option 3: Develop an explicit modeling framework that accounts for dependencies between graphs

9 Kivelä et al J Complex Networks Solution: Multilayer Modeling Transforms a matrix into a tensor Multilayer modeling defines new edges between nodes to hard-code the fact that their identity remains constant. Identity links Are all dependencies now acknowledged?

10 Mucha et al Science Ordinal or Categorical? If the graphs are ordered Age Time Feature Symptom etc. What happens if graphs are categorical?

11 Mucha et al Science Categorical Coupling Ordinal coupling Categorical coupling Gender, Race, Hair Color, Eye Color, Imaging modality, Task

12 Binary or Weighted? How might one weight identity links? Most common: Choose a single value (ω=1) Other options: Choose based on a priori knowledge Choose based on data-driven parameter optimization

13 Bassett et al. 2013, Chaos A data-driven choice of ω Maximize the difference between a statistic and its expected value in a null model, over choices of ω ω Modularity, Q Where is this particularly useful?

14 Utility for dynamic network data Fast time-scale network reconfigurations Slow time-scale network reconfigurations 0 Temporal resolution parameter, ω What is most changeable across the graphs? What is most consistent across the graphs?

15 Kivelä et al J Complex Networks Metrics for dynamic networks Degree Walks, paths, distances Clustering coefficient, transitivity, triangles Centrality measures Community structure (including modularity) Core-periphery structure (generalization of rich-clubs) Diffusion, spreading, percolation

16 Khambhati et al In Prep Example: Modularity Statement of the problem:

17 Mucha et al Science Solution: Multilayer Modularity Multilayer modularity: estimate community structure in temporal networks. Resolution Parameter For Module Size Adjacenc y Matrix For i and j in same communit y Communit y i in time slice l Mason Porter Null Model Adjacenc y Matrix Resolution Parameter for Module Dynamics Communit y j in time slice r Large ω gives community structure consistent across time. Small ω gives community structure that varies across time. Peter Mucha

18 Bassett et al PNAS Null models For temporal multilayer networks: Connection Null Model Nodal Null Model Temporal Null Model

19 Muldoon & Bassett 2016 Philosophy of Science Example applications Multimodal studies Multigroup studies Multitask studies Temporal networks (across many time scales): Lifespan, development, longitudinal, withintask, frequency bands

20 Temporal Networks in Brains

21 Metrics and Considerations Flexibility: fraction of layer that a node changes module allegiance over time (Bassett et al PNAS) Promiscuity: number of different communities a node allies with over time (Papadopoulos et al Phys Rev E in Revision) Choice of time window(telesford et al Neuroimage) Longer time windows provide more regional variation in dynamics Shorter time windows are more sensitive to individual variation

22 Betzel et al arxiv Example: Over the lifespan Functional brain modules reconfigure at multiple scales across the human lifespan At a coarse scale, modules become progressively more segregated, while at finer scales, they become more integrated.

23 Domenico et al arxiv Brookes et al Neuroimage Example: Over Frequencies Hubs in the multiplex are different from those in the nonmultiplex. Multiplex hubs provide greater power in distinguishing healthy from schizophrenia.

24 Bassett et al PNAS, 2013 PLoS CB, 2013 Chaos, 2014 Chaos, 2015 Nature Neuroscience; Mantzaris et al PLoS CB Example: As we learn Modular structure of functional brain networks changes slowly during many hours of learning in the scanner. Recruitment: Module allegiance within communities Integration: Module allegiance between communities

25 Bassett et al Nature Neuroscience A growing autonomy Between motor and visual modules with task practice

26 Example: Multi-task Cole et al Neuron Mattar et al PLoS CB Telesford et al Neuroimage Either observe what is consistent across tasks Or the dynamic roles that modules play across tasks Recruitment Integration

27 Other topics and natural extensions Other Topics: Language processing (Doron et al PNAS), working memory (Braun et al PNAS), behavior (Wymbs et al Neuron), positive mood (Betzel et al arxiv) Natural Extensions: Multilayer along several aspects (time and modality, subject and task, etc.)

28 Open Methodological Questions Metric development: different sorts of reconfiguration statistics Network normalization: within and across layers Parameter choices: particularly in weights of inter-layer links

29 Summary Statement of the problem Solution: Multilayer Modeling Utility for dynamic networks Metrics Null models Applications and extensions

MULTISCALE MODULARITY IN BRAIN SYSTEMS

MULTISCALE MODULARITY IN BRAIN SYSTEMS MULTISCALE MODULARITY IN BRAIN SYSTEMS Danielle S. Bassett University of California Santa Barbara Department of Physics The Brain: A Multiscale System Spatial Hierarchy: Temporal-Spatial Hierarchy: http://www.idac.tohoku.ac.jp/en/frontiers/column_070327/figi-i.gif

More information

Data-Driven Network Neuroscience. Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016

Data-Driven Network Neuroscience. Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016 Data-Driven Network Neuroscience Sarah Feldt Muldoon Mathematics, CDSE Program, Neuroscience Program DAAD, May 18, 2016 What is Network Neuroscience?! Application of network theoretical techniques to neuroscience

More information

Characterising patients and controls with brain graphs constructed from fmri data

Characterising patients and controls with brain graphs constructed from fmri data Characterising patients and controls with brain graphs constructed from fmri data September 28, 2012 Supervisors: Mason Porter Sang Hoon Lee Melissa Lever Systems Biology DTC University of Oxford Abstract

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Weighted Network Analysis for Groups:

Weighted Network Analysis for Groups: Weighted Network Analysis for Groups: Separating Differences in Cost from Differences in Topology Cedric E. Ginestet Department of Neuroimaging, King s College London Cedric E. Ginestet (KCL) Weighted

More information

Modeling temporal networks using random itineraries

Modeling temporal networks using random itineraries Modeling temporal networks using random itineraries Alain Barrat CPT, Marseille, France & ISI, Turin, Italy j j i i G k k i j k i j me$ N k 2$ i j k 1$ 0$ A.B., B. Fernandez, K. Lin, L.-S. Young Phys.

More information

arxiv: v1 [q-bio.nc] 30 Mar 2017

arxiv: v1 [q-bio.nc] 30 Mar 2017 Dynamic Graph Metrics: Tutorial, Toolbox, and Tale Ann E. Sizemore 1 and Danielle S. Bassett 1,2,* arxiv:1703.10643v1 [q-bio.nc] 30 Mar 2017 1 Department of Bioengineering, University of Pennsylvania,

More information

Multislice community detection

Multislice community detection Multislice community detection P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela Jukka-Pekka JP Onnela Harvard University NetSci2010, MIT; May 13, 2010 Outline (1) Background (2) Multislice

More information

Data science with multilayer networks: Mathematical foundations and applications

Data science with multilayer networks: Mathematical foundations and applications Data science with multilayer networks: Mathematical foundations and applications CDSE Days University at Buffalo, State University of New York Monday April 9, 2018 Dane Taylor Assistant Professor of Mathematics

More information

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity

Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity WCCI 22 IEEE World Congress on Computational Intelligence June, -5, 22 - Brisbane, Australia IJCNN Hierarchical Clustering Identifies Hub Nodes in a Model of Resting-State Brain Activity Mark Wildie and

More information

How Brain Structure Constrains Brain Function. Olaf Sporns, PhD

How Brain Structure Constrains Brain Function. Olaf Sporns, PhD Symposium Cognition and Connectomics - ICON 2014 How Brain Structure Constrains Brain Function Olaf Sporns, PhD Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405

More information

Community detection in time-dependent, multiscale, and multiplex networks

Community detection in time-dependent, multiscale, and multiplex networks Community detection in time-dependent, multiscale, and multiplex networks P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela Jukka-Pekka Onnela Harvard University MERSIH, November 13, 2009

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

NCNC FAU. Modeling the Network Architecture of the Human Brain

NCNC FAU. Modeling the Network Architecture of the Human Brain NCNC 2010 - FAU Modeling the Network Architecture of the Human Brain Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex,

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Mathematical Embeddings of Complex Systems

Mathematical Embeddings of Complex Systems Introduction Mathematical Embeddings of Complex Systems Daryl DeFord Dartmouth College Department of Mathematics Omidyar Fellowship Presentation Santa Fe Institute Santa Fe, NM January 29, 2018 Introduction

More information

Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies. Kehui Chen

Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies. Kehui Chen Network Modeling and Functional Data Methods for Brain Functional Connectivity Studies Kehui Chen Department of Statistics, University of Pittsburgh Nonparametric Statistics Workshop, Ann Arbor, Oct 06,

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

Clicker Question. Discussion Question

Clicker Question. Discussion Question Connectomics Networks and Graph Theory A network is a set of nodes connected by edges The field of graph theory has developed a number of measures to analyze networks Mean shortest path length: the average

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

How to build a brain. Cognitive Modelling. Terry & Chris Centre for Theoretical Neuroscience University of Waterloo

How to build a brain. Cognitive Modelling. Terry & Chris Centre for Theoretical Neuroscience University of Waterloo How to build a brain Cognitive Modelling Terry & Chris Centre for Theoretical Neuroscience University of Waterloo So far... We have learned how to implement high-dimensional vector representations linear

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Discovering the Human Connectome

Discovering the Human Connectome Networks and Complex Systems 2012 Discovering the Human Connectome Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex, osporns@indiana.edu

More information

Network Observational Methods and. Quantitative Metrics: II

Network Observational Methods and. Quantitative Metrics: II Network Observational Methods and Whitney topics Quantitative Metrics: II Community structure (some done already in Constraints - I) The Zachary Karate club story Degree correlation Calculating degree

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

RICHARD F. BETZEL CURRICULUM VITAE

RICHARD F. BETZEL CURRICULUM VITAE RICHARD F. BETZEL CURRICULUM VITAE RESEARCH INTERESTS My research program focuses on characterizing connectomes network maps of the anatomical and functional connections between neural elements and the

More information

Reinforcement learning

Reinforcement learning einforcement learning How to learn to make decisions in sequential problems (like: chess, a maze) Why is this difficult? Temporal credit assignment Prediction can help Further reading For modeling: Chapter

More information

Temporal Networks aka time-varying networks, time-stamped graphs, dynamical networks...

Temporal Networks aka time-varying networks, time-stamped graphs, dynamical networks... Temporal Networks aka time-varying networks, time-stamped graphs, dynamical networks... Network Theory and Applications ECS 253 / MAE 253 Spring 2016 Márton Pósfai (posfai@ucdavis.edu) Sources Reviews:

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London.

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London. in Frequency and Sensor Space Oscillation Wellcome Trust Centre for Neuroimaging. University College London. Non- Workshop on Non-Invasive Imaging of Nonlinear Interactions. 20th Annual Computational Neuroscience

More information

Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks

Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks www.nature.com/scientificreports Received: 4 August 2016 Accepted: 20 June 2017 Published online: 26 July 2017 OPEN Contextual connectivity: A framework for understanding the intrinsic dynamic architecture

More information

Community structure in complex networks. Santo Fortunato

Community structure in complex networks. Santo Fortunato Community structure in complex networks Santo Fortunato Me in a nutshell Computational Social Science Networks Science of Science Computational social science Science of science - c P(c/c) Agricultural

More information

80% of all excitatory synapses - at the dendritic spines.

80% of all excitatory synapses - at the dendritic spines. Dendritic Modelling Dendrites (from Greek dendron, tree ) are the branched projections of a neuron that act to conduct the electrical stimulation received from other cells to and from the cell body, or

More information

Introduction to Social Network Analysis PSU Quantitative Methods Seminar, June 15

Introduction to Social Network Analysis PSU Quantitative Methods Seminar, June 15 Introduction to Social Network Analysis PSU Quantitative Methods Seminar, June 15 Jeffrey A. Smith University of Nebraska-Lincoln Department of Sociology Course Website https://sites.google.com/site/socjasmith/teaching2/psu_social_networks_seminar

More information

Visual Analytics ofmovement

Visual Analytics ofmovement Gennady Andrienko. Natalia Andrienko Peter Bak Daniel Keim Stefan Wrobel Visual Analytics ofmovement ~ Springer Contents 1 Introduction... 1 1.1 A Single Trajectory.....................................

More information

Effect of number of hidden neurons on learning in large-scale layered neural networks

Effect of number of hidden neurons on learning in large-scale layered neural networks ICROS-SICE International Joint Conference 009 August 18-1, 009, Fukuoka International Congress Center, Japan Effect of on learning in large-scale layered neural networks Katsunari Shibata (Oita Univ.;

More information

Collective behavior in networks of biological neurons: mathematical modeling and software development

Collective behavior in networks of biological neurons: mathematical modeling and software development RESEARCH PROJECTS 2014 Collective behavior in networks of biological neurons: mathematical modeling and software development Ioanna Chitzanidi, Postdoctoral Researcher National Center for Scientific Research

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e Thomas Trappenberg March 21, 2009 Chapter 9: Modular networks, motor control, and reinforcement learning Mixture of experts Expert 1 Input Expert 2 Integration

More information

arxiv: v1 [q-bio.nc] 19 Aug 2016

arxiv: v1 [q-bio.nc] 19 Aug 2016 Small-World Brain Networks Revisited Danielle S. Bassett 1,2 and Edward T. Bullmore 3,4 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 1914 2 Department of Electrical and

More information

Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks

Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks Spiking Neural P Systems and Modularization of Complex Networks from Cortical Neural Network to Social Networks Adam Obtu lowicz Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, P.O.B.

More information

ECE521 Lecture 7/8. Logistic Regression

ECE521 Lecture 7/8. Logistic Regression ECE521 Lecture 7/8 Logistic Regression Outline Logistic regression (Continue) A single neuron Learning neural networks Multi-class classification 2 Logistic regression The output of a logistic regression

More information

Causal modeling of fmri: temporal precedence and spatial exploration

Causal modeling of fmri: temporal precedence and spatial exploration Causal modeling of fmri: temporal precedence and spatial exploration Alard Roebroeck Maastricht Brain Imaging Center (MBIC) Faculty of Psychology & Neuroscience Maastricht University Intro: What is Brain

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System Outline I Data Preparation Introduction to SpaceStat and ESTDA II Introduction to ESTDA and SpaceStat III Introduction to time-dynamic regression ESTDA ESTDA & SpaceStat Learning Objectives Activities

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

New Procedures for False Discovery Control

New Procedures for False Discovery Control New Procedures for False Discovery Control Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/ ~ genovese/ Elisha Merriam Department of Neuroscience University

More information

Diffuse interface methods on graphs: Data clustering and Gamma-limits

Diffuse interface methods on graphs: Data clustering and Gamma-limits Diffuse interface methods on graphs: Data clustering and Gamma-limits Yves van Gennip joint work with Andrea Bertozzi, Jeff Brantingham, Blake Hunter Department of Mathematics, UCLA Research made possible

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Using Variable Threshold to Increase Capacity in a Feedback Neural Network

Using Variable Threshold to Increase Capacity in a Feedback Neural Network Using Variable Threshold to Increase Capacity in a Feedback Neural Network Praveen Kuruvada Abstract: The article presents new results on the use of variable thresholds to increase the capacity of a feedback

More information

Géza Ódor, MTA-EK-MFA Budapest Ronald Dickman, UFMG Brazil 08/04/2015

Géza Ódor, MTA-EK-MFA Budapest Ronald Dickman, UFMG Brazil 08/04/2015 Localization, Griffiths phases and burstyness in neural network models Géza Ódor, MTA-EK-MFA Budapest Ronald Dickman, UFMG Brazil 08/04/2015 Partners: Gergely Ódor R. Juhász Infocommunication technologies

More information

Supplementary Material & Data. Younger vs. Older Subjects. For further analysis, subjects were split into a younger adult or older adult group.

Supplementary Material & Data. Younger vs. Older Subjects. For further analysis, subjects were split into a younger adult or older adult group. 1 1 Supplementary Material & Data 2 Supplemental Methods 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Younger vs. Older Subjects For further analysis, subjects were split into a younger adult

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

Machine Learning: Exercise Sheet 2

Machine Learning: Exercise Sheet 2 Machine Learning: Exercise Sheet 2 Manuel Blum AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg mblum@informatik.uni-freiburg.de Manuel Blum Machine Learning

More information

Long-Short Term Memory and Other Gated RNNs

Long-Short Term Memory and Other Gated RNNs Long-Short Term Memory and Other Gated RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Sequence Modeling

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

Generalized Exponential Random Graph Models: Inference for Weighted Graphs

Generalized Exponential Random Graph Models: Inference for Weighted Graphs Generalized Exponential Random Graph Models: Inference for Weighted Graphs James D. Wilson University of North Carolina at Chapel Hill June 18th, 2015 Political Networks, 2015 James D. Wilson GERGMs for

More information

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception Takashi Kanamaru Department of Mechanical Science and ngineering, School of Advanced

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Functional brain networks: great expectations, hard times, and the big leap forward

Functional brain networks: great expectations, hard times, and the big leap forward Functional brain networks: great expectations, hard times, and the big leap forward David Papo 1 *, Massimiliano Zanin 2,3, José Angel Pineda-Pardo 1, Stefano Boccaletti 4 and Javier M. Buldú 1,5 1 Center

More information

How to make computers work like the brain

How to make computers work like the brain How to make computers work like the brain (without really solving the brain) Dileep George a single special machine can be made to do the work of all. It could in fact be made to work as a model of any

More information

Lecture 4: Importance of Noise and Fluctuations

Lecture 4: Importance of Noise and Fluctuations Lecture 4: Importance of Noise and Fluctuations Jordi Soriano Fradera Dept. Física de la Matèria Condensada, Universitat de Barcelona UB Institute of Complex Systems September 2016 1. Noise in biological

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION A NODAL SP 3 APPROACH FOR REACTORS WITH HEXAGONAL FUEL ASSEMBLIES S. Duerigen, U. Grundmann, S. Mittag, B. Merk, S. Kliem Forschungszentrum Dresden-Rossendorf e.v. Institute of Safety Research P.O. Box

More information

Why We Need Theories

Why We Need Theories New Students Why We Need Theories M.J. Peterson Department of Political Science Thompson Hall mjp@polsci.umass.edu These slides are available for later viewing at http://polsci.umass.edu/profiles/peterson_mj

More information

arxiv: v1 [physics.soc-ph] 5 May 2017

arxiv: v1 [physics.soc-ph] 5 May 2017 Case studies in network community detection arxiv:1705.02305v1 [physics.soc-ph] 5 May 2017 Saray Shai, Natalie Stanley, Clara Granell, Dane Taylor, Peter J. Mucha Carolina Center for Interdisciplinary

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Review Our objective: to make confident statements about a parameter (aspect) in

More information

BMI/STAT 768: Lecture 09 Statistical Inference on Trees

BMI/STAT 768: Lecture 09 Statistical Inference on Trees BMI/STAT 768: Lecture 09 Statistical Inference on Trees Moo K. Chung mkchung@wisc.edu March 1, 2018 This lecture follows the lecture on Trees. 1 Inference on MST In medical imaging, minimum spanning trees

More information

Topic 3: Introduction to Statistics. Algebra 1. Collecting Data. Table of Contents. Categorical or Quantitative? What is the Study of Statistics?!

Topic 3: Introduction to Statistics. Algebra 1. Collecting Data. Table of Contents. Categorical or Quantitative? What is the Study of Statistics?! Topic 3: Introduction to Statistics Collecting Data We collect data through observation, surveys and experiments. We can collect two different types of data: Categorical Quantitative Algebra 1 Table of

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Advanced Techniques for Mining Structured Data: Process Mining

Advanced Techniques for Mining Structured Data: Process Mining Advanced Techniques for Mining Structured Data: Process Mining Frequent Pattern Discovery /Event Forecasting Dr A. Appice Scuola di Dottorato in Informatica e Matematica XXXII Problem definition 1. Given

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

THE MOST IMPORTANT BIT

THE MOST IMPORTANT BIT NEURAL NETWORKS THE MOST IMPORTANT BIT A neural network represents a function f : R d R d 2. Peter Orbanz Applied Data Mining 262 BUILDING BLOCKS Units The basic building block is a node or unit: φ The

More information

arxiv: v1 [physics.soc-ph] 20 May 2016

arxiv: v1 [physics.soc-ph] 20 May 2016 Community Detection Using Multilayer Edge Mixture Model Han Zhang, Chang-Dong Wang, and Jian-Huang Lai School of Data and Computer Science, Sun Yat-sen University, Guangzhou, P. R. China. Philip S. Yu,

More information

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai Systems Biology: A Personal View IX. Landscapes Sitabhra Sinha IMSc Chennai Fitness Landscapes Sewall Wright pioneered the description of how genotype or phenotypic fitness are related in terms of a fitness

More information

Demonstration of Chaos

Demonstration of Chaos revised 1/27/08 Demonstration of Chaos Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract A simple resonant inductor-resistor-diode series circuit can be used to

More information

The Hamiltonian Strictly Alternating Cycle Problem

The Hamiltonian Strictly Alternating Cycle Problem Advanced Studies in Biology, Vol. 4, 2012, no. 10, 491-495 The Hamiltonian Strictly Alternating Cycle Problem Anna Gorbenko Department of Intelligent Systems and Robotics Ural Federal University 620083

More information

Alexander Klippel and Chris Weaver. GeoVISTA Center, Department of Geography The Pennsylvania State University, PA, USA

Alexander Klippel and Chris Weaver. GeoVISTA Center, Department of Geography The Pennsylvania State University, PA, USA Analyzing Behavioral Similarity Measures in Linguistic and Non-linguistic Conceptualization of Spatial Information and the Question of Individual Differences Alexander Klippel and Chris Weaver GeoVISTA

More information

Intelligent Data Analysis Lecture Notes on Document Mining

Intelligent Data Analysis Lecture Notes on Document Mining Intelligent Data Analysis Lecture Notes on Document Mining Peter Tiňo Representing Textual Documents as Vectors Our next topic will take us to seemingly very different data spaces - those of textual documents.

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric Axioms of a Metric Picture analysis always assumes that pictures are defined in coordinates, and we apply the Euclidean metric as the golden standard for distance (or derived, such as area) measurements.

More information

Generalization to Multi-Class and Continuous Responses. STA Data Mining I

Generalization to Multi-Class and Continuous Responses. STA Data Mining I Generalization to Multi-Class and Continuous Responses STA 5703 - Data Mining I 1. Categorical Responses (a) Splitting Criterion Outline Goodness-of-split Criterion Chi-square Tests and Twoing Rule (b)

More information

Evaluation. Albert Bifet. April 2012

Evaluation. Albert Bifet. April 2012 Evaluation Albert Bifet April 2012 COMP423A/COMP523A Data Stream Mining Outline 1. Introduction 2. Stream Algorithmics 3. Concept drift 4. Evaluation 5. Classification 6. Ensemble Methods 7. Regression

More information

Journal Club. Haoyun Lei Joint CMU-Pitt Computational Biology

Journal Club. Haoyun Lei Joint CMU-Pitt Computational Biology Journal Club Haoyun Lei 10.10 Joint CMU-Pitt Computational Biology Some background 302 neurons Somatic neurons system(282) pharyngeal nervous system(20) The neurons communicate through approximately 6400

More information

Signal, donnée, information dans les circuits de nos cerveaux

Signal, donnée, information dans les circuits de nos cerveaux NeuroSTIC Brest 5 octobre 2017 Signal, donnée, information dans les circuits de nos cerveaux Claude Berrou Signal, data, information: in the field of telecommunication, everything is clear It is much less

More information

Intro and Homeostasis

Intro and Homeostasis Intro and Homeostasis Physiology - how the body works. Homeostasis - staying the same. Functional Types of Neurons Sensory (afferent - coming in) neurons: Detects the changes in the body. Informations

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Epidemic spreading is always possible on regular networks

Epidemic spreading is always possible on regular networks Epidemic spreading is always possible on regular networks Charo I. del Genio Warwick Mathematics Institute Centre for Complexity Science Warwick Infectious Disease Epidemiology Research (WIDER) Centre

More information

Reservoir Computing with Stochastic Bitstream Neurons

Reservoir Computing with Stochastic Bitstream Neurons Reservoir Computing with Stochastic Bitstream Neurons David Verstraeten, Benjamin Schrauwen and Dirk Stroobandt Department of Electronics and Information Systems (ELIS), Ugent {david.verstraeten, benjamin.schrauwen,

More information

On the use of Long-Short Term Memory neural networks for time series prediction

On the use of Long-Short Term Memory neural networks for time series prediction On the use of Long-Short Term Memory neural networks for time series prediction Pilar Gómez-Gil National Institute of Astrophysics, Optics and Electronics ccc.inaoep.mx/~pgomez In collaboration with: J.

More information

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2 Cellular Neuroanatomy II The Prototypical Neuron: Neurites Reading: BCP Chapter 2 Major Internal Features of a Neuron The neuron is the functional unit of the nervous system. A typical neuron has a soma

More information

An overview of word2vec

An overview of word2vec An overview of word2vec Benjamin Wilson Berlin ML Meetup, July 8 2014 Benjamin Wilson word2vec Berlin ML Meetup 1 / 25 Outline 1 Introduction 2 Background & Significance 3 Architecture 4 CBOW word representations

More information

Common Core State Standards for Mathematics

Common Core State Standards for Mathematics A Correlation of Pearson to the for Mathematics for Mathematics Introduction This document demonstrates how Pearson s digits program meets the for Mathematics. Correlation references are to the digits

More information