Outline. Lecture 13. Sequential Decision Making. Sequential Decision Making. Markov Decision Process. Stationary Preferences

Size: px
Start display at page:

Download "Outline. Lecture 13. Sequential Decision Making. Sequential Decision Making. Markov Decision Process. Stationary Preferences"

Transcription

1 Outline Lecture 3 October 27, 2009 C 486/686 Markov Decision Processes Dynamic Decision Networks Russell and Norvig: ect 7., 7.2 (up to p. 620), 7.4, equential Decision Making tatic Decision Making Decision Networks tatic Inference Bayesian Networks equential Inference Hidden Markov Models Dynamic Bayesian Networks equential Decision Making Markov Decision Processes Dynamic Decision Networks 3 equential Decision Making Wide range of applications Robotics (e.g., control) Investments (e.g., portfolio management) Computational linguistics (e.g., dialogue management) Operations research (e.g., inventory management, resource allocation, call admission control) ssistive technologies (e.g., patient monitoring and support) 4 Markov Decision Process Intuition: Markov Process with Decision nodes Utility nodes a 0 a a 2 tationary Preferences Hum but why many utility nodes? U(s 0,s,s 2, ) Infinite process infinite utility function s 0 s s 2 s 3 olution: ssume stationary and additive preferences U(s 0,s,s 2, ) = Σ t R(s t ) r 5 6

2 Discounted/verage Rewards Markov Decision Process If process infinite, isn t Σ t R(s t ) infinite? olution : discounted rewards Discount factor: 0 γ Finite utility: Σ t γ t R(s t ) is a geometric sum γ is like an inflation rate of /γ - Intuition: prefer utility sooner than later olution 2: average rewards More complicated computationally Beyond the scope of this course Definition et of states: et of actions (i.e., decisions): Transition model: Pr(s t a t-,s t- ) Reward model (i.e., utility): R(s t ) Discount factor: 0 γ Horizon (i.e., # of time steps): h Goal: find optimal policy 7 8 Inventory Management Policy Markov Decision Process tates: inventory levels ctions: {donothing, orderwidgets} Transition model: stochastic demand Reward model: ales Costs - torage Discount factor: Horizon: Tradeoff: increasing supplies decreases odds of missed sales but increases storage costs Choice of action at each time step Formally: Mapping from states to actions i.e., δ(s t ) = a t ssumption: fully observable states llows a t to be chosen only based on current state s t. Why? 9 0 Policy Optimization Policy Optimization Policy evaluation: Compute expected utility h EU(δ) = Σ t=0 γ t Pr(s t δ) R(s t ) Three algorithms to optimize policy: Value iteration Policy iteration Linear Programming Optimal policy: Policy with highest expected utility EU(δ) EU(δ*) for all δ Value iteration: Equivalent to variable elimination 2 2

3 Value Iteration Nothing more than variable elimination Performs dynamic programming Optimize decisions in reverse order a 0 a a 2 s 0 s s 2 s 3 Value Iteration t each t, starting from t=h down to 0: Optimize a t : EU(a t s t )? Factors: Pr(s i+ a i,s i ), R(s i ), for 0 i h Restrict s t Eliminate s t+,,s h,a t+,,a h a 0 a a 2 s 0 s s 2 s 3 r r 3 4 Value Iteration Value when no time left: V(s h ) = R(s h ) Value with one time step left: V(s h- ) = max ah- R(s h- ) + γ Σ sh Pr(s h s h-,a h- ) V(s h ) Value with two time steps left: V(s h-2 ) = max ah-2 R(s h-2 ) + γ Σ sh- Pr(s h- s h-2,a h-2 ) V(s h- ) Bellman s equation: V(s t ) = max at R(s t ) + γ Σ st+ Pr(s t+ s t,a t ) V(s t+ ) a t * = argmax at R(s t ) + γ Σ st+ Pr(s t+ s t,a t ) V(s t+ ) 5 Markov Decision Process Poor & Unknown Rich & Unknown Poor & Famous Rich & Famous γ = 0.9 You own a company In every state you must choose between aving money or dvertising 6 t h h- h-2 h-3 h-4 h-5 PU RU V(PU) V(PF) PF V(RU) γ = 0.9 RF V(RF) Finite Horizon When h is finite, Non-stationary optimal policy Best action different at each time step Intuition: best action varies with the amount of time left 7 8 3

4 Infinite Horizon Infinite Horizon When h is infinite, tationary optimal policy ame best action at each time step Intuition: same (infinite) amount of time left at each time step, hence same best action Problem: value iteration does an infinite number of iterations ssuming a discount factor γ, after k time steps, rewards are scaled down by γ k For large enough k, rewards become insignificant since γ k 0 olution: pick large enough k run value iteration for k steps Execute policy found at the k th iteration 9 20 Computational Complexity Dynamic Decision Network pace and time: O(k 2 ) Here k is the number of iterations ctt-2 ctt- ctt But what if and are defined by several random variables and consequently exponential? Mt-2 Tt-2 Lt-2 Mt- Tt- Lt- Mt Tt Lt Mt+ Tt+ Lt+ olution: exploit conditional independence Dynamic decision network Ct-2 Nt-2 Ct- Nt- Ct Nt Ct+ Nt+ 2 R t-2 R R t- t R t+ 22 Dynamic Decision Network imilarly to dynamic Bayes nets: Compact representation Exponential time for decision making Partial Observability What if states are not fully observable? olution: Partially Observable Markov Decision Process o o o o 2 o 3 a 0 a a 2 s 0 s s 2 s 3 r

5 Partially Observable Markov Decision Process (POMDP) Definition et of states: et of actions (i.e., decisions): et of observations: O Transition model: Pr(s t a t-,s t- ) Observation model: Pr(o t s t ) Reward model (i.e., utility): R(s t ) Discount factor: 0 γ Horizon (i.e., # of time steps): h POMDP Problem: action choice generally depends on all previous observations Two solutions: Consider only policies that depend on a finite history of observations Find stationary sufficient statistics encoding relevant past observations Policy: mapping from past obs. to actions Partially Observable DDN Policy Optimization ctions do not depend on all state variables ctt-2 ctt- ctt Policy optimization: Value iteration (variable elimination) Policy iteration Mt-2 Mt- Mt Mt+ Tt-2 Lt-2 Ct-2 Nt-2 Tt- Lt- Ct- Nt- Tt Lt Ct Nt Tt+ Lt+ Ct+ Nt+ POMDP and PODDN complexity: Exponential in O and k when action choice depends on all previous observations In practice, good policies based on subset of past observations can still be found R t-2 R t- R t R t COCH project ging Population utomated prompting system to help elderly persons wash their hands ITL: lex Mihailidis, Pascal Poupart, Jennifer Boger, Jesse Hoey, Geoff Fernie and Craig Boutilier Dementia Deterioration of intellectual faculties Confusion Memory losses (e.g., lzheimer s disease) Consequences: Loss of autonomy Continual and expensive care required

6 Intelligent ssistive Technology ystem Overview Let s facilitate aging in place Intelligent assistive technology Non-obtrusive, yet pervasive daptable sensors planning Benefits: Greater autonomy Feeling of independence hand washing verbal cues 3 32 Prompting trategy POMDP components equential decision problem equence of prompts Noisy sensors & imprecise actuators Noisy image processing, uncertain prompt effects Partially unknown environment Unknown user habits, preferences and abilities Tradeoff between complex concurrent goals Rapid task completion vs greater autonomy pproach: Partially Observable Markov Decision Processes (POMDPs( POMDPs) 33 tate set = dom(hl) x dom(wf) x dom(d) x Hand Location {tap,water,soap,towel,sink,away, } Water Flow {on, off}, Dementia {high, low}, etc. Observation set O = dom(c) x dom(f) Camera {handsttap, handsttowel, } Faucet sensor {wateron, wateroff} ction set DoNothing, CallCaregiver, Prompt {turnonwater, rinsehands, useoap, } 34 Transition function Pr(s s,a) sink,off POMDP components Observation function Pr(o s) sink,off 0.0 sink,off tap,on 0.95 tap,on soap,off 0.0 soap,off Machine Learning Decision Trees Next Class Reward function R(s,a) Task completed 0 Call caregiver -30 Each prompt -, -2 or

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Pascal Poupart (University of Waterloo) INFORMS 2009 1 Outline Dynamic Pricing as a POMDP Symbolic Perseus

More information

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Pascal Poupart David R. Cheriton School of Computer Science University of Waterloo 1 Outline Review Markov Models

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

An Analytic Solution to Discrete Bayesian Reinforcement Learning

An Analytic Solution to Discrete Bayesian Reinforcement Learning An Analytic Solution to Discrete Bayesian Reinforcement Learning Pascal Poupart (U of Waterloo) Nikos Vlassis (U of Amsterdam) Jesse Hoey (U of Toronto) Kevin Regan (U of Waterloo) 1 Motivation Automated

More information

Artificial Intelligence & Sequential Decision Problems

Artificial Intelligence & Sequential Decision Problems Artificial Intelligence & Sequential Decision Problems (CIV6540 - Machine Learning for Civil Engineers) Professor: James-A. Goulet Département des génies civil, géologique et des mines Chapter 15 Goulet

More information

CAP Plan, Activity, and Intent Recognition

CAP Plan, Activity, and Intent Recognition CAP6938-02 Plan, Activity, and Intent Recognition Lecture 10: Sequential Decision-Making Under Uncertainty (part 1) MDPs and POMDPs Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu SP2-1 Reminder

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

2534 Lecture 4: Sequential Decisions and Markov Decision Processes

2534 Lecture 4: Sequential Decisions and Markov Decision Processes 2534 Lecture 4: Sequential Decisions and Markov Decision Processes Briefly: preference elicitation (last week s readings) Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. Norman,Y.

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes. Pascal Poupart

Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes. Pascal Poupart Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes by Pascal Poupart A thesis submitted in conformity with the requirements for the degree of Doctor of

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

Reasoning Under Uncertainty Over Time. CS 486/686: Introduction to Artificial Intelligence

Reasoning Under Uncertainty Over Time. CS 486/686: Introduction to Artificial Intelligence Reasoning Under Uncertainty Over Time CS 486/686: Introduction to Artificial Intelligence 1 Outline Reasoning under uncertainty over time Hidden Markov Models Dynamic Bayes Nets 2 Introduction So far we

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

Solving POMDPs with Continuous or Large Discrete Observation Spaces

Solving POMDPs with Continuous or Large Discrete Observation Spaces Solving POMDPs with Continuous or Large Discrete Observation Spaces Jesse Hoey Department of Computer Science University of Toronto Toronto, ON, M5S 3H5 jhoey@cs.toronto.edu Pascal Poupart School of Computer

More information

AM 121: Intro to Optimization Models and Methods: Fall 2018

AM 121: Intro to Optimization Models and Methods: Fall 2018 AM 11: Intro to Optimization Models and Methods: Fall 018 Lecture 18: Markov Decision Processes Yiling Chen Lesson Plan Markov decision processes Policies and value functions Solving: average reward, discounted

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Deep Reinforcement Learning STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Outline Introduction to Reinforcement Learning AlphaGo (Deep RL for Computer Go)

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Learning Analytics. Dr. Bowen Hui Computer Science University of British Columbia Okanagan

Learning Analytics. Dr. Bowen Hui Computer Science University of British Columbia Okanagan Learning Analytics Dr. Bowen Hui Computer cience University of British Columbia kanagan Putting the Pieces Together Consider an intelligent tutoring system designed to assist the user in programming Possible

More information

Efficient Maximization in Solving POMDPs

Efficient Maximization in Solving POMDPs Efficient Maximization in Solving POMDPs Zhengzhu Feng Computer Science Department University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Shlomo Zilberstein Computer Science Department University

More information

Bayes-Adaptive POMDPs 1

Bayes-Adaptive POMDPs 1 Bayes-Adaptive POMDPs 1 Stéphane Ross, Brahim Chaib-draa and Joelle Pineau SOCS-TR-007.6 School of Computer Science McGill University Montreal, Qc, Canada Department of Computer Science and Software Engineering

More information

Dialogue as a Decision Making Process

Dialogue as a Decision Making Process Dialogue as a Decision Making Process Nicholas Roy Challenges of Autonomy in the Real World Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information Robustness under uncertainty

More information

Markov Decision Processes (and a small amount of reinforcement learning)

Markov Decision Processes (and a small amount of reinforcement learning) Markov Decision Processes (and a small amount of reinforcement learning) Slides adapted from: Brian Williams, MIT Manuela Veloso, Andrew Moore, Reid Simmons, & Tom Mitchell, CMU Nicholas Roy 16.4/13 Session

More information

Reinforcement Learning Active Learning

Reinforcement Learning Active Learning Reinforcement Learning Active Learning Alan Fern * Based in part on slides by Daniel Weld 1 Active Reinforcement Learning So far, we ve assumed agent has a policy We just learned how good it is Now, suppose

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Logic, Knowledge Representation and Bayesian Decision Theory

Logic, Knowledge Representation and Bayesian Decision Theory Logic, Knowledge Representation and Bayesian Decision Theory David Poole University of British Columbia Overview Knowledge representation, logic, decision theory. Belief networks Independent Choice Logic

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 12: Probability 3/2/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. 1 Announcements P3 due on Monday (3/7) at 4:59pm W3 going out

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Preference Elicitation for Sequential Decision Problems

Preference Elicitation for Sequential Decision Problems Preference Elicitation for Sequential Decision Problems Kevin Regan University of Toronto Introduction 2 Motivation Focus: Computational approaches to sequential decision making under uncertainty These

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24 and partially observable Markov decision processes Christos Dimitrakakis EPFL November 6, 2013 Bayesian reinforcement learning and partially observable Markov decision processes November 6, 2013 1 / 24

More information

Some AI Planning Problems

Some AI Planning Problems Course Logistics CS533: Intelligent Agents and Decision Making M, W, F: 1:00 1:50 Instructor: Alan Fern (KEC2071) Office hours: by appointment (see me after class or send email) Emailing me: include CS533

More information

Learning in Zero-Sum Team Markov Games using Factored Value Functions

Learning in Zero-Sum Team Markov Games using Factored Value Functions Learning in Zero-Sum Team Markov Games using Factored Value Functions Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 mgl@cs.duke.edu Ronald Parr Department of Computer

More information

A Probabilistic Mental Model for Estimating Disruption

A Probabilistic Mental Model for Estimating Disruption A Probabilistic Mental Model for Estimating Disruption Bowen Hui 1, Grant Partridge 2, Craig Boutilier 1 1 Dept of Computer Science, University of Toronto, Canada 2 Dept of Computer Science, University

More information

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague Partially observable Markov decision processes Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy.

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy. Page 1 Markov decision processes (MDP) CS 416 Artificial Intelligence Lecture 21 Making Complex Decisions Chapter 17 Initial State S 0 Transition Model T (s, a, s ) How does Markov apply here? Uncertainty

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

University of Alberta

University of Alberta University of Alberta NEW REPRESENTATIONS AND APPROXIMATIONS FOR SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY by Tao Wang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 9 Oct, 11, 2011 Slide credit Approx. Inference : S. Thrun, P, Norvig, D. Klein CPSC 502, Lecture 9 Slide 1 Today Oct 11 Bayesian

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Probability Primer Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1 *Slides

More information

Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN)

Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN) Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN) Alp Sardag and H.Levent Akin Bogazici University Department of Computer Engineering 34342 Bebek, Istanbul,

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

16.4 Multiattribute Utility Functions

16.4 Multiattribute Utility Functions 285 Normalized utilities The scale of utilities reaches from the best possible prize u to the worst possible catastrophe u Normalized utilities use a scale with u = 0 and u = 1 Utilities of intermediate

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

Robust Policy Computation in Reward-uncertain MDPs using Nondominated Policies

Robust Policy Computation in Reward-uncertain MDPs using Nondominated Policies Robust Policy Computation in Reward-uncertain MDPs using Nondominated Policies Kevin Regan University of Toronto Toronto, Ontario, Canada, M5S 3G4 kmregan@cs.toronto.edu Craig Boutilier University of Toronto

More information

1. (3 pts) In MDPs, the values of states are related by the Bellman equation: U(s) = R(s) + γ max a

1. (3 pts) In MDPs, the values of states are related by the Bellman equation: U(s) = R(s) + γ max a 3 MDP (2 points). (3 pts) In MDPs, the values of states are related by the Bellman equation: U(s) = R(s) + γ max a s P (s s, a)u(s ) where R(s) is the reward associated with being in state s. Suppose now

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Autonomous Helicopter Flight via Reinforcement Learning

Autonomous Helicopter Flight via Reinforcement Learning Autonomous Helicopter Flight via Reinforcement Learning Authors: Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry Presenters: Shiv Ballianda, Jerrolyn Hebert, Shuiwang Ji, Kenley Malveaux, Huy

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Extensions of Bayesian Networks. Outline. Bayesian Network. Reasoning under Uncertainty. Features of Bayesian Networks.

Extensions of Bayesian Networks. Outline. Bayesian Network. Reasoning under Uncertainty. Features of Bayesian Networks. Extensions of Bayesian Networks Outline Ethan Howe, James Lenfestey, Tom Temple Intro to Dynamic Bayesian Nets (Tom Exact inference in DBNs with demo (Ethan Approximate inference and learning (Tom Probabilistic

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

CSC242: Intro to AI. Lecture 23

CSC242: Intro to AI. Lecture 23 CSC242: Intro to AI Lecture 23 Administrivia Posters! Tue Apr 24 and Thu Apr 26 Idea! Presentation! 2-wide x 4-high landscape pages Learning so far... Input Attributes Alt Bar Fri Hun Pat Price Rain Res

More information

Decision making, Markov decision processes

Decision making, Markov decision processes Decision making, Markov decision processes Solved tasks Collected by: Jiří Kléma, klema@fel.cvut.cz Spring 2017 The main goal: The text presents solved tasks to support labs in the A4B33ZUI course. 1 Simple

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Figure 1: Bayes Net. (a) (2 points) List all independence and conditional independence relationships implied by this Bayes net.

Figure 1: Bayes Net. (a) (2 points) List all independence and conditional independence relationships implied by this Bayes net. 1 Bayes Nets Unfortunately during spring due to illness and allergies, Billy is unable to distinguish the cause (X) of his symptoms which could be: coughing (C), sneezing (S), and temperature (T). If he

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artificial Intelligence Bayesian Networks Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 11: Bayesian Networks Artificial Intelligence

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Hidden Markov Models,99,100! Markov, here I come!

Hidden Markov Models,99,100! Markov, here I come! Hidden Markov Models,99,100! Markov, here I come! 16.410/413 Principles of Autonomy and Decision-Making Pedro Santana (psantana@mit.edu) October 7 th, 2015. Based on material by Brian Williams and Emilio

More information

Optimally Solving Dec-POMDPs as Continuous-State MDPs

Optimally Solving Dec-POMDPs as Continuous-State MDPs Optimally Solving Dec-POMDPs as Continuous-State MDPs Jilles Dibangoye (1), Chris Amato (2), Olivier Buffet (1) and François Charpillet (1) (1) Inria, Université de Lorraine France (2) MIT, CSAIL USA IJCAI

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Hidden Markov Models Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell, Andrew Moore, Ali Farhadi, or Dan Weld 1 Outline Probabilistic

More information

CS 7180: Behavioral Modeling and Decision- making in AI

CS 7180: Behavioral Modeling and Decision- making in AI CS 7180: Behavioral Modeling and Decision- making in AI Learning Probabilistic Graphical Models Prof. Amy Sliva October 31, 2012 Hidden Markov model Stochastic system represented by three matrices N =

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Discrete planning (an introduction)

Discrete planning (an introduction) Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Discrete planning (an introduction) Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

RL 14: POMDPs continued

RL 14: POMDPs continued RL 14: POMDPs continued Michael Herrmann University of Edinburgh, School of Informatics 06/03/2015 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information