Markov Decision Processes Chapter 17. Mausam

Size: px
Start display at page:

Download "Markov Decision Processes Chapter 17. Mausam"

Transcription

1 Markov Decision Processes Chapter 17 Mausam

2 Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs. Durative Percepts Actions 2

3 Classical Planning Static Environment Fully Observable Perfect What action next? Deterministic Instantaneous Percepts Actions 3

4 Stochastic Planning: MDPs Static Environment Fully Observable Perfect What action next? Stochastic Instantaneous Percepts Actions 4

5 MDP vs. Decision Theory Decision theory episodic MDP -- sequential 5

6 Markov Decision Process (MDP) S: A set of states A: A set of actions T(s,a,s ): transition model C(s,a,s ): cost model G: set of goals : start state : discount factor R(s,a,s ): reward model factored Factored MDP absorbing/ non-absorbing 6

7 Objective of an MDP Find a policy : S A which optimizes minimizes maximizes maximizes discounted or undiscount. expected cost to reach a goal expected reward expected (reward-cost) given a horizon finite infinite indefinite assuming full observability 7

8 Role of Discount Factor ( ) Keep the total reward/total cost finite useful for infinite horizon problems Intuition (economics): Money today is worth more than money tomorrow. Total reward: r 1 + r r 3 + Total cost: c 1 + c c 3 + 8

9 Examples of MDPs Goal-directed, Indefinite Horizon, Cost Minimization MDP <S, A, T, C, G, > Most often studied in planning, graph theory communities Infinite Horizon, Discounted Reward Maximization MDP <S, A, T, R, > Most often studied in machine learning, economics, operations research communities most popular Oversubscription Planning: Non absorbing goals, Reward Max. MDP <S, A, T, G, R, > Relatively recent model 9

10 Acyclic vs. Cyclic MDPs a P b a P b Q R S T R S T c c c c c c c G C(a) = 5, C(b) = 10, C(c) =1 Expectimin works V(Q/R/S/T) = 1 V(P) = 6 action a G Expectimin doesn t work infinite loop V(R/S/T) = 1 Q(P,b) = 11 Q(P,a) =???? suppose I decide to take a in P Q(P,a) = * Q(P,a) 10 = 13.5

11 Policy Evaluation Given a policy ¼: compute V ¼ V ¼ : cost of reaching goal while following ¼ 12

12 Deterministic MDPs Policy Graph for ¼ ¼( ) = a 0 ; ¼(s 1 ) = a 1 C=5 C=1 s 1 s a g 0 a 1 V ¼ (s 1 ) = 1 V ¼ ( ) = 6 add costs on path to goal 13

13 Acyclic MDPs Policy Graph for ¼ V ¼ (s 1 ) = 1 V ¼ (s 2 ) = 4 Pr=0.6 C=5 s 1 a 0 a 1 Pr=0.4 C=2 s 2 C=1 C=4 V ¼ ( ) = 0.6(5+1) + 0.4(2+4) = 6 a 2 s g backward pass in reverse topological order 14

14 General MDPs can be cyclic! Pr=0.6 C=5 s 1 a 0 a 1 Pr=0.4 C=2 s 2 a 2 C=1 Pr=0.7 C=4 Pr=0.3 C=3 s g cannot do a simple single pass V ¼ (s 1 ) = 1 V ¼ (s 2 ) =?? (depends on V ¼ ( )) V ¼ ( ) =?? (depends on V ¼ (s 2 )) 15

15 General SSPs can be cyclic! Pr=0.6 C=5 s 1 a 0 a 1 Pr=0.4 C=2 s 2 V ¼ (g) = 0 V ¼ (s 1 ) = 1+V ¼ (s g ) = 1 V ¼ (s 2 ) = 0.7(4+V ¼ (s g )) + 0.3(3+V ¼ ( )) V ¼ ( ) = 0.6(5+V ¼ (s 1 )) + 0.4(2+V ¼ (s 2 )) a 2 C=1 Pr=0.7 C=4 Pr=0.3 C=3 s g a simple system of linear equations 16

16 Policy Evaluation (Approach 1) Solving the System of Linear Equations V ¼ (s) = 0 if s 2 G = X 2S T (s; ¼(s); ) [C(s; ¼(s); ) + V ¼ ( )] S variables. O( S 3 ) running time 17

17 Iterative Policy Evaluation V ¼ (s 2 ) Pr=0.6 C=5 Pr=0.4 C=2 s 1 s 2 a 2 C=1 a 0 a V ¼ ( ) Pr=0.7 C=4 Pr=0.3 C=3 s g 18

18 Policy Evaluation (Approach 2) V ¼ (s) = X 2S T (s; ¼(s); ) [C(s; ¼(s); ) + V ¼ ( )] iterative refinement V ¼ n (s) Ã X 2S T (s; ¼(s); ) C(s; ¼(s); ) + V ¼ n 1( ) 19

19 Iterative Policy Evaluation iteration n ²-consistency termination condition 20

20 Policy Evaluation Value Iteration (Bellman Equations for MDP 1 ) <S, A, T, C,G, > Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state. V* should satisfy the following equation: V (s) = 0 if s 2 G X = min T (s; a; ) [C(s; a; ) + V ( )] a2a 2S Q*(s,a) V*(s) = min a Q*(s,a) 22

21 Bellman Equations for MDP 2 <S, A, T, R,, > Define V*(s) {optimal value} as the maximum expected discounted reward from this state. V* should satisfy the following equation: 23

22 Fixed Point Computation in VI V (s) = min a2a X 2S T (s; a; ) [C(s; a; ) + V ( )] iterative refinement V n (s) Ã min a2a X 2S T (s; a; ) [C(s; a; ) + V n 1 ( )] non-linear 24

23 Example a 20 a a 00 s 2 s 40 4 a 41 a 21 a 1 a C=2 3 a 01 s 1 s 3 C=5 Pr=0.6 Pr=0.4 s g 25

24 Bellman Backup s 4 s 3 a 41 a 3 C=2 a 40 C=5 Pr=0.6 Pr=0.4 s g min Q 1 (s 4,a 40 ) = Q 1 (s 4,a 41 ) = = 2.8 V 1 = 2.8 s 4 a greedy = a 41 C=5 C=2 a 40 a 41 s g V 0 = 0 s 3 V 0 = 2

25 Value Iteration [Bellman 57] No restriction on initial value function iteration n ²-consistency termination condition 27

26 Example (all actions cost 1 unless otherwise stated) a 20 a a 00 s 2 s 40 4 a 41 a 21 a 1 a C=2 3 a 01 s 1 s 3 C=5 Pr=0.6 Pr=0.4 s g n V n ( ) V n (s 1 ) V n (s 2 ) V n (s 3 ) V n (s 4 )

27 Comments Decision-theoretic Algorithm Dynamic Programming Fixed Point Computation Probabilistic version of Bellman-Ford Algorithm for shortest path computation MDP 1 : Stochastic Shortest Path Problem Time Complexity one iteration: O( S 2 A ) number of iterations: poly( S, A, 1/(1- )) Space Complexity: O( S ) 31

28 Monotonicity For all n>k V k p V * V n p V* (V n monotonic from below) V k p V * V n p V* (V n monotonic from above) 32

29 Changing the Search Space Value Iteration Search in value space Compute the resulting policy Policy Iteration Search in policy space Compute the resulting value 40

30 Policy iteration [Howard 60] assign an arbitrary assignment of 0 to each state. repeat costly: O(n 3 ) Policy Evaluation: compute V n+1 : the evaluation of n Policy Improvement: for all states s compute n+1 (s): argmax a2 Ap(s) Q n+1 (s,a) until n+1 = n Advantage searching in a finite (policy) space as opposed to uncountably infinite (value) space convergence faster. all other properties follow! Modified Policy Iteration approximate by value iteration using fixed policy 41

31 Modified Policy iteration assign an arbitrary assignment of 0 to each state. repeat Policy Evaluation: compute V n+1 the approx. evaluation of n Policy Improvement: for all states s compute n+1 (s): argmax a2 Ap(s) Q n+1 (s,a) until n+1 = n Advantage probably the most competitive synchronous dynamic programming algorithm. 42

32 Applications Stochastic Games Robotics: navigation, helicopter manuevers Finance: options, investments Communication Networks Medicine: Radiation planning for cancer Controlling workflows Optimize bidding decisions in auctions Traffic flow optimization Aircraft queueing for landing; airline meal provisioning Optimizing software on mobiles Forest firefighting 43

33 VI Asynchronous VI Is backing up all states in an iteration essential? No! States may be backed up as many times in any order If no state gets starved convergence properties still hold!! 44

34 Residual wrt Value Function V (Res V ) Residual at s with respect to V magnitude( V(s)) after one Bellman backup at s Res V (s) = V (s) min a2a X 2S T (s; a; )[C(s; a; ) + V ( )] Residual wrt respect to V max residual Res V = max s (Res V (s)) Res V <² (²-consistency) 45

35 (General) Asynchronous VI 46

36 Prioritization of Bellman Backups Are all backups equally important? Can we avoid some backups? Can we schedule the backups more appropriately? 47

37 Useless Backups? a 20 a a 00 s 2 s 40 4 a 41 a 21 a 1 a C=2 3 a 01 s 1 s 3 C=5 Pr=0.6 Pr=0.4 s g n V n ( ) V n (s 1 ) V n (s 2 ) V n (s 3 ) V n (s 4 )

38 Useless Backups? a 20 a a 00 s 2 s 40 4 a 41 a 21 a 1 a C=2 3 a 01 s 1 s 3 C=5 Pr=0.6 Pr=0.4 s g n V n ( ) V n (s 1 ) V n (s 2 ) V n (s 3 ) V n (s 4 )

39 Asynch VI Prioritized VI 50

40 Which state to prioritize? s' V=0 s' V=0 s' V= s 1 s'.. V=0.. s s'.. V=2.. s 3 s'.. V=5.. s' V=0 s' V=0 s' V=0 s 1 is zero priority s 2 is higher priority s 3 is low priority 51

41 Prioritized Sweeping priority P S (s) = max ½ ¾ priority P S (s); max ft (s; a; a2a s0 )Res V ( )g Convergence [Li&Littman 08] Prioritized Sweeping converges to optimal in the limit, if all initial priorities are non-zero. (does not need synchronous VI iterations) 52

42 Prioritized Sweeping a 20 a a 00 s 2 s 40 4 a 41 a 21 a 1 a C=2 3 a 01 s 1 s 3 C=5 Pr=0.6 Pr=0.4 s g V( ) V(s 1 ) V(s 2 ) V(s 3 ) V(s 4 ) Initial V Priority Update Priority Update

43 Limitations of VI/Extensions Scalability Memory linear in size of state space Time at least polynomial or more Polynomial is good, no? state spaces are usually huge. if n state vars then 2 n states! Curse of Dimensionality! 54

44 Heuristic Search Insight 1 knowledge of a start state to save on computation ~ (all sources shortest path single source shortest path) Insight 2 additional knowledge in the form of heuristic function ~ (dfs/bfs A*) 55

45 Model MDP with an additional start state denoted by MDP s0 What is the solution to an MDP s0 Policy (S!A)? are states that are not reachable from relevant? states that are never visited (even though reachable)? 56

46 Partial Policy Define Partial policy ¼: S! A, where S µ S Define Partial policy closed w.r.t. a state s. is a partial policy ¼ s defined for all states s reachable by ¼ s starting from s 57

47 Partial policy closed wrt s 9 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g 58

48 Partial policy closed wrt s 9 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g Is this policy closed wrt? ¼ s0 ( )= a 1 ¼ s0 (s 1 )= a 2 ¼ s0 (s 2 )= a 1 59

49 Partial policy closed wrt s 9 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g Is this policy closed wrt? ¼ s0 ( )= a 1 ¼ s0 (s 1 )= a 2 ¼ s0 (s 2 )= a 1 60

50 Partial policy closed wrt s 9 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g Is this policy closed wrt? ¼ s0 ( )= a 1 ¼ s0 (s 1 )= a 2 ¼ s0 (s 2 )= a 1 ¼ s0 (s 6 )= a 1 61

51 Policy Graph of ¼ s0 s 9 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g ¼ s0 ( )= a 1 ¼ s0 (s 1 )= a 2 ¼ s0 (s 2 )= a 1 ¼ s0 (s 6 )= a 1 62

52 Greedy Policy Graph Define greedy policy: ¼ V = argmin a Q V (s,a) Define greedy partial policy rooted at Partial policy rooted at Greedy policy denoted by ¼ V s0 Define greedy policy graph Policy graph of ¼ V s0 : denoted by G V s0 63

53 Heuristic Function h(s): S!R estimates V*(s) gives an indication about goodness of a state usually used in initialization V 0 (s) = h(s) helps us avoid seemingly bad states Define admissible heuristic optimistic h(s) V*(s) 64

54 A General Scheme for Heuristic Search in MDPs Two (over)simplified intuitions Focus on states in greedy policy wrt V rooted at Focus on states with residual > ² Find & Revise: repeat find a state that satisfies the two properties above revise: perform a Bellman backup until no such state remains 65

55 A* LAO* regular graph soln:(shortest) path A* acyclic AND/OR graph soln:(expected shortest) acyclic graph AO* [Nilsson 71] cyclic AND/OR graph soln:(expected shortest) cyclic graph LAO* [Hansen&Zil. 98] All algorithms able to make effective use of reachability information!

56 LAO* Family add to the fringe and to greedy policy graph repeat FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value choose a subset of affected states REVISE: perform some Bellman backups on this subset recompute the greedy graph until greedy graph has no fringe & residuals in greedy graph small output the greedy graph as the final policy 68

57 LAO* add to the fringe and to greedy policy graph repeat FIND: expand best state s on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s REVISE: perform VI on this subset recompute the greedy graph until greedy graph has no fringe & residuals in greedy graph small output the greedy graph as the final policy 69

58 LAO* V( ) = h( ) s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g add in the fringe and in greedy graph 70

59 LAO* V( ) = h( ) s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) 71

60 LAO* V( ) s 1 s 2 s 3 s 4 h s 1 s 2 h h s 3 s 4 h s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset 72

61 LAO* V( ) s 1 s 2 s 3 s 4 h s 1 s 2 h h s 3 s 4 h s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 73

62 LAO* V( ) s 1 s 2 s 3 s 4 h s 1 s 2 h h s 3 s 4 h s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph s h 6 s 7 h 74

63 LAO* V( ) s 1 s 2 s 3 s 4 h s 1 s 2 h h s 3 s 4 h s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph s h 6 s 7 h 75

64 LAO* V s 1 s 2 s 3 s 4 h s 1 s 2 h V s 3 s 4 h s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph s h 6 s 7 h 76

65 LAO* V s 1 s 2 s 3 s 4 h s 1 s 2 h V s 3 s 4 h s 5 s 6 s 7 s 8 S g FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph s h 6 s 7 h 77

66 LAO* V s 1 s 2 s 3 s 4 h s 1 s 2 h V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s h 6 s 7 S g h FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 78

67 LAO* V s 1 s 2 s 3 s 4 h s 1 s 2 h V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s h 6 s 7 S g h FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 79

68 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 h V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s h 6 s 7 S g h FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 80

69 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 h V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s h 6 s 7 S g h FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 81

70 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 V V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s h 6 s 7 S g h FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 82

71 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 V V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s h 6 s 7 S g h FIND: expand some states on the fringe (in greedy graph) initialize all new states by their heuristic value subset = all states in expanded graph that can reach s perform VI on this subset recompute the greedy graph 83

72 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 V V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s V 6 s 7 S g h output the greedy graph as the final policy 84

73 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 V V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s V 6 s 7 S g h output the greedy graph as the final policy 85

74 LAO* V s 1 s 2 s 3 s 4 V s 1 s 2 V V s 3 s 4 h s 5 s 6 s 7 s 8 S g h s 5 0 s V 6 s h 7 s 8 S g s 4 was never expanded s 8 was never touched 86

75 Extensions Heuristic Search + Dynamic Programming AO*, LAO*, RTDP, Factored MDPs add planning graph style heuristics use goal regression to generalize better Hierarchical MDPs hierarchy of sub-tasks, actions to scale better Reinforcement Learning learning the probability and rewards acting while learning connections to psychology Partially Observable Markov Decision Processes noisy sensors; partially observable environment popular in robotics 91

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam CSE 573 Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming Slides adapted from Andrey Kolobov and Mausam 1 Stochastic Shortest-Path MDPs: Motivation Assume the agent pays cost

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Heuristic Search Algorithms

Heuristic Search Algorithms CHAPTER 4 Heuristic Search Algorithms 59 4.1 HEURISTIC SEARCH AND SSP MDPS The methods we explored in the previous chapter have a serious practical drawback the amount of memory they require is proportional

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

Real Time Value Iteration and the State-Action Value Function

Real Time Value Iteration and the State-Action Value Function MS&E338 Reinforcement Learning Lecture 3-4/9/18 Real Time Value Iteration and the State-Action Value Function Lecturer: Ben Van Roy Scribe: Apoorva Sharma and Tong Mu 1 Review Last time we left off discussing

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B.

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B. Advanced Topics in Machine Learning, GI13, 2010/11 Advanced Topics in Machine Learning, GI13, 2010/11 Answer any THREE questions. Each question is worth 20 marks. Use separate answer books Answer any THREE

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Some AI Planning Problems

Some AI Planning Problems Course Logistics CS533: Intelligent Agents and Decision Making M, W, F: 1:00 1:50 Instructor: Alan Fern (KEC2071) Office hours: by appointment (see me after class or send email) Emailing me: include CS533

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B.

PART A and ONE question from PART B; or ONE question from PART A and TWO questions from PART B. Advanced Topics in Machine Learning, GI13, 2010/11 Advanced Topics in Machine Learning, GI13, 2010/11 Answer any THREE questions. Each question is worth 20 marks. Use separate answer books Answer any THREE

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Stochastic Safest and Shortest Path Problems

Stochastic Safest and Shortest Path Problems Stochastic Safest and Shortest Path Problems Florent Teichteil-Königsbuch AAAI-12, Toronto, Canada July 24-26, 2012 Path optimization under probabilistic uncertainties Problems coming to searching for

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Prioritized Sweeping Converges to the Optimal Value Function

Prioritized Sweeping Converges to the Optimal Value Function Technical Report DCS-TR-631 Prioritized Sweeping Converges to the Optimal Value Function Lihong Li and Michael L. Littman {lihong,mlittman}@cs.rutgers.edu RL 3 Laboratory Department of Computer Science

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Probabilistic Planning. George Konidaris

Probabilistic Planning. George Konidaris Probabilistic Planning George Konidaris gdk@cs.brown.edu Fall 2017 The Planning Problem Finding a sequence of actions to achieve some goal. Plans It s great when a plan just works but the world doesn t

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Notes on Reinforcement Learning

Notes on Reinforcement Learning 1 Introduction Notes on Reinforcement Learning Paulo Eduardo Rauber 2014 Reinforcement learning is the study of agents that act in an environment with the goal of maximizing cumulative reward signals.

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Reinforcement Learning

Reinforcement Learning CS7/CS7 Fall 005 Supervised Learning: Training examples: (x,y) Direct feedback y for each input x Sequence of decisions with eventual feedback No teacher that critiques individual actions Learn to act

More information

Elements of Reinforcement Learning

Elements of Reinforcement Learning Elements of Reinforcement Learning Policy: way learning algorithm behaves (mapping from state to action) Reward function: Mapping of state action pair to reward or cost Value function: long term reward,

More information

Markov Decision Processes (and a small amount of reinforcement learning)

Markov Decision Processes (and a small amount of reinforcement learning) Markov Decision Processes (and a small amount of reinforcement learning) Slides adapted from: Brian Williams, MIT Manuela Veloso, Andrew Moore, Reid Simmons, & Tom Mitchell, CMU Nicholas Roy 16.4/13 Session

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage.

Course basics. CSE 190: Reinforcement Learning: An Introduction. Last Time. Course goals. The website for the class is linked off my homepage. Course basics CSE 190: Reinforcement Learning: An Introduction The website for the class is linked off my homepage. Grades will be based on programming assignments, homeworks, and class participation.

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

2534 Lecture 4: Sequential Decisions and Markov Decision Processes

2534 Lecture 4: Sequential Decisions and Markov Decision Processes 2534 Lecture 4: Sequential Decisions and Markov Decision Processes Briefly: preference elicitation (last week s readings) Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. Norman,Y.

More information

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))]

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))] Review: TD-Learning function TD-Learning(mdp) returns a policy Class #: Reinforcement Learning, II 8s S, U(s) =0 set start-state s s 0 choose action a, using -greedy policy based on U(s) U(s) U(s)+ [r

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Reinforcement Learning II

Reinforcement Learning II Reinforcement Learning II Andrea Bonarini Artificial Intelligence and Robotics Lab Department of Electronics and Information Politecnico di Milano E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Stuart Russell, UC Berkeley Stuart Russell, UC Berkeley 1 Outline Sequential decision making Dynamic programming algorithms Reinforcement learning algorithms temporal difference

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Fast SSP Solvers Using Short-Sighted Labeling

Fast SSP Solvers Using Short-Sighted Labeling Luis Pineda, Kyle H. Wray and Shlomo Zilberstein College of Information and Computer Sciences, University of Massachusetts, Amherst, USA July 9th Introduction Motivation SSPs are a highly-expressive model

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Reading Response: Due Wednesday R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Another Example Get to the top of the hill as quickly as possible. reward = 1 for each step where

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

RL 14: POMDPs continued

RL 14: POMDPs continued RL 14: POMDPs continued Michael Herrmann University of Edinburgh, School of Informatics 06/03/2015 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

CS230: Lecture 9 Deep Reinforcement Learning

CS230: Lecture 9 Deep Reinforcement Learning CS230: Lecture 9 Deep Reinforcement Learning Kian Katanforoosh Menti code: 21 90 15 Today s outline I. Motivation II. Recycling is good: an introduction to RL III. Deep Q-Learning IV. Application of Deep

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

The Reinforcement Learning Problem

The Reinforcement Learning Problem The Reinforcement Learning Problem Slides based on the book Reinforcement Learning by Sutton and Barto Formalizing Reinforcement Learning Formally, the agent and environment interact at each of a sequence

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL)

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL) 15-780: Graduate Artificial Intelligence Reinforcement learning (RL) From MDPs to RL We still use the same Markov model with rewards and actions But there are a few differences: 1. We do not assume we

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Reinforcement Learning. Summer 2017 Defining MDPs, Planning

Reinforcement Learning. Summer 2017 Defining MDPs, Planning Reinforcement Learning Summer 2017 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Pascal Poupart David R. Cheriton School of Computer Science University of Waterloo 1 Outline Review Markov Models

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 11: Markov Decision Processes II Teacher: Gianni A. Di Caro RECAP: DEFINING MDPS Markov decision processes: o Set of states S o Start state s 0 o Set of actions A o Transitions P(s s,a)

More information

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague

Sequential decision making under uncertainty. Department of Computer Science, Czech Technical University in Prague Sequential decision making under uncertainty Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Decision making, Markov decision processes

Decision making, Markov decision processes Decision making, Markov decision processes Solved tasks Collected by: Jiří Kléma, klema@fel.cvut.cz Spring 2017 The main goal: The text presents solved tasks to support labs in the A4B33ZUI course. 1 Simple

More information

Reinforcement Learning. Spring 2018 Defining MDPs, Planning

Reinforcement Learning. Spring 2018 Defining MDPs, Planning Reinforcement Learning Spring 2018 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Introduction to Reinforcement Learning Part 1: Markov Decision Processes

Introduction to Reinforcement Learning Part 1: Markov Decision Processes Introduction to Reinforcement Learning Part 1: Markov Decision Processes Rowan McAllister Reinforcement Learning Reading Group 8 April 2015 Note I ve created these slides whilst following Algorithms for

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

An Algorithm better than AO*?

An Algorithm better than AO*? An Algorithm better than? Blai Bonet Universidad Simón Boĺıvar Caracas, Venezuela Héctor Geffner ICREA and Universitat Pompeu Fabra Barcelona, Spain 7/2005 An Algorithm Better than? B. Bonet and H. Geffner;

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning Introduction to Reinforcement Learning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe Machine Learning Summer School, September 2011,

More information

Chapter 4: Dynamic Programming

Chapter 4: Dynamic Programming Chapter 4: Dynamic Programming Objectives of this chapter: Overview of a collection of classical solution methods for MDPs known as dynamic programming (DP) Show how DP can be used to compute value functions,

More information