Fast SSP Solvers Using Short-Sighted Labeling

Size: px
Start display at page:

Download "Fast SSP Solvers Using Short-Sighted Labeling"

Transcription

1 Luis Pineda, Kyle H. Wray and Shlomo Zilberstein College of Information and Computer Sciences, University of Massachusetts, Amherst, USA July 9th

2 Introduction Motivation SSPs are a highly-expressive model for sequential decision making They can be used for decision-making in the presence of multiple goals Caveat: solving SSPs optimally is a very computationally intensive task

3 Introduction Motivation SSPs are a highly-expressive model for sequential decision making They can be used for decision-making in the presence of multiple goals Caveat: solving SSPs optimally is a very computationally intensive task

4 Introduction Motivation A range of model reduction and heuristic search techniques for solving SSPs are available But even restricting only to states in optimal policies can be prohibitive

5 Introduction Motivation Recent approaches attempt to reduce the reachable state space even more and use re-planning during execution However, they still have several drawbacks: Restricted to particular problem representations (e.g., RFF and FF-Replan) Involve pre-processing (e.g., M k l reduction) Result in moderate reductions in time (e.g., SSiPP)

6 Introduction In this work... We introduce a new algorithm called FLARES (Fast Labeling from Residuals Using Samples) Modifies LRTDP to find high-performing policies much faster It can be extended to also find optimal policies

7 Background Stochastic Shortest Path Problems An SSP is a tuple xs, A, T, C, s 0, s g y, where: S is a finite set of states A is a finite set of actions T ps 1 s, aq P r0, 1s is a transition function Cps, aq P p0, 8q is a cost function s 0 is an initial state s g is a goal state

8 Background Solutions to SSPs The optimal value function for an SSP can be found using: BUpsq : min!cps, aq ` ÿ ) T ps 1 s, aqv ps 1 q apa πpsq arg min apa s 1 PS!Cps, aq ` ÿ s 1 PS ) T ps 1 s, aqv ps 1 q (1) (2)

9 Motivation for FLARES Problems with optimal heuristic search algorithms S G

10 Motivation for FLARES Depth-limited search S G

11 Motivation for FLARES Depth-limited search S x G

12 Motivation for FLARES Depth-limited search Large horizon needed to propagate information from states close to the goal S x G

13 Motivation for FLARES RTDP with short-sighted SSPs S G

14 Motivation for FLARES RTDP with short-sighted SSPs S G

15 Motivation for FLARES RTDP with short-sighted SSPs This approch doesn't seem to work well in practice, typically resulting in worse anytime performance than plain RTDP S G

16 FLARES Labeling states (LRTDP) S If states reachable by following the greedy policy have low residual, then we can label all of them as solved G

17 FLARES Labeling states S If states reachable by following the greedy policy have low residual, then we can label all of them as solved G

18 FLARES Labeling states S Computation can be saved by using cached values and actions for labeled states during the search G

19 FLARES But......to label s, all states reachable from s must be checked...

20 FLARES Labeling states can also be costly S G

21 FLARES FLARES Proposed approach: Move the short-sightedness to the labeling

22 FLARES FLARES Reachable states S Low residual states up to horizon 2t G Labeled states up to horizon t

23 FLARES FLARES S G Similar to the RTDP approach mentioned before... except that now computation can be reused and... there is a crisp termination condition that exploits short-sightedness

24 FLARES FLARES S G Similar to the RTDP approach mentioned before... except that now computation can be reused and... there is a crisp termination condition that exploits short-sightedness

25 FLARES FLARES S G Similar to the RTDP approach mentioned before... except that now computation can be reused and... there is a crisp termination condition that exploits short-sightedness

26 Theoretical properties of FLARES Correctness of labeling procedure Proposition FLARES labels a state s with s.solv true only if all states s 1 that can be reached from following the greedy policy satisfy Rps 1 q ă ɛ. Proposition As long as a Bellman update of s 1 with Rps 1 q ă ɛ never results in Rps 1 q ě ɛ, then FLARES labels a state s with s.d-solv true only if s is depth-t-solved.

27 Theoretical properties of FLARES Correctness of labeling procedure Proposition FLARES labels a state s with s.solv true only if all states s 1 that can be reached from following the greedy policy satisfy Rps 1 q ă ɛ. Proposition As long as a Bellman update of s 1 with Rps 1 q ă ɛ never results in Rps 1 q ě ɛ, then FLARES labels a state s with s.d-solv true only if s is depth-t-solved.

28 Theoretical properties of FLARES FLARES is guaranteed to terminate Theorem If the heuristic is admissible and monotone, FLARES terminates after at most ɛ 1 ř sps V psq V psq trials.

29 Theoretical properties of FLARES An optimal version of FLARES An optimal version of FLARES can be produced by calling FLARES multiple times with increasing horizon t Theorem If the initial heuristic is admissible and monotone, and ρ t, ρpv, tq ą t, with t 0 ě 0, then OPT-FLARES computes an optimal policy.

30 Theoretical properties of FLARES An optimal version of FLARES An optimal version of FLARES can be produced by calling FLARES multiple times with increasing horizon t Theorem If the initial heuristic is admissible and monotone, and ρ t, ρpv, tq ą t, with t 0 ě 0, then OPT-FLARES computes an optimal policy.

31 Gridworld domain Gridworld domain results Goal 2 25 x 100 cells 25 x 100 cells Start Goal 1 algorithm cost time LRTDP FLARES(0) FLARES(1) HDP(0,0) HDP(4,0) HDP(4,4) SSiPP(16) SSiPP(32) SSiPP(64)

32 Racetrack domain Racetrack domain - Average costs

33 Racetrack domain Racetrack domain - Average planning time (seconds) square-4 square-5 ring-5 ring-6 LRTDP FLARES(0) FLARES(1) HDP(0,0) HDP(0,1) HDP(1,0) HDP(1,1) SSiPP(4) SSiPP(8)

34 Sailing domain Sailing domain - Average costs 250 size=(20,20) goal=(10,10) OPT F(0) F(1) H(0,0) H(0,1) H(1,0) H(1,1) S(4) S(8) 600 size=(40,40) goal=(20,20) OPT F(0) F(1) H(0,0) H(0,1) H(1,0) H(1,1) S(4) S(8) 300 size=(20,20) goal=(19,19) OPT F(0) F(1) H(0,0) H(0,1) H(1,0) H(1,1) S(4) S(8) 600 size=(40,40) goal=(39,39) OPT F(0) F(1) H(0,0) H(0,1) H(1,0) H(1,1) S(4) S(8)

35 Sailing domain Sailing domain - Average planning time (seconds) s=20 g=corner s=40 g=corner s=20 g=middle s=40 g=middle LRTDP FLARES(0) FLARES(1) FLARES(2) HDP(0,0) HDP(0,1) HDP(1,0) HDP(1,1) SSiPP(4) SSiPP(8)

36 Conclusions Conclusions We present an approach for short-sightedness in SSPs that applies it only for labeling Allows larger sections of the state to be explored and accelerate running times Based on this idea, we introduce a novel extension of LRTDP called FLARES Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

37 Conclusions Conclusions We present an approach for short-sightedness in SSPs that applies it only for labeling Allows larger sections of the state to be explored and accelerate running times Based on this idea, we introduce a novel extension of LRTDP called FLARES Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

38 Conclusions Conclusions We present an approach for short-sightedness in SSPs that applies it only for labeling Allows larger sections of the state to be explored and accelerate running times Based on this idea, we introduce a novel extension of LRTDP called FLARES Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

39 Conclusions Conclusions We present an approach for short-sightedness in SSPs that applies it only for labeling Allows larger sections of the state to be explored and accelerate running times Based on this idea, we introduce a novel extension of LRTDP called FLARES Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

40 Conclusions Conclusions We present an approach for short-sightedness in SSPs that applies it only for labeling Allows larger sections of the state to be explored and accelerate running times Based on this idea, we introduce a novel extension of LRTDP called FLARES Experimental results suggest that FLARES can produce near-optimal policies orders of magnitude faster than other state-of-the-art MDP solvers

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam CSE 573 Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming Slides adapted from Andrey Kolobov and Mausam 1 Stochastic Shortest-Path MDPs: Motivation Assume the agent pays cost

More information

Stochastic Safest and Shortest Path Problems

Stochastic Safest and Shortest Path Problems Stochastic Safest and Shortest Path Problems Florent Teichteil-Königsbuch AAAI-12, Toronto, Canada July 24-26, 2012 Path optimization under probabilistic uncertainties Problems coming to searching for

More information

Focused Real-Time Dynamic Programming for MDPs: Squeezing More Out of a Heuristic

Focused Real-Time Dynamic Programming for MDPs: Squeezing More Out of a Heuristic Focused Real-Time Dynamic Programming for MDPs: Squeezing More Out of a Heuristic Trey Smith and Reid Simmons Robotics Institute, Carnegie Mellon University {trey,reids}@ri.cmu.edu Abstract Real-time dynamic

More information

Heuristic Search Algorithms

Heuristic Search Algorithms CHAPTER 4 Heuristic Search Algorithms 59 4.1 HEURISTIC SEARCH AND SSP MDPS The methods we explored in the previous chapter have a serious practical drawback the amount of memory they require is proportional

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Revisiting Multi-Objective MDPs with Relaxed Lexicographic Preferences

Revisiting Multi-Objective MDPs with Relaxed Lexicographic Preferences Revisiting Multi-Objective MDPs with Relaxed Lexicographic Preferences Luis Pineda and Kyle Hollins Wray and Shlomo Zilberstein College of Information and Computer Sciences University of Massachusetts

More information

Bounded Real-Time Dynamic Programming: RTDP with monotone upper bounds and performance guarantees

Bounded Real-Time Dynamic Programming: RTDP with monotone upper bounds and performance guarantees : RTDP with monotone upper bounds and performance guarantees H. Brendan McMahan mcmahan@cs.cmu.edu Maxim Likhachev maxim+@cs.cmu.edu Geoffrey J. Gordon ggordon@cs.cmu.edu Carnegie Mellon University, 5

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Efficient Maximization in Solving POMDPs

Efficient Maximization in Solving POMDPs Efficient Maximization in Solving POMDPs Zhengzhu Feng Computer Science Department University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Shlomo Zilberstein Computer Science Department University

More information

Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings

Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings Blai Bonet and Héctor Geffner Abstract Dynamic Programming

More information

An Algorithm better than AO*?

An Algorithm better than AO*? An Algorithm better than? Blai Bonet Universidad Simón Boĺıvar Caracas, Venezuela Héctor Geffner ICREA and Universitat Pompeu Fabra Barcelona, Spain 7/2005 An Algorithm Better than? B. Bonet and H. Geffner;

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Towards Faster Planning with Continuous Resources in Stochastic Domains

Towards Faster Planning with Continuous Resources in Stochastic Domains Towards Faster Planning with Continuous Resources in Stochastic Domains Janusz Marecki and Milind Tambe Computer Science Department University of Southern California 941 W 37th Place, Los Angeles, CA 989

More information

Path Planning for Minimizing the Expected Cost until Success

Path Planning for Minimizing the Expected Cost until Success Path Planning for Minimizing the Expected Cost until Success Arjun Muralidharan and Yasamin Mostofi arxiv:182.898v2 [cs.ro] Aug 18 Abstract Consider a general path planning problem of a robot on a graph

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Finite-State Controllers Based on Mealy Machines for Centralized and Decentralized POMDPs

Finite-State Controllers Based on Mealy Machines for Centralized and Decentralized POMDPs Finite-State Controllers Based on Mealy Machines for Centralized and Decentralized POMDPs Christopher Amato Department of Computer Science University of Massachusetts Amherst, MA 01003 USA camato@cs.umass.edu

More information

Robust Value Function Approximation Using Bilinear Programming

Robust Value Function Approximation Using Bilinear Programming Robust Value Function Approximation Using Bilinear Programming Marek Petrik Department of Computer Science University of Massachusetts Amherst, MA 01003 petrik@cs.umass.edu Shlomo Zilberstein Department

More information

Finding Objects through Stochas4c Shortest Path Problems

Finding Objects through Stochas4c Shortest Path Problems /7/6 Finding Objects through Stochas4c Shortest Path Problems Manuela Veloso Thanks to Felipe Trevizan School of Computer Science Carnegie Mellon University PEL, Fall 206 CoBot: Autonomous Service Robot

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

FMCAD 2013 Parameter Synthesis with IC3

FMCAD 2013 Parameter Synthesis with IC3 FMCAD 2013 Parameter Synthesis with IC3 A. Cimatti, A. Griggio, S. Mover, S. Tonetta FBK, Trento, Italy Motivations and Contributions Parametric descriptions of systems arise in many domains E.g. software,

More information

Markov Decision Processes Infinite Horizon Problems

Markov Decision Processes Infinite Horizon Problems Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld 1 What is a solution to an MDP? MDP Planning Problem: Input: an MDP (S,A,R,T)

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Prioritized Sweeping Converges to the Optimal Value Function

Prioritized Sweeping Converges to the Optimal Value Function Technical Report DCS-TR-631 Prioritized Sweeping Converges to the Optimal Value Function Lihong Li and Michael L. Littman {lihong,mlittman}@cs.rutgers.edu RL 3 Laboratory Department of Computer Science

More information

Stochastic Shortest Path MDPs with Dead Ends

Stochastic Shortest Path MDPs with Dead Ends Stochastic Shortest Path MDPs with Dead Ends Andrey Kolobov Mausam Daniel S. Weld {akolobov, mausam, weld}@cs.washington.edu Dept of Computer Science and Engineering University of Washington Seattle, USA,

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

Planning with Durative Actions in Stochastic Domains

Planning with Durative Actions in Stochastic Domains Journal of Artificial Intelligence Research 31 (28) 33-82 Submitted 2/7; published 1/8 Planning with Durative Actions in Stochastic Domains ausam Daniel S. Weld Dept of Computer Science and Engineering

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Real Time Value Iteration and the State-Action Value Function

Real Time Value Iteration and the State-Action Value Function MS&E338 Reinforcement Learning Lecture 3-4/9/18 Real Time Value Iteration and the State-Action Value Function Lecturer: Ben Van Roy Scribe: Apoorva Sharma and Tong Mu 1 Review Last time we left off discussing

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 11: Markov Decision Processes II Teacher: Gianni A. Di Caro RECAP: DEFINING MDPS Markov decision processes: o Set of states S o Start state s 0 o Set of actions A o Transitions P(s s,a)

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Mario Martin CS-UPC May 18, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 18, 2018 / 65 Recap Algorithms: MonteCarlo methods for Policy Evaluation

More information

Stochastic Shortest Path Problems

Stochastic Shortest Path Problems Chapter 8 Stochastic Shortest Path Problems 1 In this chapter, we study a stochastic version of the shortest path problem of chapter 2, where only probabilities of transitions along different arcs can

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

Chapter 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Chapter 7: Eligibility Traces R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Midterm Mean = 77.33 Median = 82 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

More information

Coarticulation in Markov Decision Processes

Coarticulation in Markov Decision Processes Coarticulation in Markov Decision Processes Khashayar Rohanimanesh Department of Computer Science University of Massachusetts Amherst, MA 01003 khash@cs.umass.edu Sridhar Mahadevan Department of Computer

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Markov Decision Processes and Dynamic Programming

Markov Decision Processes and Dynamic Programming Markov Decision Processes and Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) Ecole Centrale - Option DAD SequeL INRIA Lille EC-RL Course In This Lecture A. LAZARIC Markov Decision Processes

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

Reinforcement Learning

Reinforcement Learning CS7/CS7 Fall 005 Supervised Learning: Training examples: (x,y) Direct feedback y for each input x Sequence of decisions with eventual feedback No teacher that critiques individual actions Learn to act

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

Bayesian Congestion Control over a Markovian Network Bandwidth Process

Bayesian Congestion Control over a Markovian Network Bandwidth Process Bayesian Congestion Control over a Markovian Network Bandwidth Process Parisa Mansourifard 1/30 Bayesian Congestion Control over a Markovian Network Bandwidth Process Parisa Mansourifard (USC) Joint work

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Homework 2: MDPs and Search

Homework 2: MDPs and Search Graduate Artificial Intelligence 15-780 Homework 2: MDPs and Search Out on February 15 Due on February 29 Problem 1: MDPs [Felipe, 20pts] Figure 1: MDP for Problem 1. States are represented by circles

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

PROBABILISTIC PLANNING WITH RISK-SENSITIVE CRITERION PING HOU. A dissertation submitted to the Graduate School

PROBABILISTIC PLANNING WITH RISK-SENSITIVE CRITERION PING HOU. A dissertation submitted to the Graduate School PROBABILISTIC PLANNING WITH RISK-SENSITIVE CRITERION BY PING HOU A dissertation submitted to the Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy Major Subject:

More information

Solving Multi-Objective MDP with Lexicographic Preference: An application to stochastic planning with multiple quantile objective

Solving Multi-Objective MDP with Lexicographic Preference: An application to stochastic planning with multiple quantile objective arxiv:1705.03597v1 [cs.ai] 10 May 2017 Solving Multi-Objective MDP with Lexicographic Preference: An application to stochastic planning with multiple quantile objective Yan Li 1 and Zhaohan Sun 2 1 School

More information

Optimizing Memory-Bounded Controllers for Decentralized POMDPs

Optimizing Memory-Bounded Controllers for Decentralized POMDPs Optimizing Memory-Bounded Controllers for Decentralized POMDPs Christopher Amato, Daniel S. Bernstein and Shlomo Zilberstein Department of Computer Science University of Massachusetts Amherst, MA 01003

More information

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China A Decentralized Approach to Multi-agent Planning in the Presence of

More information

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling

Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Crowdsourcing & Optimal Budget Allocation in Crowd Labeling Madhav Mohandas, Richard Zhu, Vincent Zhuang May 5, 2016 Table of Contents 1. Intro to Crowdsourcing 2. The Problem 3. Knowledge Gradient Algorithm

More information

Planning by Probabilistic Inference

Planning by Probabilistic Inference Planning by Probabilistic Inference Hagai Attias Microsoft Research 1 Microsoft Way Redmond, WA 98052 Abstract This paper presents and demonstrates a new approach to the problem of planning under uncertainty.

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Approximating Reachable Belief Points in POMDPs

Approximating Reachable Belief Points in POMDPs Approximating Reachable Belief Points in POMDPs Kyle Hollins Wray and Shlomo Zilberstein Abstract We propose an algorithm called σ-approximation that compresses the non-zero values of beliefs for partially

More information

Lecture 10 - Planning under Uncertainty (III)

Lecture 10 - Planning under Uncertainty (III) Lecture 10 - Planning under Uncertainty (III) Jesse Hoey School of Computer Science University of Waterloo March 27, 2018 Readings: Poole & Mackworth (2nd ed.)chapter 12.1,12.3-12.9 1/ 34 Reinforcement

More information

A Fast Analytical Algorithm for MDPs with Continuous State Spaces

A Fast Analytical Algorithm for MDPs with Continuous State Spaces A Fast Analytical Algorithm for MDPs with Continuous State Spaces Janusz Marecki, Zvi Topol and Milind Tambe Computer Science Department University of Southern California Los Angeles, CA 989 {marecki,

More information

Motivation for introducing probabilities

Motivation for introducing probabilities for introducing probabilities Reaching the goals is often not sufficient: it is important that the expected costs do not outweigh the benefit of reaching the goals. 1 Objective: maximize benefits - costs.

More information

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019 Reinforcement Learning and Optimal Control ASU, CSE 691, Winter 2019 Dimitri P. Bertsekas dimitrib@mit.edu Lecture 8 Bertsekas Reinforcement Learning 1 / 21 Outline 1 Review of Infinite Horizon Problems

More information

Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications

Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications May 2012 Report LIDS - 2884 Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications Dimitri P. Bertsekas Abstract We consider a class of generalized dynamic programming

More information

Procedia Computer Science 00 (2011) 000 6

Procedia Computer Science 00 (2011) 000 6 Procedia Computer Science (211) 6 Procedia Computer Science Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science and Technology 211-

More information

CITS4211 Mid-semester test 2011

CITS4211 Mid-semester test 2011 CITS4211 Mid-semester test 2011 Fifty minutes, answer all four questions, total marks 60 Question 1. (12 marks) Briefly describe the principles, operation, and performance issues of iterative deepening.

More information

An Algorithm better than AO*?

An Algorithm better than AO*? An Algorithm better than? Blai Bonet Departamento de Computación Universidad Simón Bolívar Caracas, Venezuela bonet@ldc.usb.ve Héctor Geffner ICREA & Universitat Pompeu Fabra Paseo de Circunvalación, 8

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Reinforcement Learning. Summer 2017 Defining MDPs, Planning

Reinforcement Learning. Summer 2017 Defining MDPs, Planning Reinforcement Learning Summer 2017 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

2534 Lecture 4: Sequential Decisions and Markov Decision Processes

2534 Lecture 4: Sequential Decisions and Markov Decision Processes 2534 Lecture 4: Sequential Decisions and Markov Decision Processes Briefly: preference elicitation (last week s readings) Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. Norman,Y.

More information

16.4 Multiattribute Utility Functions

16.4 Multiattribute Utility Functions 285 Normalized utilities The scale of utilities reaches from the best possible prize u to the worst possible catastrophe u Normalized utilities use a scale with u = 0 and u = 1 Utilities of intermediate

More information

Optimal Control of Markov Decision Processes with Temporal Logic Constraints

Optimal Control of Markov Decision Processes with Temporal Logic Constraints Optimal Control of Markov Decision Processes with Temporal Logic Constraints Xuchu (Dennis) Ding Stephen L. Smith Calin Belta Daniela Rus Abstract In this paper, we develop a method to automatically generate

More information

Approximate Optimal-Value Functions. Satinder P. Singh Richard C. Yee. University of Massachusetts.

Approximate Optimal-Value Functions. Satinder P. Singh Richard C. Yee. University of Massachusetts. An Upper Bound on the oss from Approximate Optimal-Value Functions Satinder P. Singh Richard C. Yee Department of Computer Science University of Massachusetts Amherst, MA 01003 singh@cs.umass.edu, yee@cs.umass.edu

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo MLR, University of Stuttgart

More information

15-780: ReinforcementLearning

15-780: ReinforcementLearning 15-780: ReinforcementLearning J. Zico Kolter March 2, 2016 1 Outline Challenge of RL Model-based methods Model-free methods Exploration and exploitation 2 Outline Challenge of RL Model-based methods Model-free

More information

5. Solving the Bellman Equation

5. Solving the Bellman Equation 5. Solving the Bellman Equation In the next two lectures, we will look at several methods to solve Bellman s Equation (BE) for the stochastic shortest path problem: Value Iteration, Policy Iteration and

More information

A Gentle Introduction to Reinforcement Learning

A Gentle Introduction to Reinforcement Learning A Gentle Introduction to Reinforcement Learning Alexander Jung 2018 1 Introduction and Motivation Consider the cleaning robot Rumba which has to clean the office room B329. In order to keep things simple,

More information

An Analytic Solution to Discrete Bayesian Reinforcement Learning

An Analytic Solution to Discrete Bayesian Reinforcement Learning An Analytic Solution to Discrete Bayesian Reinforcement Learning Pascal Poupart (U of Waterloo) Nikos Vlassis (U of Amsterdam) Jesse Hoey (U of Toronto) Kevin Regan (U of Waterloo) 1 Motivation Automated

More information

Approximate Dynamic Programming

Approximate Dynamic Programming Master MVA: Reinforcement Learning Lecture: 5 Approximate Dynamic Programming Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/ lazaric/webpage/teaching.html Objectives of the lecture 1.

More information

Bayes-Adaptive POMDPs 1

Bayes-Adaptive POMDPs 1 Bayes-Adaptive POMDPs 1 Stéphane Ross, Brahim Chaib-draa and Joelle Pineau SOCS-TR-007.6 School of Computer Science McGill University Montreal, Qc, Canada Department of Computer Science and Software Engineering

More information