CAP Plan, Activity, and Intent Recognition

Size: px
Start display at page:

Download "CAP Plan, Activity, and Intent Recognition"

Transcription

1 CAP Plan, Activity, and Intent Recognition Lecture 10: Sequential Decision-Making Under Uncertainty (part 1) MDPs and POMDPs Instructor: Dr. Gita Sukthankar SP2-1

2 Reminder Turn-in questionnaire Homework (due Thurs): 1 page descriing the improvements that you plan to make to your project in the next half of the semester SP2-2

3 Model: POMDP Applications? Strengths? Weaknesses? How does a POMDP differ from an HMM? SP2-3

4 Model: POMDP Applications? Human-root interaction Dialog management Assistive technology Agent interaction Strengths? Integrates action selection directly with state estimation Weaknesses? Intractale for real-world domains How does a POMDP differ from an HMM? MDP and POMDP are for calculating optimal decisions from sequences of oservations; HMMs are for recognizing hidden state.from sequences of oservations. MDP and POMDP: actions and rewards SP2-4

5 Markov Decision Processes Classical planning models: logical representation of transition systems goal-ased ojectives plans as sequences Markov decision processes generalize this view controllale, stochastic transition system general ojective functions (rewards) that allow tradeoffs with transition proailities to e made more general solution concepts (policies) SP2-5

6 Markov Decision Processes An MDP has four components, S, A, R, Pr: (finite) state set S ( S = n) (finite) action set A ( A = m) transition function Pr(s,a,t) each Pr(s,a,-) is a distriution over S represented y set of n x n stochastic matrices ounded, real-valued reward function R(s) represented y an n-vector can e generalized to include action costs: R(s,a) can e stochastic (ut replacale y expectation) Model easily generalizale to countale or continuous state and action spaces SP2-6

7 System Dynamics Finite State Space S State s 1013 : Loc = 236 Joe needs printout Craig needs coffee... SP2-7

8 System Dynamics Finite Action Space A Pick up Printouts? Go to Coffee Room? Go to charger? SP2-8

9 System Dynamics Transition Proailities: Pr(s i, a, s j ) Pro. = 0.95 SP2-9

10 System Dynamics Transition Proailities: Pr(s i, a, s k ) Pro. = 0.05 s 1 s 2... s n s s s n SP2-10

11 Reward Process Reward Function: R(s i ) - action costs possile Reward = -10 R s 1 12 s s n 10 SP2-11

12 Assumptions Markovian dynamics (history independence) Pr(S t+1 A t,s t,a t-1,s t-1,..., S 0 ) = Pr(S t+1 A t,s t ) Markovian reward process Pr(R t A t,s t,a t-1,s t-1,..., S 0 ) = Pr(R t A t,s t ) Stationary dynamics and reward Pr(S t+1 A t,s t ) = Pr(S t +1 A t,s t ) for all t, t Full oservaility though we can t predict what state we will reach when we execute an action, once it is realized, we know what it is SP2-12

13 Policies Nonstationary policy π:s x T A π(s,t) is action to do at state s with t-stages-to-go Stationary policy π:s A π(s) is action to do at state s (regardless of time) analogous to reactive or universal plan These assume or have these properties: full oservaility history-independence deterministic action choices MDP and POMDPs are methods for calculating the optimal lookup tales (policies). SP2-13

14 Value of a Policy How good is a policy π? How do we measure accumulated reward? Value function V: S R associates value with each state (sometimes S x T) V π (s) denotes value of policy at state s how good is it to e at state s? depends on immediate reward, ut also what you achieve susequently expected accumulated reward over horizon of interest note V π (s) R(s); it measures utility SP2-14

15 Value of a Policy (con t) Common formulations of value: Finite horizon n: total expected reward given π Infinite horizon discounted: discounting keeps total ounded SP2-15

16 Value Iteration (Bellman 1957) Markov property allows exploitation of DP principle for optimal policy construction no need to enumerate A Tn possile policies Value Iteration V V 0 k ( s) ( s) = R( s), = π *( s, k) R( s) = s max k + Pr( s, a, s') V ( ') ' 1 s s a arg max a Pr( s, a, s' s') V Vk is optimal k-stage-to-go value function Bellman ackup k 1 ( s') SP2-16

17 Value Iteration V t-2 V t-1 V t V t+1 s s s s4 V t (s4) = R(s4)+max { 0.7 V t+1 (s1) V t+1 (s4) 0.4 V t+1 (s2) V t+1 (s3) } SP2-17

18 Value Iteration V t-2 V t-1 V t V t+1 s s s s4 Π t (s4) = max { } SP2-18

19 Value Iteration SP2-19

20 Complexity T iterations At each iteration A computations of n x n matrix times n-vector: O( A n 3 ) Total O(T A n3) Can exploit sparsity of matrix: O(T A n2) SP2-20

21 MDP Application: Electric Elves Calculating optimal transfer of control policy in an adjustale autonomy application Dynamically adjusts users meetings State of world is known; future actions of users are unknown SP2-21

22 Recognizing User Intent MDP POMDP SP2-22

23 POMDPs Partially oservale Markov Decision Process (POMDP): a stochastic system Σ = (S, A, P) as efore A finite set O of oservations P a (o s) = proaility of oservation o in state s after executing action a Require that for each a and s, o in O P a (o s) = 1 O models partial oservaility The controller can t oserve s directly; it can only oserve o The same oservation o can occur in more than one state Why do the oservations depend on the action a? Why do we have P a (o s) rather than P(o s)? This is a way to model sensing actions, which do not change the state ut return information make some oservation availale (e.g., from a sensor) SP2-23

24 Example of a Sensing Action Suppose there are a state s 1 action a 1, and oservation o 1 with the following properties: For every state s, Pa 1 (s s) = 1 a 1 does not change the state Pa 1 (o 1 s 1 ) = 1, and Pa 1 (o 1 s) = 0 for every state s s 1 After performing a 1, o 1 occurs if and only if we re in state s 1 Then to tell if you re in state s 1, just perform action a 1 and see whether you oserve o 1 Two states s and s are indistinguishale if for every o and a, P a (o s) = P a (o s ) SP2-24

25 Belief States At each point we will have a proaility distriution (s) over the states in S (s) is called a elief state (our elief aout what state we re in) Basic properties: 0 (s) 1 for every s in S s in S (s) = 1 Definitions: a = the elief state after doing action a in elief state Thus a (s) = P(in s after doing a in ) = s' in S P a (s s') (s') a (o) = P(oserve o after doing a in ) Marginalize over states = s in S P a (o s) (s) ao (s) = P(in s after doing a in and oserving o) Belief states are n-dimensional vectors representing the proaility of eing in every state.. SP2-25

26 Belief States (Continued) Recall that in general, P(x y,z) P(y z) = P(x,y z) Thus P a (o s) a (s) = P(oserve o after doing a in s) P(in s after doing a in ) = P(in s and oserve o after doing a in ) Similarly, ao (s) a (o) = P(in s after doing a in and oserving o) * P(oserve o after doing a in ) = P(in s and oserve o after doing a in ) Thus ao (s) = P a (o s) a (s) / a (o) Formula for updating elief state Can use this to distinguish states that would otherwise e indistinguishale SP2-26

27 state Example Root r1 can move etween l1 and l2 move(r1,l1,l2) move(r1,l2,l1) There may e a container c1 in location l2 in(c1,l2) a = move(r1,l1,l2) O = {full, empty} full: c1 is present empty: c1 is asent areviate full as f, and empty as e a a state a a a SP2-27

28 Example (Continued) state Neither move action returns useful oservations For every state s and for a = either move action, P a (f s) = P a (e s) = P a (f s) = P a (e s) = 0.5 a = move(r1,l1,l2) Thus if there are no other actions, then state a s1 and s2 are indistinguishale s3 and s4 are indistinguishale a a a a SP2-28

29 Example (Continued) state Suppose there s a sensing action see that works perfectly in location l2 P see (f s4) = P see (e s3) = 1 P see (f s3) = P see (e s4) = 0 see does not work elsewhere P see (f s1) = P see (e s1) = P see (f s2) = P see (e s2) = 0.5 Then s1 and s2 are still indistinguishale s3 and s4 are now distinguishale a a SP2-29 a = move(r1,l1,l2) state a a a

30 Example (Continued) By itself, see doesn t tell us the state with certainty seee (s3) = P see (e s3) * see (s3) / see (e) = 1 * 0.25 / 0.5 = 0.5 If we first do a=move(l1,l2) then do see, this will tell the state with certainty state a = move(r1,l1,l2) Let ' = a ' seee (s3) = P see (e s3) * ' see (s3) / ' see (e) = 1 * 0.5 / 0.5 = 1 a state ' = a a a a SP2-30

31 Modified Example state Suppose we know the initial elief state is Policy to tell if there s a container in l2: π = {(, move(r1,l1,l2)), (', see)} a = move(r1,l1,l2) state ' = a a a a a SP2-31

32 Solving POMDPs Information-state MDPs Belief states of POMDP are states in new MDP Continuous state space Discretise Policy-tree algorithms SP2-32

33 Policy Trees Policy tree: an agent s non-stationary t-step policy Tree(a,T) create a new policy tree with action a at root and oservation z=t(z) Vp vector for value function for policy tree p with one component per state Act(p) action at root of tree p Sutree(p,z) sutree of p after os z Stval(a,z,p) vector for proaility-weighted value of tree p after a,z SP2-33

34 Application: Nurseot Root assists elderly patients Model uncertainty aout the user s dialog and position Exploit hierarchical structure to handle large state space SP2-34

35 Value Functions 2-state 3-state SP2-35

36 References Most slides were taken from Eyal Amir s course, CS 598, Decision Making under Uncertainty (lectures 12 and 13) L. Kaeling, M. Littman, and A. Cassandra, Planning and Acting in Partially Oservale Stochastic Domains, Artificial Intelligence, Volume 101, pp , 1998 SP2-36

2534 Lecture 4: Sequential Decisions and Markov Decision Processes

2534 Lecture 4: Sequential Decisions and Markov Decision Processes 2534 Lecture 4: Sequential Decisions and Markov Decision Processes Briefly: preference elicitation (last week s readings) Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. Norman,Y.

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Some AI Planning Problems

Some AI Planning Problems Course Logistics CS533: Intelligent Agents and Decision Making M, W, F: 1:00 1:50 Instructor: Alan Fern (KEC2071) Office hours: by appointment (see me after class or send email) Emailing me: include CS533

More information

Point-Based Value Iteration for Constrained POMDPs

Point-Based Value Iteration for Constrained POMDPs Point-Based Value Iteration for Constrained POMDPs Dongho Kim Jaesong Lee Kee-Eung Kim Department of Computer Science Pascal Poupart School of Computer Science IJCAI-2011 2011. 7. 22. Motivation goals

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

Discrete planning (an introduction)

Discrete planning (an introduction) Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Discrete planning (an introduction) Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy.

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy. Page 1 Markov decision processes (MDP) CS 416 Artificial Intelligence Lecture 21 Making Complex Decisions Chapter 17 Initial State S 0 Transition Model T (s, a, s ) How does Markov apply here? Uncertainty

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

Piecewise Linear Dynamic Programming for Constrained POMDPs

Piecewise Linear Dynamic Programming for Constrained POMDPs Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (28) Piecewise Linear Dynamic Programming for Constrained POMDPs Joshua D. Isom Sikorsky Aircraft Corporation Stratford, CT 6615

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Pascal Poupart David R. Cheriton School of Computer Science University of Waterloo 1 Outline Review Markov Models

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Probability Primer Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1 *Slides

More information

Artificial Intelligence & Sequential Decision Problems

Artificial Intelligence & Sequential Decision Problems Artificial Intelligence & Sequential Decision Problems (CIV6540 - Machine Learning for Civil Engineers) Professor: James-A. Goulet Département des génies civil, géologique et des mines Chapter 15 Goulet

More information

Outline. Lecture 13. Sequential Decision Making. Sequential Decision Making. Markov Decision Process. Stationary Preferences

Outline. Lecture 13. Sequential Decision Making. Sequential Decision Making. Markov Decision Process. Stationary Preferences Outline Lecture 3 October 27, 2009 C 486/686 Markov Decision Processes Dynamic Decision Networks Russell and Norvig: ect 7., 7.2 (up to p. 620), 7.4, 7.5 2 equential Decision Making tatic Decision Making

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Planning and Acting in Partially Observable Stochastic Domains

Planning and Acting in Partially Observable Stochastic Domains Planning and Acting in Partially Observable Stochastic Domains Leslie Pack Kaelbling*, Michael L. Littman**, Anthony R. Cassandra*** *Computer Science Department, Brown University, Providence, RI, USA

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 9 Oct, 11, 2011 Slide credit Approx. Inference : S. Thrun, P, Norvig, D. Klein CPSC 502, Lecture 9 Slide 1 Today Oct 11 Bayesian

More information

AM 121: Intro to Optimization Models and Methods: Fall 2018

AM 121: Intro to Optimization Models and Methods: Fall 2018 AM 11: Intro to Optimization Models and Methods: Fall 018 Lecture 18: Markov Decision Processes Yiling Chen Lesson Plan Markov decision processes Policies and value functions Solving: average reward, discounted

More information

Probability and Time: Hidden Markov Models (HMMs)

Probability and Time: Hidden Markov Models (HMMs) Probability and Time: Hidden Markov Models (HMMs) Computer Science cpsc322, Lecture 32 (Textbook Chpt 6.5.2) Nov, 25, 2013 CPSC 322, Lecture 32 Slide 1 Lecture Overview Recap Markov Models Markov Chain

More information

Introduction to Reinforcement Learning Part 1: Markov Decision Processes

Introduction to Reinforcement Learning Part 1: Markov Decision Processes Introduction to Reinforcement Learning Part 1: Markov Decision Processes Rowan McAllister Reinforcement Learning Reading Group 8 April 2015 Note I ve created these slides whilst following Algorithms for

More information

Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies

Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies Kamyar Azizzadenesheli U.C. Irvine Joint work with Prof. Anima Anandkumar and Dr. Alessandro Lazaric. Motivation +1 Agent-Environment

More information

Probabilistic Planning. George Konidaris

Probabilistic Planning. George Konidaris Probabilistic Planning George Konidaris gdk@cs.brown.edu Fall 2017 The Planning Problem Finding a sequence of actions to achieve some goal. Plans It s great when a plan just works but the world doesn t

More information

10 Robotic Exploration and Information Gathering

10 Robotic Exploration and Information Gathering NAVARCH/EECS 568, ROB 530 - Winter 2018 10 Robotic Exploration and Information Gathering Maani Ghaffari April 2, 2018 Robotic Information Gathering: Exploration and Monitoring In information gathering

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

Markov Decision Processes (and a small amount of reinforcement learning)

Markov Decision Processes (and a small amount of reinforcement learning) Markov Decision Processes (and a small amount of reinforcement learning) Slides adapted from: Brian Williams, MIT Manuela Veloso, Andrew Moore, Reid Simmons, & Tom Mitchell, CMU Nicholas Roy 16.4/13 Session

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed CS 683 Learning, Games, and Electronic Markets Spring 007 Notes from Week 9: Multi-Armed Bandit Problems II Instructor: Robert Kleinberg 6-30 Mar 007 1 Information-theoretic lower bounds for multiarmed

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning

Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Symbolic Perseus: a Generic POMDP Algorithm with Application to Dynamic Pricing with Demand Learning Pascal Poupart (University of Waterloo) INFORMS 2009 1 Outline Dynamic Pricing as a POMDP Symbolic Perseus

More information

Efficient Maximization in Solving POMDPs

Efficient Maximization in Solving POMDPs Efficient Maximization in Solving POMDPs Zhengzhu Feng Computer Science Department University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Shlomo Zilberstein Computer Science Department University

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 23: Markov Decision Processes Policy Iteration Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology December

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

Dialogue as a Decision Making Process

Dialogue as a Decision Making Process Dialogue as a Decision Making Process Nicholas Roy Challenges of Autonomy in the Real World Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information Robustness under uncertainty

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Hidden Markov Models Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Pacman Sonar (P4) [Demo: Pacman Sonar

More information

CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering

CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering Cengiz Günay, Emory Univ. Günay Ch. 15,20 Hidden Markov Models and Particle FilteringSpring 2013 1 / 21 Get Rich Fast!

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Hidden Markov Models Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

RL 14: POMDPs continued

RL 14: POMDPs continued RL 14: POMDPs continued Michael Herrmann University of Edinburgh, School of Informatics 06/03/2015 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Stuart Russell, UC Berkeley Stuart Russell, UC Berkeley 1 Outline Sequential decision making Dynamic programming algorithms Reinforcement learning algorithms temporal difference

More information

Logic, Knowledge Representation and Bayesian Decision Theory

Logic, Knowledge Representation and Bayesian Decision Theory Logic, Knowledge Representation and Bayesian Decision Theory David Poole University of British Columbia Overview Knowledge representation, logic, decision theory. Belief networks Independent Choice Logic

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Multiagent Value Iteration in Markov Games

Multiagent Value Iteration in Markov Games Multiagent Value Iteration in Markov Games Amy Greenwald Brown University with Michael Littman and Martin Zinkevich Stony Brook Game Theory Festival July 21, 2005 Agenda Theorem Value iteration converges

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Optimally Solving Dec-POMDPs as Continuous-State MDPs

Optimally Solving Dec-POMDPs as Continuous-State MDPs Optimally Solving Dec-POMDPs as Continuous-State MDPs Jilles Dibangoye (1), Chris Amato (2), Olivier Buffet (1) and François Charpillet (1) (1) Inria, Université de Lorraine France (2) MIT, CSAIL USA IJCAI

More information

On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets

On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets On Prediction and Planning in Partially Observable Markov Decision Processes with Large Observation Sets Pablo Samuel Castro pcastr@cs.mcgill.ca McGill University Joint work with: Doina Precup and Prakash

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

CS 188: Artificial Intelligence Spring 2009

CS 188: Artificial Intelligence Spring 2009 CS 188: Artificial Intelligence Spring 2009 Lecture 21: Hidden Markov Models 4/7/2009 John DeNero UC Berkeley Slides adapted from Dan Klein Announcements Written 3 deadline extended! Posted last Friday

More information

Learning in Zero-Sum Team Markov Games using Factored Value Functions

Learning in Zero-Sum Team Markov Games using Factored Value Functions Learning in Zero-Sum Team Markov Games using Factored Value Functions Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 mgl@cs.duke.edu Ronald Parr Department of Computer

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Markov decision processes and interval Markov chains: exploiting the connection

Markov decision processes and interval Markov chains: exploiting the connection Markov decision processes and interval Markov chains: exploiting the connection Mingmei Teo Supervisors: Prof. Nigel Bean, Dr Joshua Ross University of Adelaide July 10, 2013 Intervals and interval arithmetic

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

CSE250A Fall 12: Discussion Week 9

CSE250A Fall 12: Discussion Week 9 CSE250A Fall 12: Discussion Week 9 Aditya Menon (akmenon@ucsd.edu) December 4, 2012 1 Schedule for today Recap of Markov Decision Processes. Examples: slot machines and maze traversal. Planning and learning.

More information

Real Time Value Iteration and the State-Action Value Function

Real Time Value Iteration and the State-Action Value Function MS&E338 Reinforcement Learning Lecture 3-4/9/18 Real Time Value Iteration and the State-Action Value Function Lecturer: Ben Van Roy Scribe: Apoorva Sharma and Tong Mu 1 Review Last time we left off discussing

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

POMDPs and Policy Gradients

POMDPs and Policy Gradients POMDPs and Policy Gradients MLSS 2006, Canberra Douglas Aberdeen Canberra Node, RSISE Building Australian National University 15th February 2006 Outline 1 Introduction What is Reinforcement Learning? Types

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes. Pascal Poupart

Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes. Pascal Poupart Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes by Pascal Poupart A thesis submitted in conformity with the requirements for the degree of Doctor of

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro

CMU Lecture 11: Markov Decision Processes II. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 11: Markov Decision Processes II Teacher: Gianni A. Di Caro RECAP: DEFINING MDPS Markov decision processes: o Set of states S o Start state s 0 o Set of actions A o Transitions P(s s,a)

More information

POMDP solution methods

POMDP solution methods POMDP solution methods Darius Braziunas Department of Computer Science University of Toronto 2003 Abstract This is an overview of partially observable Markov decision processes (POMDPs). We describe POMDP

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Markov Chains and Hidden Markov Models CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Slides are based on Klein and Abdeel, CS188, UC Berkeley. Reasoning

More information

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China A Decentralized Approach to Multi-agent Planning in the Presence of

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Hidden Markov Models Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30 Dialogue optimisation as a reinforcement learning

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

16.4 Multiattribute Utility Functions

16.4 Multiattribute Utility Functions 285 Normalized utilities The scale of utilities reaches from the best possible prize u to the worst possible catastrophe u Normalized utilities use a scale with u = 0 and u = 1 Utilities of intermediate

More information

Reasoning Under Uncertainty Over Time. CS 486/686: Introduction to Artificial Intelligence

Reasoning Under Uncertainty Over Time. CS 486/686: Introduction to Artificial Intelligence Reasoning Under Uncertainty Over Time CS 486/686: Introduction to Artificial Intelligence 1 Outline Reasoning under uncertainty over time Hidden Markov Models Dynamic Bayes Nets 2 Introduction So far we

More information

State Space Abstraction for Reinforcement Learning

State Space Abstraction for Reinforcement Learning State Space Abstraction for Reinforcement Learning Rowan McAllister & Thang Bui MLG, Cambridge Nov 6th, 24 / 26 Rowan s introduction 2 / 26 Types of abstraction [LWL6] Abstractions are partitioned based

More information

Bayes-Adaptive POMDPs 1

Bayes-Adaptive POMDPs 1 Bayes-Adaptive POMDPs 1 Stéphane Ross, Brahim Chaib-draa and Joelle Pineau SOCS-TR-007.6 School of Computer Science McGill University Montreal, Qc, Canada Department of Computer Science and Software Engineering

More information