10 Robotic Exploration and Information Gathering

Size: px
Start display at page:

Download "10 Robotic Exploration and Information Gathering"

Transcription

1 NAVARCH/EECS 568, ROB Winter Robotic Exploration and Information Gathering Maani Ghaffari April 2, 2018

2 Robotic Information Gathering: Exploration and Monitoring In information gathering tasks, such as robotic exploration, reducing uncertainty is the direct goal of action selection (Thrun 2005). 2

3 Fully Unknown Environment How to task a robot to autonomously map and explore a fully unknown environment? 3

4 Sequential Decision Making Underlying dynamics are Markovian (Recall: see slides 03 Estimation). Full observability; sequential decision making problem is an instance of Markov Decision Processes (MDPs) (studied as early as 1950s) 1. MDP framework; the sensor model is deterministic and bijective, however, the uncertainty in action is allowed. In robotics measurements and actions are both stochastic; Partially Observable Markov Decision Processes (POMDPs) 2. 1 Bellman, R. (1957). A Markovian Decision Process. Journal of Mathematics and Mechanics, Vol. 6, No Kaelbling, L.P., Littman, M.L. and Cassandra, A.R., Planning and acting in partially observable stochastic domains. Artificial intelligence, 101, pp

5 Sequential Decision Making Two extreme cases: Planning horizon is 1; known as the greedy approach. Planning horizon is : often treated as a discounted problem in which as the horizon goes to infinity the payoff diminishes. 5

6 Frontier-based Exploration Frontier-based exploration using OGMs (Yamauchi 1997) Y X 6

7 Nearest Frontier The cost function, f c : A t R 0, is the length of the path (e.g. using A*, RRT*, etc.) from the current robot pose to the corresponding frontier. Optimal action: a t = argmin a t A t f c (a t ) 7

8 Information Gain How rewarding is an action? 8

9 Select the target with the highest information gain. Where to Move Next? Courtesy: C. Stachniss 9

10 Information Theory Entropy is a measure of the uncertainty of a random variable: H(X) = E p(x) [log 1 p(x) ] = X p(x) log p(x) The conditional entropy: H(Y X) = p(x, y) log p(y x) x X y Y 10

11 Information Theory The Mutual Information (MI) is the reduction in the uncertainty of one random variable due to the knowledge of the other. or I(X; Y ) = D KL (p(x, y) p(x)p(y)) = E p(x,y) [log I(X; Y ) = H(X) H(X Y ) p(x, y) p(x)p(y) ] 11

12 Mutual Information-based Exploration Direct calculation of the information gain using numerical integration techniques: I(M; Z t+1 z 1:t ) = H(M z 1:t ) }{{} H(M Z t+1, z 1:t ) }{{} Map Entropy Map Conditional Entropy M: map. Z t+1 : future observations. z 1:t : observations up to time t. 12

13 Maximum Information Gain The information gain-based utility function is f I : A t R 0. Optimal action: a t = argmax a t A t f I (a t ) 13

14 Cost-Utility Trade-off Let g : R 2 0 R 0 be a function that takes f c (a t ) and f I (a t ) as its input arguments. The total utility function: u(a t ) g(f I (a t ), f c (a t )) Optimal action: a t = argmax a t A t u(a t ) 14

15 Greedy Mutual Information-based Exploration Key idea: The MI-based utility function is computed at the centroids of geometric frontiers and the frontier with the highest utility is chosen as the next-best macro-action 3. Definition (Macro-action) A macro-action is an exploration target (frontier) which is assumed to be reachable through an open-loop control strategy. 3 He, R., Brunskill, E. and Roy, N., 2010, July. PUMA: Planning Under Uncertainty with Macro-Actions. In AAAI. 15

16 Robotic Information Gathering Mission Robotic Information Gathering Mission - Perception System Q1: When to terminate the mission? Output: Belief distribution over state variables Belief - Planning and Decision-making Data Repalnning Q2: When to stop planning? Q3: How to accpet full perception uncertainty? - Acting + Sensing Action 16

17 Planning Problem How to get from A to B? S B A 17

18 RRT Randomized kinodynamic planning (LaValle and Kuffner 2001) RRT extend operation: x new x init x near x 18

19 RRT* (Cost), RIG (Cost+Information gain) Sampling-based algorithms for optimal motion planning (Karaman and Frazzoli 2011) Rapidly-exploring Information Gathering (Hollinger and Sukhatme 2014)

20 Decision-Theoretic Planning What if there is no B (artificial targets) and the robot poses are uncertain? S A 20

21 Incremental Informative Motion Planning Infinite-horizon Planning: Pt =arg max P t A t s.t. f c (P t ) b }{{} t Budget constraint f I (P t ) t > t s and S = s 0:ts }{{} State estimate 21

22 Incremental Informative Motion Planning f I (P t ) t > t s Pt =arg max P t A t s.t. f c (P t ) b }{{} t Budget constraint and S = s 0:ts }{{} State estimate A t : the set of all possible trajectories (action space) at time t. S = s 0:ts : the state estimate up to time t s. f I (P t ): information function. f c (P t ): cost function. b t : budget. 22

23 Common Approximations and Simplifications (Not Desirable) Discretizing the state and/or action space. Making the state and/or action space to be finite. Greedy planning or planning for a limited/short horizon. Assuming the state or part of the state is fully observable (ignoring the uncertainty). Maximum likelihood observations assumption (optimistic). 23

24 Incrementally-exploring Information Gathering The IIG framework: Cost + Information gain + Convergence 1 The belief representation can be dense. 2 Information-theoretic convergence. 3 It takes into account all future measurements. 4 An information-theoretic interpretation of the planning horizon. 24

25 Information Functions Algorithms Mutual Information (MI) - Direct Gaussian Processes Variance Reduction (GPVR) - Non-parametric Algorithmic implementations are available in the paper: 25

26 Non-parametric Information Functions The predictive variance of a Gaussian process does not depend on the actual realization of the observations: V[f ] =k(x, x ) k(x, x ) T [K(X, X) + σ 2 ni n n ] 1 k(x, x ) The mutual information between the state X and observations Z can be approximated as: Î(X; Z) = n n log(σ Xi ) log(σ Xi Z) i=1 i=1 σ Xi and σ Xi Z are prior and posterior marginal variances. 26

27 Non-parametric Information Functions: UGPVR How to incorporate the robot pose uncertainty? Take the expectation of the kernel with respect to probability distribution function p(x): k = E[k] = kp(x)dx X 27

28 Convergence of the Planner The relative information contribution of node n new : RIC I new I near 1 n sample : the number of samples it takes to finds n new. The penalized relative information contribution: I RIC RIC n sample 28

29 Incrementally-exploring Information Gathering I RIC is non-dimensional. δ RIC sets the planning horizon (T ) from the information gathering point of view. Through using smaller values of δ RIC the planner can reach further points in both spatial and belief space 4 : If δ RIC 0, then T 4 See Algorithm 2 IIG-tree in 29

30 Convergence of the Planner 30

31 Information-theoretic Robotic Exploration When to stop the information gathering mission? 31

32 Information-theoretic Robotic Exploration Definition (Map saturation probability) The probability that the robot is completely confident about the occupancy status of a point is defined as p sat. Definition (Map saturation entropy) The entropy of a point from a map whose occupancy probability is p sat, is defined as h sat H(p sat ). 32

33 Information Theory (Cover and Thomas 1991) Theorem (Conditioning reduces entropy (Information cannot hurt)) H(X Y ) H(X) Theorem (Chain rule for entropy) H(X 1, X 2,..., X n ) = n H(X i X i 1,..., X 1 ) i=1 33

34 Information Theory (Cover and Thomas 1991) Theorem (Independence bound on entropy) n H(X 1, X 2,..., X n ) H(X i ) i=1 Expand the LHS using the chain rule for entropy. 34

35 Information-theoretic Robotic Exploration For a completely explored occupancy map, the least upper bound of the average map entropy is given by: sup 1 n H(M) = H(p sat) Theorem (The least upper bound of the average map entropy) Let n N be the number of map points. In the limit, for a completely explored occupancy map, the least upper bound of the average map entropy is given by h sat = H(p sat ). 35

36 Information-theoretic Robotic Exploration Proof. From Theorem of independence bound on entropy and through multiplying each side of the inequality by 1, we can write the average map entropy as n 1 n H(M) < 1 n n H(M = m [i] ) i=1 by taking the limit as p(m) p sat, then 1 lim p(m) p sat n H(M) < lim 1 p(m) p sat n 1 lim H(M) < H(psat) p(m) p sat n sup 1 H(M) = H(psat) n n H(M = m [i] ) i=1 36

37 Information-theoretic Robotic Exploration Remark The result also extends to continuous random variables and differential entropy. Remark Note that we do not assume any distribution for map points. The entropy can be calculated either with the assumption that the map points are normally distributed or treating them as Bernoulli random variables. Remark Since 0 < p sat < 1 and H(p sat ) = H(1 p sat ), one saturation entropy can be set for the entire map. 37

38 Map Exploration Termination Autonomous robotic exploration for mapping can be terminated when: 1 n H(M = m [i] ) H(p sat ) n i=1 Setting a threshold in the information space is the natural consideration of uncertainty in the robot perception. Corollary (Map exploration termination) The problem of autonomous robotic exploration for mapping can be terminated when 1 n n i=1 H(M = m[i] ) H(p sat ). 38

39 Information Gathering Termination Given a saturation entropy h sat : 1 n n H(X i ) h sat i=1 Regardless of the quantity of interest, we can provide a stopping criterion for the exploration mission. Corollary (information gathering termination) Given a saturation entropy h sat, the problem of search for information gathering for desired random variables X 1, X 2,..., X n whose support is alphabet X, can be terminated when 1 n n i=1 H(X i) h sat. 39

40 Robotic Exploration in Unknown Environment Comparison of Active Pose SLAM (APS) (Valencia et al. 2012) and IIG; Cave dataset. 40

41 Lake Monitoring Experiment Survey of the lake area using an Autonomous Surface Vehicle (Hollinger and Sukhatme 2014). The wireless signal strength map of the lake area regressed using a Gaussian Process. The map is used as a proxy for groundtruth. (a) Survey (b) Mean surface (c) Variance surface 41

42 Lake Monitoring Experiment The ASV can localize using a GPS unit and a Doppler Velocity Log. The communication with the ground station is through a wireless connection and at any location the wireless signal strength (WSS) can be measured in dbm. The dataset includes about 2700 observations and is collected through a full survey of the lake area located at Puddingstone Lake in San Dimas, CA. At any location the robot can take measurements within a sensing range from the grundtruth maps. 42

43 IIG-tree using UGPVR Use the collected measurements along the most informative path extracted from the IIG graph and rebuild the GP WSS mean surface. RMSE: 4.26 ± 0.05 dbm; Time: ± 0.67 sec; The numbers are averaged over 100 runs (mean ± standard error). 43

44 Some Related Readings Probabilistic Robotics Ch Yamauchi, B., A Frontier-based Approach for Autonomous Exploration. In IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp Stachniss, C., Grisetti, G. and Burgard, W., Information Gain-based Exploration using RAO-Blackwellized particle filters. In Robotics: Science and Systems. Atanasov, N. A., Active Information Acquisition with Mobile Robots. PhD Thesis, University of Pennsylvania. Hollinger, G.A. and Sukhatme, G.S., Sampling-based Robotic Information Gathering Algorithms. The International Journal of Robotics Research, 33(9), pp Ghaffari Jadidi, M., Valls Miro, J. and Dissanayake, G., Sampling-based Incremental Information Gathering with Applications to Robotic Exploration and Environmental Monitoring. arxiv preprint arxiv: Code (click). 44

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras Introduction to Mobile Robotics Information Gain-Based Exploration Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Tasks of Mobile Robots mapping SLAM localization integrated

More information

Information Gain-based Exploration Using Rao-Blackwellized Particle Filters

Information Gain-based Exploration Using Rao-Blackwellized Particle Filters Information Gain-based Exploration Using Rao-Blackwellized Particle Filters Cyrill Stachniss Giorgio Grisetti Wolfram Burgard University of Freiburg, Department of Computer Science, D-79110 Freiburg, Germany

More information

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms L11. EKF SLAM: PART I NA568 Mobile Robotics: Methods & Algorithms Today s Topic EKF Feature-Based SLAM State Representation Process / Observation Models Landmark Initialization Robot-Landmark Correlation

More information

Robust Monte Carlo Methods for Sequential Planning and Decision Making

Robust Monte Carlo Methods for Sequential Planning and Decision Making Robust Monte Carlo Methods for Sequential Planning and Decision Making Sue Zheng, Jason Pacheco, & John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Active Pose SLAM with RRT*

Active Pose SLAM with RRT* Active Pose SLAM with RRT* Joan Vallvé and Juan Andrade-Cetto Abstract We propose a novel method for robotic exploration that evaluates paths that minimize both the joint path and map entropy per meter

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Particle Filter for Localization Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, and the book Probabilistic Robotics from Thurn et al.

More information

Anytime Planning for Decentralized Multi-Robot Active Information Gathering

Anytime Planning for Decentralized Multi-Robot Active Information Gathering Anytime Planning for Decentralized Multi-Robot Active Information Gathering Brent Schlotfeldt 1 Dinesh Thakur 1 Nikolay Atanasov 2 Vijay Kumar 1 George Pappas 1 1 GRASP Laboratory University of Pennsylvania

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

CAP Plan, Activity, and Intent Recognition

CAP Plan, Activity, and Intent Recognition CAP6938-02 Plan, Activity, and Intent Recognition Lecture 10: Sequential Decision-Making Under Uncertainty (part 1) MDPs and POMDPs Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu SP2-1 Reminder

More information

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China A Decentralized Approach to Multi-agent Planning in the Presence of

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Simultaneous Localization and Mapping Miroslav Kulich Intelligent and Mobile Robotics Group Czech Institute of Informatics, Robotics and Cybernetics Czech Technical University in Prague Winter semester

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Dialogue as a Decision Making Process

Dialogue as a Decision Making Process Dialogue as a Decision Making Process Nicholas Roy Challenges of Autonomy in the Real World Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information Robustness under uncertainty

More information

RL 14: POMDPs continued

RL 14: POMDPs continued RL 14: POMDPs continued Michael Herrmann University of Edinburgh, School of Informatics 06/03/2015 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Particle Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Motivation For continuous spaces: often no analytical formulas for Bayes filter updates

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

Lecture Note 2: Estimation and Information Theory

Lecture Note 2: Estimation and Information Theory Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 2: Estimation and Information Theory Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 2.1 Estimation A static estimation problem

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers Huizhen (Janey) Yu (janey@mit.edu) Dimitri Bertsekas (dimitrib@mit.edu) Lab for Information and Decision Systems,

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy

The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy Graduate Summer School: Computer Vision July 22 - August 9, 2013

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Sampling-based Nonholonomic Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM

Sampling-based Nonholonomic Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM 1 Sampling-based Nonholonomic Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM Ali-akbar Agha-mohammadi, Suman Chakravorty, Nancy M. Amato Abstract In roadmap-based methods,

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning

Today s Outline. Recap: MDPs. Bellman Equations. Q-Value Iteration. Bellman Backup 5/7/2012. CSE 473: Artificial Intelligence Reinforcement Learning CSE 473: Artificial Intelligence Reinforcement Learning Dan Weld Today s Outline Reinforcement Learning Q-value iteration Q-learning Exploration / exploitation Linear function approximation Many slides

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

RL 14: Simplifications of POMDPs

RL 14: Simplifications of POMDPs RL 14: Simplifications of POMDPs Michael Herrmann University of Edinburgh, School of Informatics 04/03/2016 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs Lorenzo Nardi and Cyrill Stachniss Navigation under uncertainty C B C B A A 2 `B` is the most likely position C B C B A A 3

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

An online kernel-based clustering approach for value function approximation

An online kernel-based clustering approach for value function approximation An online kernel-based clustering approach for value function approximation N. Tziortziotis and K. Blekas Department of Computer Science, University of Ioannina P.O.Box 1186, Ioannina 45110 - Greece {ntziorzi,kblekas}@cs.uoi.gr

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Decayed Markov Chain Monte Carlo for Interactive POMDPs

Decayed Markov Chain Monte Carlo for Interactive POMDPs Decayed Markov Chain Monte Carlo for Interactive POMDPs Yanlin Han Piotr Gmytrasiewicz Department of Computer Science University of Illinois at Chicago Chicago, IL 60607 {yhan37,piotr}@uic.edu Abstract

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Planning Under Uncertainty in the Continuous Domain: a Generalized Belief Space Approach

Planning Under Uncertainty in the Continuous Domain: a Generalized Belief Space Approach Planning Under Uncertainty in the Continuous Domain: a Generalized Belief Space Approach Vadim Indelman, Luca Carlone, and Frank Dellaert Abstract This work investigates the problem of planning under uncertainty,

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Planning and Acting in Partially Observable Stochastic Domains

Planning and Acting in Partially Observable Stochastic Domains Planning and Acting in Partially Observable Stochastic Domains Leslie Pack Kaelbling*, Michael L. Littman**, Anthony R. Cassandra*** *Computer Science Department, Brown University, Providence, RI, USA

More information

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Recap: State Estimation using Kalman Filter Project state and error

More information

Lecture notes for Analysis of Algorithms : Markov decision processes

Lecture notes for Analysis of Algorithms : Markov decision processes Lecture notes for Analysis of Algorithms : Markov decision processes Lecturer: Thomas Dueholm Hansen June 6, 013 Abstract We give an introduction to infinite-horizon Markov decision processes (MDPs) with

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Control Theory : Course Summary

Control Theory : Course Summary Control Theory : Course Summary Author: Joshua Volkmann Abstract There are a wide range of problems which involve making decisions over time in the face of uncertainty. Control theory draws from the fields

More information

2534 Lecture 4: Sequential Decisions and Markov Decision Processes

2534 Lecture 4: Sequential Decisions and Markov Decision Processes 2534 Lecture 4: Sequential Decisions and Markov Decision Processes Briefly: preference elicitation (last week s readings) Utility Elicitation as a Classification Problem. Chajewska, U., L. Getoor, J. Norman,Y.

More information

A Gentle Introduction to Reinforcement Learning

A Gentle Introduction to Reinforcement Learning A Gentle Introduction to Reinforcement Learning Alexander Jung 2018 1 Introduction and Motivation Consider the cleaning robot Rumba which has to clean the office room B329. In order to keep things simple,

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz What is SLAM? Estimate the pose of a robot and the map of the environment

More information

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information. L65 Dept. of Linguistics, Indiana University Fall 205 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission rate

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 28 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission

More information

3. If a choice is broken down into two successive choices, the original H should be the weighted sum of the individual values of H.

3. If a choice is broken down into two successive choices, the original H should be the weighted sum of the individual values of H. Appendix A Information Theory A.1 Entropy Shannon (Shanon, 1948) developed the concept of entropy to measure the uncertainty of a discrete random variable. Suppose X is a discrete random variable that

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty

An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty A. González-Sieira 1, M. Mucientes 1 and A. Bugarín 1 Centro de Investigación en Tecnoloxías da Información (CiTIUS),

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Towards Multi-Robot Active Collaborative State Estimation via Belief Space Planning

Towards Multi-Robot Active Collaborative State Estimation via Belief Space Planning 1 Towards Multi-Robot Active Collaborative State Estimation via Belief Space Planning Vadim Indelman IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2015 Introduction

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Mutual Information Based Data Selection in Gaussian Processes for People Tracking

Mutual Information Based Data Selection in Gaussian Processes for People Tracking Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 01, Victoria University of Wellington, New Zealand. Mutual Information Based Data Selection in Gaussian Processes for People Tracking

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

Comparison of Information Theory Based and Standard Methods for Exploration in Reinforcement Learning

Comparison of Information Theory Based and Standard Methods for Exploration in Reinforcement Learning Freie Universität Berlin Fachbereich Mathematik und Informatik Master Thesis Comparison of Information Theory Based and Standard Methods for Exploration in Reinforcement Learning Michael Borst Advisor:

More information

Motivation for introducing probabilities

Motivation for introducing probabilities for introducing probabilities Reaching the goals is often not sufficient: it is important that the expected costs do not outweigh the benefit of reaching the goals. 1 Objective: maximize benefits - costs.

More information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information 204 IEEE International Symposium on Information Theory Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel, Kaya Tutuncuoglu 2, Sennur Ulukus, and Aylin Yener

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

1 MDP Value Iteration Algorithm

1 MDP Value Iteration Algorithm CS 0. - Active Learning Problem Set Handed out: 4 Jan 009 Due: 9 Jan 009 MDP Value Iteration Algorithm. Implement the value iteration algorithm given in the lecture. That is, solve Bellman s equation using

More information

Gradient Sampling for Improved Action Selection and Path Synthesis

Gradient Sampling for Improved Action Selection and Path Synthesis Gradient Sampling for Improved Action Selection and Path Synthesis Ian M. Mitchell Department of Computer Science The University of British Columbia November 2016 mitchell@cs.ubc.ca http://www.cs.ubc.ca/~mitchell

More information

Probabilistic Robotics

Probabilistic Robotics University of Rome La Sapienza Master in Artificial Intelligence and Robotics Probabilistic Robotics Prof. Giorgio Grisetti Course web site: http://www.dis.uniroma1.it/~grisetti/teaching/probabilistic_ro

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Efficient Maximization in Solving POMDPs

Efficient Maximization in Solving POMDPs Efficient Maximization in Solving POMDPs Zhengzhu Feng Computer Science Department University of Massachusetts Amherst, MA 01003 fengzz@cs.umass.edu Shlomo Zilberstein Computer Science Department University

More information

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed

Notes from Week 9: Multi-Armed Bandit Problems II. 1 Information-theoretic lower bounds for multiarmed CS 683 Learning, Games, and Electronic Markets Spring 007 Notes from Week 9: Multi-Armed Bandit Problems II Instructor: Robert Kleinberg 6-30 Mar 007 1 Information-theoretic lower bounds for multiarmed

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Using first-order logic, formalize the following knowledge:

Using first-order logic, formalize the following knowledge: Probabilistic Artificial Intelligence Final Exam Feb 2, 2016 Time limit: 120 minutes Number of pages: 19 Total points: 100 You can use the back of the pages if you run out of space. Collaboration on the

More information

Bioinformatics: Biology X

Bioinformatics: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA Model Building/Checking, Reverse Engineering, Causality Outline 1 Bayesian Interpretation of Probabilities 2 Where (or of what)

More information

Efficient Information Planning in Graphical Models

Efficient Information Planning in Graphical Models Efficient Information Planning in Graphical Models computational complexity considerations John Fisher & Giorgos Papachristoudis, MIT VITALITE Annual Review 2013 September 9, 2013 J. Fisher (VITALITE Annual

More information