Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Size: px
Start display at page:

Download "Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department"

Transcription

1 Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30

2 Dialogue optimisation as a reinforcement learning task Dialogue management as a continuous space Markov decision process Summary space Simulated user RL algorithms for dialogue management Natural Actor Critic 2 / 30

3 Elements of dialogue management What the system says: actions a1 a2 a3 at-1 What the user wants: states s1 s2 s3 st-1 st What the system hears: observations o1 o2 o3 ot-1 ot dialogue turns 3 / 30

4 Dialogue as a control problem Input the distribution over possible states belief state, the output of the belief tracker Control actions that the system takes what the system says to the user Feedback signal the estimate of dialogue quality Aim automatically optimise system actions dialogue policy 4 / 30

5 Belif tracking vs policy optimisation BELIEF TRACKING POLICY initial turn PAST current turn FUTURE final turn 5 / 30

6 Dialogue as a partially observable Markov decision process Data Model Predictions Noisy observations Reward a measure of dialogue quality Partially observable Markov decision process Optimal system actions in noisy environment 6 / 30

7 Theory: Partially observable Markov decision process s t o t a t r t dialogue states noisy observations system actions rewards p(s t+1 s t, a t ) transition probability p(o t+1 s t+1 ) observation probability b(s t ) distribution over possible states st ot at st+1 ot+1 rt 7 / 30

8 Decision making in POMDPs Policy π : B A Return R t = T l k=0 γk r t+k Value function How good is it for the system to be in a particular belief state? [ T t ] V π (s) = E π γ k r t+k s t = s k=0 = r(s, a) + γ s p(s s, a) o p(o s )V π (s ) V π (b) = s V π (s)b(s) 8 / 30

9 Optimising POMDP policy Finding value function associated with optimal policy, i.e. the one that generates maximal return Tractable only for very simple cases [Kaelbling et al., 1998] Alternative view: discrete space POMDPs can be viewed as a continuous space MDP with states as belief states b t = b(s t ) 9 / 30

10 Theory: Markov decision process b t a t r t belief states from tracker system actions rewards p(b t+1 b t, a t ) transition probability bt bt+1 at rt 10 / 30

11 Dialogue management as a continuous space Markov decision process Data Model Predictions belief states (from belief tracker) Reward a measure of dialogue quality Markov decision process and reinforcement learning Optimal system actions 11 / 30

12 Problems Size of the optimisation problem Belief state is large and continuous Set of system actions also large Knowledge of the environment, in this case the user We do not have transition probabilities Where do rewards come from? 12 / 30

13 Problem: large belief state and action space Solution: perform optimisation in a reduced space summary space built according to the heuristics Belief space (Master space) System Actions (Master actions) Summary Function Master Function Summary space (Learned) Summary Policy Summary actions 13 / 30

14 Problem: Where do the transition probability and the reward come from? Solution: learn from real users. Speech recognition Semantic decoding Belief tracking waveform distribution over text hypotheses distribution over dialogue acts Ontology Speech synthesis Natural language generation Policy optimisation 14 / 30

15 Problem: Where do the transition probability and the reward come from? Solution: learn from a simulated user. distribution over user dialogue acts Belief tracking Simulated user system dialogue act Policy optimisation Ontology 15 / 30

16 Elements of the simulated user Error model distribution over user dialogue acts Belief tracking User model Reward model system dialogue act Policy optimisation Ontology reward 16 / 30

17 Evaluation metrics/optimisation criteria Candidate User satisfaction Task completion Dialogue length Channel accuracy Repeat usage Financial benefit Issues How to measure in a real scenario? Task is hidden. Hang up on user? Endless confirmations Not always makes sense. Maybe in industry but not in research. Williams, Spoken dialogue system: challenges and opportunities for research, ASRU (invited talk), / 30

18 Theory: Reinforcement learning Policy deterministic π : B A or stochastic π : B A [0, 1] Return R t = T l k=0 γk r t+k Value function How good is it for the system to be in a particular belief state? [ T t ] V π (b) = E π γ k r t+k b t = b k=0 Q-function What is the value of taking action a in belief state b under a policy π? [ T t ] Q π (b, a) = E π γ k r t+k b t = b, a t = a k=0 18 / 30

19 Theory: Reinforcement learning Occupancy frequency d π (b) = t γ t Pr(b t = b b 0, π) Advantage function A π (b, a) = Q π (b, a) V π (b) 19 / 30

20 Theory: Reinforcement learning [Sutton and Barto, 1998] For discrete state spaces standard RL approaches can be used to estimate optimal Value function, Q-function or policy π Dynamic programming is model-based learning and update of the estimates are based on the previous estimates Monte-Carlo methods is model-free learning and update of estimates based is based on raw experience Temporal-difference methods is model-free learning and update of the estimates are based on the previous estimates 20 / 30

21 Reinforcement learning for dialogue management Options 1. Discretise the belief state/summary space into a grid and apply standard RL algorithms to estimate Value function, Q-function or policy π (for example Monte-Carlo Control in practical) 2. Apply parametric function approximation to Value function, Q-function or policy π and find optimal parameters using gradient methods (this lecture) 3. Apply non-parametric function approximation to Value function, Q-function or policy π (next lecture) 21 / 30

22 Linear function approximation Define summary space as features of belief space (φ or φ a ) and parameterise either: Value function V (b, θ) θ T φ(b) Q-function policy Q(b, a, θ) θ T φ(b, a) π(a b, ω) = eωt ψ(b,a) a eωt ψ(b,a) 22 / 30

23 Policy gradient Find policy parameters that maximise return J(ω) = E π(ω) [R 0 ] Update policy parameters in the direction of gradient ω ω + α J(ω) vanilla gradient given by policy gradient theorem [Sutton et al., 2000] J(ω) = d π (b) Q π (b, a)π(b, a, ω) logπ(b, a, ω)db B a (1) = E π(ω) [ γ t Q π (b t, a) ω log π(b t, a, ω) ] (2) = E π(ω) [ γ t A π (b t, a) ω log π(b t, a, ω) ] (3) This is not always stable (large) changes in the parameters can result in unexpected policy moves. Convergence can be very slow. 23 / 30

24 Natural Actor Critic [Peters and Schaal, 2008, Thomson, 2009] Actor-critic methods are Temporal-difference methods that estimate actor policy that takes actions parametrised with ω critic Advantage function that criticises/evaluates actor actions parameterised with θ In Natural Actor Critic A modified form of gradient natural gradient is used to find the optimal parameters to speed up the convergence. 24 / 30

25 Natural Policy Gradient Compatible function approximation Advantage function is parametrised with parameters θ such that the direction of change is the same as for the policy parameters ω Then by replacing in Eq 3 It can be shown γ t θ A(b, a, θ) = ω log π(b, a, ω) γ t A(b, a, θ) = ω log π(b, a, ω) T θ θ = Gω 1 ω J(ω) where G ω is the Fisher information matrix G ω = E π(ω) [ log π(b, a, ω) log π(b, a, ω) T] 25 / 30

26 Episodic Natural Actor Critic Algorithm 1 Episodic Natural Actor Critic 1: Input: parametrisation of π(ω) 2: Input: parametrisation of γ t A(θ) = θ T φ 3: Input: step size α > 0 4: for each batch of dialogues do 5: for each dialogue k do 6: Execute the dialogue according to the current policy π(ω) 7: Obtain sequence of belief states b k t, actions a k t and return R k 8: end for 9: Critic evaluation Choose θ and J to minimise k ( t γt A(b k t, a k t, θ) + J R k ) 2 10: Actor update ω ω + αθ 11: end for 26 / 30

27 Summary features For each concept the probability of two most likely values mapped into a grid Number of matching entities in the database (assuming most likely concepts) A parameter is associated with each summary action, concept and concept level feature Parameters can be tied to reduce computational complexity and over-fitting 27 / 30

28 Summary Dialogue policy optimisation can be viewed as a reinforcement learning task POMDP can be viewed as a continuous space MDP Belief state space can be summarised to reduce computational complexity Natural Actor Critic is a temporal-difference algorithm which estimates both the policy (actor) and the Q-function (critic). Both policy and Q-function are parametrised and natural gradient is used to find the direction of the steepest descent 28 / 30

29 References I Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artif. Intell., 101(1-2): Peters, J. and Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71(7): Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA, 1st edition. 29 / 30

30 References II Sutton, R. S., Mcallester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In In Advances in Neural Information Processing Systems 12, pages MIT Press. Thomson, B. (2009). Statistical methods for spoken dialogue management. PhD thesis, University of Cambridge. 30 / 30

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017 Actor-critic methods Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department February 21, 2017 1 / 21 In this lecture... The actor-critic architecture Least-Squares Policy Iteration

More information

Recent Developments in Statistical Dialogue Systems

Recent Developments in Statistical Dialogue Systems Recent Developments in Statistical Dialogue Systems Steve Young Machine Intelligence Laboratory Information Engineering Division Cambridge University Engineering Department Cambridge, UK Contents Review

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Deep reinforcement learning. Dialogue Systems Group, Cambridge University Engineering Department

Deep reinforcement learning. Dialogue Systems Group, Cambridge University Engineering Department Deep reinforcement learning Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 25 In this lecture... Introduction to deep reinforcement learning Value-based Deep RL Deep

More information

Lecture 8: Policy Gradient

Lecture 8: Policy Gradient Lecture 8: Policy Gradient Hado van Hasselt Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Introduction Vapnik s rule Never solve

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Off-Policy Actor-Critic

Off-Policy Actor-Critic Off-Policy Actor-Critic Ludovic Trottier Laval University July 25 2012 Ludovic Trottier (DAMAS Laboratory) Off-Policy Actor-Critic July 25 2012 1 / 34 Table of Contents 1 Reinforcement Learning Theory

More information

RL 14: POMDPs continued

RL 14: POMDPs continued RL 14: POMDPs continued Michael Herrmann University of Edinburgh, School of Informatics 06/03/2015 POMDPs: Points to remember Belief states are probability distributions over states Even if computationally

More information

POMDPs and Policy Gradients

POMDPs and Policy Gradients POMDPs and Policy Gradients MLSS 2006, Canberra Douglas Aberdeen Canberra Node, RSISE Building Australian National University 15th February 2006 Outline 1 Introduction What is Reinforcement Learning? Types

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague

Partially observable Markov decision processes. Department of Computer Science, Czech Technical University in Prague Partially observable Markov decision processes Jiří Kléma Department of Computer Science, Czech Technical University in Prague https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky pagenda Previous lecture:

More information

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation Hajime Fujita and Shin Ishii, Nara Institute of Science and Technology 8916 5 Takayama, Ikoma, 630 0192 JAPAN

More information

Implicit Incremental Natural Actor Critic

Implicit Incremental Natural Actor Critic Implicit Incremental Natural Actor Critic Ryo Iwaki and Minoru Asada Osaka University, -1, Yamadaoka, Suita city, Osaka, Japan {ryo.iwaki,asada}@ams.eng.osaka-u.ac.jp Abstract. The natural policy gradient

More information

Policy Gradient Methods. February 13, 2017

Policy Gradient Methods. February 13, 2017 Policy Gradient Methods February 13, 2017 Policy Optimization Problems maximize E π [expression] π Fixed-horizon episodic: T 1 Average-cost: lim T 1 T r t T 1 r t Infinite-horizon discounted: γt r t Variable-length

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Lecture 9: Policy Gradient II (Post lecture) 2

Lecture 9: Policy Gradient II (Post lecture) 2 Lecture 9: Policy Gradient II (Post lecture) 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted 15-889e Policy Search: Gradient Methods Emma Brunskill All slides from David Silver (with EB adding minor modificafons), unless otherwise noted Outline 1 Introduction 2 Finite Difference Policy Gradient

More information

Open Theoretical Questions in Reinforcement Learning

Open Theoretical Questions in Reinforcement Learning Open Theoretical Questions in Reinforcement Learning Richard S. Sutton AT&T Labs, Florham Park, NJ 07932, USA, sutton@research.att.com, www.cs.umass.edu/~rich Reinforcement learning (RL) concerns the problem

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN Reinforcement Learning for Continuous Action using Stochastic Gradient Ascent Hajime KIMURA, Shigenobu KOBAYASHI Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku Yokohama 226-852 JAPAN Abstract:

More information

(Deep) Reinforcement Learning

(Deep) Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 17 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Lecture 8: Policy Gradient I 2

Lecture 8: Policy Gradient I 2 Lecture 8: Policy Gradient I 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver and John Schulman

More information

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24

Bayesian reinforcement learning and partially observable Markov decision processes November 6, / 24 and partially observable Markov decision processes Christos Dimitrakakis EPFL November 6, 2013 Bayesian reinforcement learning and partially observable Markov decision processes November 6, 2013 1 / 24

More information

Dialogue as a Decision Making Process

Dialogue as a Decision Making Process Dialogue as a Decision Making Process Nicholas Roy Challenges of Autonomy in the Real World Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information Robustness under uncertainty

More information

Reinforcement Learning In Continuous Time and Space

Reinforcement Learning In Continuous Time and Space Reinforcement Learning In Continuous Time and Space presentation of paper by Kenji Doya Leszek Rybicki lrybicki@mat.umk.pl 18.07.2008 Leszek Rybicki lrybicki@mat.umk.pl Reinforcement Learning In Continuous

More information

Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem

Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem Verena Heidrich-Meisner and Christian Igel Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany {Verena.Heidrich-Meisner,Christian.Igel}@neuroinformatik.rub.de

More information

Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN)

Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN) Kalman Based Temporal Difference Neural Network for Policy Generation under Uncertainty (KBTDNN) Alp Sardag and H.Levent Akin Bogazici University Department of Computer Engineering 34342 Bebek, Istanbul,

More information

ELEC-E8119 Robotics: Manipulation, Decision Making and Learning Policy gradient approaches. Ville Kyrki

ELEC-E8119 Robotics: Manipulation, Decision Making and Learning Policy gradient approaches. Ville Kyrki ELEC-E8119 Robotics: Manipulation, Decision Making and Learning Policy gradient approaches Ville Kyrki 9.10.2017 Today Direct policy learning via policy gradient. Learning goals Understand basis and limitations

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems

Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Topics of Active Research in Reinforcement Learning Relevant to Spoken Dialogue Systems Pascal Poupart David R. Cheriton School of Computer Science University of Waterloo 1 Outline Review Markov Models

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Lecture 23: Reinforcement Learning

Lecture 23: Reinforcement Learning Lecture 23: Reinforcement Learning MDPs revisited Model-based learning Monte Carlo value function estimation Temporal-difference (TD) learning Exploration November 23, 2006 1 COMP-424 Lecture 23 Recall:

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Policy-Gradients for PSRs and POMDPs

Policy-Gradients for PSRs and POMDPs Policy-Gradients for PSRs and POMDPs Douglas Aberdeen doug.aberdeen@anu.edu.au Olivier Buffet olivier.buffet@nicta.com.au National ICT Australia Locked Bag 8001, Canberra Australia Owen Thomas owen.thomas@nicta.com.au

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Replacing eligibility trace for action-value learning with function approximation

Replacing eligibility trace for action-value learning with function approximation Replacing eligibility trace for action-value learning with function approximation Kary FRÄMLING Helsinki University of Technology PL 5500, FI-02015 TKK - Finland Abstract. The eligibility trace is one

More information

Reinforcement Learning via Policy Optimization

Reinforcement Learning via Policy Optimization Reinforcement Learning via Policy Optimization Hanxiao Liu November 22, 2017 1 / 27 Reinforcement Learning Policy a π(s) 2 / 27 Example - Mario 3 / 27 Example - ChatBot 4 / 27 Applications - Video Games

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Introduction of Reinforcement Learning

Introduction of Reinforcement Learning Introduction of Reinforcement Learning Deep Reinforcement Learning Reference Textbook: Reinforcement Learning: An Introduction http://incompleteideas.net/sutton/book/the-book.html Lectures of David Silver

More information

Time Indexed Hierarchical Relative Entropy Policy Search

Time Indexed Hierarchical Relative Entropy Policy Search Time Indexed Hierarchical Relative Entropy Policy Search Florentin Mehlbeer June 19, 2013 1 / 15 Structure Introduction Reinforcement Learning Relative Entropy Policy Search Hierarchical Relative Entropy

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning and Deep Reinforcement Learning Reinforcement Learning and Deep Reinforcement Learning Ashis Kumer Biswas, Ph.D. ashis.biswas@ucdenver.edu Deep Learning November 5, 2018 1 / 64 Outlines 1 Principles of Reinforcement Learning 2 The Q

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Reinforcement Learning: the basics

Reinforcement Learning: the basics Reinforcement Learning: the basics Olivier Sigaud Université Pierre et Marie Curie, PARIS 6 http://people.isir.upmc.fr/sigaud August 6, 2012 1 / 46 Introduction Action selection/planning Learning by trial-and-error

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dynamic Programming Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: So far we focussed on tree search-like solvers for decision problems. There is a second important

More information

Olivier Sigaud. September 21, 2012

Olivier Sigaud. September 21, 2012 Supervised and Reinforcement Learning Tools for Motor Learning Models Olivier Sigaud Université Pierre et Marie Curie - Paris 6 September 21, 2012 1 / 64 Introduction Who is speaking? 2 / 64 Introduction

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Average Reward Optimization Objective In Partially Observable Domains

Average Reward Optimization Objective In Partially Observable Domains Average Reward Optimization Objective In Partially Observable Domains Yuri Grinberg School of Computer Science, McGill University, Canada Doina Precup School of Computer Science, McGill University, Canada

More information

Deep Reinforcement Learning

Deep Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 50 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

State Space Abstraction for Reinforcement Learning

State Space Abstraction for Reinforcement Learning State Space Abstraction for Reinforcement Learning Rowan McAllister & Thang Bui MLG, Cambridge Nov 6th, 24 / 26 Rowan s introduction 2 / 26 Types of abstraction [LWL6] Abstractions are partitioned based

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Geoff Hollinger Sequential Decision Making in Robotics Spring, 2011 *Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo Marc Toussaint University of

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

Deep Reinforcement Learning: Policy Gradients and Q-Learning

Deep Reinforcement Learning: Policy Gradients and Q-Learning Deep Reinforcement Learning: Policy Gradients and Q-Learning John Schulman Bay Area Deep Learning School September 24, 2016 Introduction and Overview Aim of This Talk What is deep RL, and should I use

More information

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5 Table of contents 1 Introduction 2 2 Markov Decision Processes 2 3 Future Cumulative Reward 3 4 Q-Learning 4 4.1 The Q-value.............................................. 4 4.2 The Temporal Difference.......................................

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2017 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

Animal learning theory

Animal learning theory Animal learning theory Based on [Sutton and Barto, 1990, Dayan and Abbott, 2001] Bert Kappen [Sutton and Barto, 1990] Classical conditioning: - A conditioned stimulus (CS) and unconditioned stimulus (US)

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy Search: Actor-Critic and Gradient Policy search Mario Martin CS-UPC May 28, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 28, 2018 / 63 Goal of this lecture So far

More information

State Space Compression with Predictive Representations

State Space Compression with Predictive Representations State Space Compression with Predictive Representations Abdeslam Boularias Laval University Quebec GK 7P4, Canada Masoumeh Izadi McGill University Montreal H3A A3, Canada Brahim Chaib-draa Laval University

More information

Hidden Markov models 1

Hidden Markov models 1 Hidden Markov models 1 Outline Time and uncertainty Markov process Hidden Markov models Inference: filtering, prediction, smoothing Most likely explanation: Viterbi 2 Time and uncertainty The world changes;

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2018 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

I D I A P. Online Policy Adaptation for Ensemble Classifiers R E S E A R C H R E P O R T. Samy Bengio b. Christos Dimitrakakis a IDIAP RR 03-69

I D I A P. Online Policy Adaptation for Ensemble Classifiers R E S E A R C H R E P O R T. Samy Bengio b. Christos Dimitrakakis a IDIAP RR 03-69 R E S E A R C H R E P O R T Online Policy Adaptation for Ensemble Classifiers Christos Dimitrakakis a IDIAP RR 03-69 Samy Bengio b I D I A P December 2003 D a l l e M o l l e I n s t i t u t e for Perceptual

More information

Policy Gradient Critics

Policy Gradient Critics Policy Gradient Critics Daan Wierstra 1 and Jürgen Schmidhuber 1,2 1 Istituto Dalle Molle di Studi sull Intelligenza Artificiale (IDSIA), CH-6928 Manno-Lugano, Switzerland, daan@idsia.ch 2 Department of

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Policy Gradient Reinforcement Learning for Robotics

Policy Gradient Reinforcement Learning for Robotics Policy Gradient Reinforcement Learning for Robotics Michael C. Koval mkoval@cs.rutgers.edu Michael L. Littman mlittman@cs.rutgers.edu May 9, 211 1 Introduction Learning in an environment with a continuous

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Temporal difference learning

Temporal difference learning Temporal difference learning AI & Agents for IET Lecturer: S Luz http://www.scss.tcd.ie/~luzs/t/cs7032/ February 4, 2014 Recall background & assumptions Environment is a finite MDP (i.e. A and S are finite).

More information

arxiv: v1 [cs.ai] 5 Nov 2017

arxiv: v1 [cs.ai] 5 Nov 2017 arxiv:1711.01569v1 [cs.ai] 5 Nov 2017 Markus Dumke Department of Statistics Ludwig-Maximilians-Universität München markus.dumke@campus.lmu.de Abstract Temporal-difference (TD) learning is an important

More information

Probabilistic Planning. George Konidaris

Probabilistic Planning. George Konidaris Probabilistic Planning George Konidaris gdk@cs.brown.edu Fall 2017 The Planning Problem Finding a sequence of actions to achieve some goal. Plans It s great when a plan just works but the world doesn t

More information

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy.

Markov decision processes (MDP) CS 416 Artificial Intelligence. Iterative solution of Bellman equations. Building an optimal policy. Page 1 Markov decision processes (MDP) CS 416 Artificial Intelligence Lecture 21 Making Complex Decisions Chapter 17 Initial State S 0 Transition Model T (s, a, s ) How does Markov apply here? Uncertainty

More information

The Reinforcement Learning Problem

The Reinforcement Learning Problem The Reinforcement Learning Problem Slides based on the book Reinforcement Learning by Sutton and Barto Formalizing Reinforcement Learning Formally, the agent and environment interact at each of a sequence

More information

Reinforcement Learning with Recurrent Neural Networks

Reinforcement Learning with Recurrent Neural Networks Institut für Informatik Neuroinformatics Group Reinforcement Learning with Recurrent Neural Networks Dissertation zur Erlangung der Doktorwürde der Universität Osnabrück Fachbereich Mathematik/Informatik

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Planning and Acting in Partially Observable Stochastic Domains

Planning and Acting in Partially Observable Stochastic Domains Planning and Acting in Partially Observable Stochastic Domains Leslie Pack Kaelbling*, Michael L. Littman**, Anthony R. Cassandra*** *Computer Science Department, Brown University, Providence, RI, USA

More information

Reinforcement Learning for NLP

Reinforcement Learning for NLP Reinforcement Learning for NLP Advanced Machine Learning for NLP Jordan Boyd-Graber REINFORCEMENT OVERVIEW, POLICY GRADIENT Adapted from slides by David Silver, Pieter Abbeel, and John Schulman Advanced

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information