Reinforcement Learning as Variational Inference: Two Recent Approaches

Size: px
Start display at page:

Download "Reinforcement Learning as Variational Inference: Two Recent Approaches"

Transcription

1 Reinforcement Learning as Variational Inference: Two Recent Approaches Rohith Kuditipudi Duke University 11 August 2017

2 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing Thoughts/Takeaways

3 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing Thoughts/Takeaways

4 Background: Reinforcement Learning A Markov Decision Process (MDP) is a tuple (S, A, p, r, γ), where: S is the state space A is the action space p(s t+1 s t, a t ) is the probability of the next state s t+1 S given the current state s t S and action a t A taken by the agent r : S A [r min, r max ] is the reward function γ [0, 1] is the discount factor A policy π( s t ) is a distribution over A conditioned on the current state s t The goal of reinforcement learning is to learn a policy π that maximizes the total expected (discounted) reward J(π), where: [ ] J(π) = E (st,at) π γ t r(s t, a t ) t=0

5 Background: Stein Variational Gradient Descent (SVGD) SVGD 1 is a variational inference algorithm that iteratively transports a set of particles {x i } n i=1 to match a target distribution at each step, particles are updated as follows: x i x i + ɛφ(x i ) where ɛ is the step size and φ is a perturbation direction chosen to greedily minimize KL divergence with target distribution By restricting φ to lie in the unit ball of an RKHS with corresponding kernel k, we can obtain a closed form solution for the optimal perturbation direction... 1 Q. Liu and D. Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm.

6 Background: Stein Variational Gradient Descent (SVGD) Input : A target distribution with density function p(x) and a set of initial particles {x 0 i }n i=1 Output: A set of particles {x i } n i=1 that approximates the target distribution for iteration l do x l+1 i x l i + ɛ l ˆφ (x l i ) where φ (x l i ) = 1 ] n n j=1 [k(x l j, x) x lj log p(xl j ) + x lj k(xl j, x) and ɛ l is the step size at the l-th iteration end Algorithm 1: Stein Variational Gradient Descent (SVGD)

7 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing Thoughts/Takeaways

8 Stein Variational Policy Gradient 2 : Preliminaries Policy iteration: parametrize policy as π(a t s t ; θ) and iteratively update θ to maximize J(π(a t s t ; θ)) (a.k.a. J(θ)) MaxEnt Policy Optimization: instead of searching for a single policy θ, optimize a distribution q on θ as follows: max q { Eq(θ) [J(θ)] αd KL (q q 0 ) } where q 0 is a prior on θ. If q 0 = constant, then the objective simplifies to { max Eq(θ) [J(θ)] + αh(q) } q where H(q) is the entropy of q Optimal distribution is ( ) 1 q(θ) exp α J(θ)q 0(θ) 2 Liu et al. Stein Variational Policy Gradient.

9 Stein Variational Policy Gradient: Algorithm Input: Learning rate ɛ, kernel k(x, x ), temperature α, initial particles {θ i } for t = 0, 1,..., T do for i = 0, 1,...n do Compute θi J(θ i ) (using RL method of choice) end for i = 0, 1,...n do θ i = 1 n [ ( 1 n j=1 θj α J(θ j) + log q 0 (θ j ) ) k(θ j, θ i ) + θj k(θ j, θ i ) ] θ i θ i + ɛ θ i end end Algorithm 2: Stein Variational Policy Gradient (SVPG)

10 Stein Variational Policy Gradient: Results

11 Stein Variational Policy Gradient: Results

12 Stein Variational Policy Gradient: Results

13 Stein Variational Policy Gradient: Results

14 Stein Variational Policy Gradient: Results

15 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing Thoughts/Takeaways

16 Soft Q-Learning 3 : Preliminaries Recall the standard RL objective (assuming γ = 1): π std = arg max π E (st,at) π[r(s t, a t )] t In MaxEnt RL, we augment the reward with an entropy term that encourages exploration: πmaxent = arg max E (st,a π t) π[r(s t, a t ) + αh(π( s t ))] t Note: when γ 1, the MaxEnt RL objective becomes: [ ] arg max E (st,at) π γ l t E (sl,a l )[r(s l, a l ) + αh(π( s l )) s t, a t ] π t l=t 3 Haarnoja et al. Reinforcement Learning with Deep Energy-Based Policies.

17 Soft Q-Learning: Preliminaries Theorem Let the soft Q-function be defined by [ ] Q soft (s t, a t ) = r t + E π MaxEnt γ l (r t+l + αh(πmaxent ( s t+l))) and soft value function by Vsoft (s t) = α log then l=1 A exp ( Q soft (s t, a ) ) da ( ) 1 πmaxent (s t, a t ) = exp α (Q soft (s t, a t ) Vsoft (s t))

18 Soft Q-Learning: Preliminaries Theorem The soft Q-function satisfies the soft Bellman equation Q soft (s t, a t ) = r t + γe st+1 p[v soft (s t+1)] Theorem (Soft Q-iteration) Let Q soft (, ) and V soft ( ) be bounded and assume that A exp( 1 α Q soft(, a ))da < and that Q soft < exists. Then the fixed point iteration Q soft (s t, a t ) r t + γe st+1 p[v soft (s t+1 )], s t, a t V soft (s t ) α log exp( 1 A α Q soft(s t, a ))da, s t converges to Q soft and V soft respectively.

19 Soft Q-Learning: Soft Q-iteration in Practice In practice, we model the Soft Q function using a function approximator with parameters θ, denoted as Q θ soft To convert Soft Q Iteration into a stochastic optimization problem, we can re-express V soft (s t ) as an expectation via importance sampling (instead of an integral) as follows: [ exp( Vsoft θ 1 (s α t) = α log E Qθ soft (s ] t, a )) q q(a ) where q is the sampling distribution (e.g. current policy) Furthermore, we can update Q soft to minimize [ 1 ( ] 2 J Q (θ) = E ˆQ θsoft (st,at) q (s t, a t ) Q θ soft 2 (s t, a t )) where ˆQ θ soft (s t, a t ) = r t + γe st+1 p[v θ soft (s t+1 )]

20 Soft Q-Learning: Sampling from Soft Q-function Goal: learn a state-conditioned stochastic neural network a t = f φ (ξ; s t ), with parameters φ, that maps Gaussian noise ξ to unbiased action samples from EBM specified by Q θ soft Specifically, we want to minimize the following loss: ( )) 1 J π (φ; s t ) = D KL (π φ ( s t ) exp α (Qθ soft(s t, ) Vsoft(s θ t )) where π φ ( s t ) is the action distribution induced by φ Strategy: Sample actions a (i) t = f φ (ξ (i) ; s t ) and use SVGD to compute optimal greedy perturbations f φ (ξ (i) ; s t ) to minimize J π (φ; s t ), where: f φ (ξ (i) ; s t ) = E at π φ [κ(a t, f φ (ξ (i) ; s t )) a Q θ soft (s t, a ) a =a t + α a κ(a, f φ (ξ (i) ; s t )) a =a t ]

21 Soft Q-Learning: Sampling from Soft Q-function Stein variational gradient can be backpropagated into sampling network using: J π (φ; s t ) φ And so we have: ˆ φ J π (φ; s t ) = 1 KM [ E ξ f φ (ξ; s t ) f φ ] (ξ; s t ) φ K M ( j=1 i=1 κ(a (i) t + α a κ(a, ã (j) t ) a =a (i) t, ã (j) t ) a Q θ soft (s t, a ) a =a (i) t ) φ f φ ( ξ (j) ; s t ) the ultimate update direction ˆ φ J π (φ) is the average of ˆ φ J π (φ; s t ) over a mini-batch sampled from replay memory

22 Soft Q-Learning: Algorithm for each epoch do for each t do Collect Experience a t f φ (ξ, s t) where ξ N (0, I) s t+1 p(s t+1 a t, s t) D D {s t, a t, r(s t, a t), s t+1 } Sample minibatch from replay memory {s (i) t, a (i) t, r (i) t, s (i) t+1 }N i=0 D Update soft Q-function parameters Sample {a (i,j) } M j=0 q for each s(i) t+1 Compute ˆV θ soft (s (i) t+1 ) and ˆ θ J Q, update θ using ADAM Update policy Sample {ξ (i,j) } M j=0 N (0, I) for each s(i) t Compute actions a (i,j) t = f φ (ξ (i,j), s (i) t ) Compute f φ and ˆ φ J π, update φ using ADAM end if epoch mod update interval = 0 then Update target parameters: θ θ, φ φ end end Algorithm 3: Soft Q-Learning

23 Soft Q-Learning: Results

24 Soft Q-Learning: Results

25 Soft Q-Learning: Results

26 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing Thoughts/Takeaways

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Reinforcement Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Reinforcement Learning Introduction Introduction Unsupervised learning has no outcome (no feedback). Supervised learning has outcome so we know what to predict. Reinforcement learning is in between it

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy gradients Daniel Hennes 26.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Policy based reinforcement learning So far we approximated the action value

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

CS Deep Reinforcement Learning HW5: Soft Actor-Critic Due November 14th, 11:59 pm

CS Deep Reinforcement Learning HW5: Soft Actor-Critic Due November 14th, 11:59 pm CS294-112 Deep Reinforcement Learning HW5: Soft Actor-Critic Due November 14th, 11:59 pm 1 Introduction For this homework, you get to choose among several topics to investigate. Each topic corresponds

More information

Energy-Based Generative Adversarial Network

Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network J. Zhao, M. Mathieu and Y. LeCun Learning to Draw Samples: With Application to Amoritized MLE for Generalized Adversarial

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

arxiv: v2 [cs.lg] 21 Jul 2017

arxiv: v2 [cs.lg] 21 Jul 2017 Tuomas Haarnoja * 1 Haoran Tang * 2 Pieter Abbeel 1 3 4 Sergey Levine 1 arxiv:172.816v2 [cs.lg] 21 Jul 217 Abstract We propose a method for learning expressive energy-based policies for continuous states

More information

Lecture 10 - Planning under Uncertainty (III)

Lecture 10 - Planning under Uncertainty (III) Lecture 10 - Planning under Uncertainty (III) Jesse Hoey School of Computer Science University of Waterloo March 27, 2018 Readings: Poole & Mackworth (2nd ed.)chapter 12.1,12.3-12.9 1/ 34 Reinforcement

More information

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5 Table of contents 1 Introduction 2 2 Markov Decision Processes 2 3 Future Cumulative Reward 3 4 Q-Learning 4 4.1 The Q-value.............................................. 4 4.2 The Temporal Difference.......................................

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Variational Deep Q Network

Variational Deep Q Network Variational Deep Q Network Yunhao Tang Department of IEOR Columbia University yt2541@columbia.edu Alp Kucukelbir Department of Computer Science Columbia University alp@cs.columbia.edu Abstract We propose

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Lecture 7: Value Function Approximation

Lecture 7: Value Function Approximation Lecture 7: Value Function Approximation Joseph Modayil Outline 1 Introduction 2 3 Batch Methods Introduction Large-Scale Reinforcement Learning Reinforcement learning can be used to solve large problems,

More information

Trust Region Policy Optimization

Trust Region Policy Optimization Trust Region Policy Optimization Yixin Lin Duke University yixin.lin@duke.edu March 28, 2017 Yixin Lin (Duke) TRPO March 28, 2017 1 / 21 Overview 1 Preliminaries Markov Decision Processes Policy iteration

More information

(Deep) Reinforcement Learning

(Deep) Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 17 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Stochastic Primal-Dual Methods for Reinforcement Learning

Stochastic Primal-Dual Methods for Reinforcement Learning Stochastic Primal-Dual Methods for Reinforcement Learning Alireza Askarian 1 Amber Srivastava 1 1 Department of Mechanical Engineering University of Illinois at Urbana Champaign Big Data Optimization,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning RL in continuous MDPs March April, 2015 Large/Continuous MDPs Large/Continuous state space Tabular representation cannot be used Large/Continuous action space Maximization over action

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Real Time Value Iteration and the State-Action Value Function

Real Time Value Iteration and the State-Action Value Function MS&E338 Reinforcement Learning Lecture 3-4/9/18 Real Time Value Iteration and the State-Action Value Function Lecturer: Ben Van Roy Scribe: Apoorva Sharma and Tong Mu 1 Review Last time we left off discussing

More information

Planning in Markov Decision Processes

Planning in Markov Decision Processes Carnegie Mellon School of Computer Science Deep Reinforcement Learning and Control Planning in Markov Decision Processes Lecture 3, CMU 10703 Katerina Fragkiadaki Markov Decision Process (MDP) A Markov

More information

Lecture 8: Policy Gradient

Lecture 8: Policy Gradient Lecture 8: Policy Gradient Hado van Hasselt Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Introduction Vapnik s rule Never solve

More information

Lecture 8: Policy Gradient I 2

Lecture 8: Policy Gradient I 2 Lecture 8: Policy Gradient I 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver and John Schulman

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy Search: Actor-Critic and Gradient Policy search Mario Martin CS-UPC May 28, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 28, 2018 / 63 Goal of this lecture So far

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Mario Martin CS-UPC May 18, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 18, 2018 / 65 Recap Algorithms: MonteCarlo methods for Policy Evaluation

More information

Stein Variational Policy Gradient

Stein Variational Policy Gradient Stein Variational Policy Gradient Yang Liu UIUC liu301@illinois.edu Prajit Ramachandran UIUC prajitram@gmail.com Qiang Liu Dartmouth qiang.liu@dartmouth.edu Jian Peng UIUC jianpeng@illinois.edu Abstract

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016)

Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016) Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016) Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology October 11, 2016 Outline

More information

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017 Actor-critic methods Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department February 21, 2017 1 / 21 In this lecture... The actor-critic architecture Least-Squares Policy Iteration

More information

Human-level control through deep reinforcement. Liia Butler

Human-level control through deep reinforcement. Liia Butler Humanlevel control through deep reinforcement Liia Butler But first... A quote "The question of whether machines can think... is about as relevant as the question of whether submarines can swim" Edsger

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory Deep Reinforcement Learning Jeremy Morton (jmorton2) November 7, 2016 SISL Stanford Intelligent Systems Laboratory Overview 2 1 Motivation 2 Neural Networks 3 Deep Reinforcement Learning 4 Deep Learning

More information

Reinforcement Learning Part 2

Reinforcement Learning Part 2 Reinforcement Learning Part 2 Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ From previous tutorial Reinforcement Learning Exploration No supervision Agent-Reward-Environment

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Learning Control for Air Hockey Striking using Deep Reinforcement Learning

Learning Control for Air Hockey Striking using Deep Reinforcement Learning Learning Control for Air Hockey Striking using Deep Reinforcement Learning Ayal Taitler, Nahum Shimkin Faculty of Electrical Engineering Technion - Israel Institute of Technology May 8, 2017 A. Taitler,

More information

Reinforcement Learning based Multi-Access Control and Battery Prediction with Energy Harvesting in IoT Systems

Reinforcement Learning based Multi-Access Control and Battery Prediction with Energy Harvesting in IoT Systems 1 Reinforcement Learning based Multi-Access Control and Battery Prediction with Energy Harvesting in IoT Systems Man Chu, Hang Li, Member, IEEE, Xuewen Liao, Member, IEEE, and Shuguang Cui, Fellow, IEEE

More information

J. Sadeghi E. Patelli M. de Angelis

J. Sadeghi E. Patelli M. de Angelis J. Sadeghi E. Patelli Institute for Risk and, Department of Engineering, University of Liverpool, United Kingdom 8th International Workshop on Reliable Computing, Computing with Confidence University of

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Introduction to Reinforcement Learning Part 1: Markov Decision Processes

Introduction to Reinforcement Learning Part 1: Markov Decision Processes Introduction to Reinforcement Learning Part 1: Markov Decision Processes Rowan McAllister Reinforcement Learning Reading Group 8 April 2015 Note I ve created these slides whilst following Algorithms for

More information

15-780: ReinforcementLearning

15-780: ReinforcementLearning 15-780: ReinforcementLearning J. Zico Kolter March 2, 2016 1 Outline Challenge of RL Model-based methods Model-free methods Exploration and exploitation 2 Outline Challenge of RL Model-based methods Model-free

More information

Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning and Deep Reinforcement Learning Reinforcement Learning and Deep Reinforcement Learning Ashis Kumer Biswas, Ph.D. ashis.biswas@ucdenver.edu Deep Learning November 5, 2018 1 / 64 Outlines 1 Principles of Reinforcement Learning 2 The Q

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Lecture 9: Policy Gradient II (Post lecture) 2

Lecture 9: Policy Gradient II (Post lecture) 2 Lecture 9: Policy Gradient II (Post lecture) 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver

More information

Deep Reinforcement Learning: Policy Gradients and Q-Learning

Deep Reinforcement Learning: Policy Gradients and Q-Learning Deep Reinforcement Learning: Policy Gradients and Q-Learning John Schulman Bay Area Deep Learning School September 24, 2016 Introduction and Overview Aim of This Talk What is deep RL, and should I use

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

Policy Gradient Methods. February 13, 2017

Policy Gradient Methods. February 13, 2017 Policy Gradient Methods February 13, 2017 Policy Optimization Problems maximize E π [expression] π Fixed-horizon episodic: T 1 Average-cost: lim T 1 T r t T 1 r t Infinite-horizon discounted: γt r t Variable-length

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Optimal sequential decision making for complex problems agents. Damien Ernst University of Liège

Optimal sequential decision making for complex problems agents. Damien Ernst University of Liège Optimal sequential decision making for complex problems agents Damien Ernst University of Liège Email: dernst@uliege.be 1 About the class Regular lectures notes about various topics on the subject with

More information

CS230: Lecture 9 Deep Reinforcement Learning

CS230: Lecture 9 Deep Reinforcement Learning CS230: Lecture 9 Deep Reinforcement Learning Kian Katanforoosh Menti code: 21 90 15 Today s outline I. Motivation II. Recycling is good: an introduction to RL III. Deep Q-Learning IV. Application of Deep

More information

Internet Monetization

Internet Monetization Internet Monetization March May, 2013 Discrete time Finite A decision process (MDP) is reward process with decisions. It models an environment in which all states are and time is divided into stages. Definition

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control

ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Lecture 4: Approximate dynamic programming

Lecture 4: Approximate dynamic programming IEOR 800: Reinforcement learning By Shipra Agrawal Lecture 4: Approximate dynamic programming Deep Q Networks discussed in the last lecture are an instance of approximate dynamic programming. These are

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu 1 Disclaimer This note is adapted from Section

More information

Deterministic Policy Gradient, Advanced RL Algorithms

Deterministic Policy Gradient, Advanced RL Algorithms NPFL122, Lecture 9 Deterministic Policy Gradient, Advanced RL Algorithms Milan Straka December 1, 218 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Approximate Q-Learning. Dan Weld / University of Washington

Approximate Q-Learning. Dan Weld / University of Washington Approximate Q-Learning Dan Weld / University of Washington [Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley materials available at http://ai.berkeley.edu.] Q Learning

More information

Reinforcement Learning via Policy Optimization

Reinforcement Learning via Policy Optimization Reinforcement Learning via Policy Optimization Hanxiao Liu November 22, 2017 1 / 27 Reinforcement Learning Policy a π(s) 2 / 27 Example - Mario 3 / 27 Example - ChatBot 4 / 27 Applications - Video Games

More information

Policy Gradient Reinforcement Learning for Robotics

Policy Gradient Reinforcement Learning for Robotics Policy Gradient Reinforcement Learning for Robotics Michael C. Koval mkoval@cs.rutgers.edu Michael L. Littman mlittman@cs.rutgers.edu May 9, 211 1 Introduction Learning in an environment with a continuous

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel & Sergey Levine Department of Electrical Engineering and Computer

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2017 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Daniel Hennes 19.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Eligibility traces n-step TD returns Forward and backward view Function

More information

Learning Tetris. 1 Tetris. February 3, 2009

Learning Tetris. 1 Tetris. February 3, 2009 Learning Tetris Matt Zucker Andrew Maas February 3, 2009 1 Tetris The Tetris game has been used as a benchmark for Machine Learning tasks because its large state space (over 2 200 cell configurations are

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2018 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

Notes on Reinforcement Learning

Notes on Reinforcement Learning 1 Introduction Notes on Reinforcement Learning Paulo Eduardo Rauber 2014 Reinforcement learning is the study of agents that act in an environment with the goal of maximizing cumulative reward signals.

More information

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley A Tour of Reinforcement Learning The View from Continuous Control Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

Tutorial on Policy Gradient Methods. Jan Peters

Tutorial on Policy Gradient Methods. Jan Peters Tutorial on Policy Gradient Methods Jan Peters Outline 1. Reinforcement Learning 2. Finite Difference vs Likelihood-Ratio Policy Gradients 3. Likelihood-Ratio Policy Gradients 4. Conclusion General Setup

More information

Reinforcement Learning for NLP

Reinforcement Learning for NLP Reinforcement Learning for NLP Advanced Machine Learning for NLP Jordan Boyd-Graber REINFORCEMENT OVERVIEW, POLICY GRADIENT Adapted from slides by David Silver, Pieter Abbeel, and John Schulman Advanced

More information

6 Basic Convergence Results for RL Algorithms

6 Basic Convergence Results for RL Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 6 Basic Convergence Results for RL Algorithms We establish here some asymptotic convergence results for the basic RL algorithms, by showing

More information

Deep Reinforcement Learning via Policy Optimization

Deep Reinforcement Learning via Policy Optimization Deep Reinforcement Learning via Policy Optimization John Schulman July 3, 2017 Introduction Deep Reinforcement Learning: What to Learn? Policies (select next action) Deep Reinforcement Learning: What to

More information

A Survey on Methods and Applications of Deep Reinforcement Learning

A Survey on Methods and Applications of Deep Reinforcement Learning A Survey on Methods and Applications of Deep Reinforcement Learning Siyi Li Department of Computer Science and Engineering The Hong Kong University of Science and Technology sliay@cse.ust.hk Supervisor

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information