Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Size: px
Start display at page:

Download "Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning."

Transcription

1 Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research

2 Agenda 1. Motivating examples 2. Unified framework & why it makes sense 3. Algorithms & main results / techniques 4. Research directions & open questions

3 Section 1: Motivating Examples Inherently adversarial & online

4 Sequential Spam Classification - online & adversarial learning observe n features (words): a " R % Predict label b' " { 1,1}, feedback b t Objective: average error à best linear model in hindsight min 4 log(1 + e <= > A > ) "

5 Spam Classifier Selection Stream of s: log 1 + e <= 1@A + λ D x G a R H log 1 + e <= 1@A + λ G x G log 1 + e <= 1@A + λ % x G Objective: make predictions with accuracy à best classifier in hindsight

6 Universal portfolio selection Price relatives: MNOPQ%R STQMU r J i = OSU%Q%R STQMU for commodity i r t 1.5 x t 1/2 Distribution of wealth x t 1 0 Market - No Statistical assumptions /2 Wealth multiplier = 0 (½* *1 +½*1 + 0 * ½) = 1 ¼ log W t+1 = log W t + log(r > t x t ) Price Relatives vector r t Objective: choose portfolios s.t. avg. log wealth à avg. log wealth of best CRP

7 Constant rebalancing portfolio Single currency depreciates exponentially The 50/50 Constant Rebalanced Portfolio (CRP) makes 5% every day

8 Recommendation systems movies X 1 1 X X X X X X X users X X -1 X X X X 1 X -1 X -1 X X X X X X X X 1 X X X X X X -1 X Objective: ratings with accuracy à best low rank matrix Computation challenge: optimizing over low rank matrices

9 Ad Selection Yahoo, Google etc display ads on pages, clicks generate revenue Abstraction: Observe a stream of users Given a user, select one ad to display Feedback: click (or not) on the ad shown Objective: average revenue per ad à best policy in a given class Additional difficulty: partial (bandit) feedback (feedback only for ad actually shown)

10 2. Methodology: Online Convex Optimization definition & relation to PAC learning go through examples argue it makes sense

11 Statistical (PAC) learning Nature: i.i.d from distribution D over A B = {(a, b)} (a 1, b 1 ) (a M, b M ) learner: Hypothesis h Loss, e.g. ll h, a, b = h a b G h 1 h 2 err h = E A,= l [ll(h, a, b ] h N Hypothesis class H: X - > Y is learnable if ε, δ > 0 exists algorithm s.t. after seeing m examples, for m = poly(δ, ε, dimension(h)) finds h s.t. w.p. 1- δ: err(h) apple min h 2H err(h )+

12 Online Learning in Games Iteratively, for t = 1,2,, T Player: h " H Adversary: (a ",b " ) A Loss ll(h ",(a ", b " )) H A x B Goal: minimize (average, expected) regret: 1 T " X `(h t, (a t,b t ) t # X min `(h, (a t,b t ))! 0 h 2H T!1 t Can we learn in games efficiently? Regret à o(t)? (i.e. as fundamental theorem of stat. learning)

13 Online vs. Batch (PAC, Statistical) Online convex optimization & regret minimization Learning against an adversary Regret Streaming setting: process examples sequentially Less assumptions, stronger guarantees Harder algorithmically Batch learning, PAC/statistical learning Nature is benign, i.i.d. samples from unknown distribution Generalization error Batch: process dataset multiple times Weaker guarantees (changing distribution, etc.) Easier algorithmically

14 Online Convex Optimization Adversary Convex cost function f t Online Player Point x t in convex set K in R n loss f t (x t ) Total loss Σ t f t (x t ) Access to K,f t? Regret = X t f t (x t ) min x 2K X f t (x ) t

15 Prediction from expert advice Decision set = set of all distributions over n experts K = n = {x 2 R n, X i x i =1, x i 0} Cost functions? Let: c t (i) = loss of expert i in round t f t (x) =c > t x = X i c t (i)x(i) f t (x) = expected loss if choosing experts by distribution x t Regret = difference in # expected loss vs. best expert: Regret = X t f t (x t ) min x 2K X f t (x ) t

16 Parameterized Hypothesis Classes H - parameterized by vector x in convex set K R % In round t, define loss function based on example (a t, b t ) 1. Online Linear Spam Filtering: K = x x ω Loss function f " x = a " { x b " G 2. Online Soft Margin SVM: K = R n Loss function f " x = max 0, 1 b " a " { x + λ x G 3. Online Matrix Completion: K = X R % %, X k matrices with bounded nuclear norm At time t, if a t = (i t, j t ), then loss function f " x = x i ", j " b " G

17 Universal portfolio selection Recall change in log- wealth: log W t+1 = log W t + log(r > t x t ) Thus: K = n = {x 2 R n, X i x i =1, x i 0} f t (x) = log(r > t x t ) A Universal Portfolio algorithm: Regret T = 1 T X f t (x t ) t 1 T min X f t (x ) 7! 0 x t

18 Bandit Online Convex Optimization Same as OCO, except f t is not revealed to learner, only f t (x t ) is. E.g. Ad selection: a bandit version of prediction with expert advice Decision set K = set of distributions over possible ads to be shown K = n = {x 2 R n, X i x i =1, x i 0} Loss function: let c t (i) = 0 if ad i would be clicked if it were shown, and 1 otherwise f t (x) =c > t x = X i c t (i)x(i)

19 Algorithms randomized weighted majority follow- the- leader online gradient descent, regularization? log- regret, Online- Newton- Step Bandit algorithms (FKM, barriers, volumetric spanners) Projection- free methods (FW algorithm, online FW) Part 1: Foundations

20 Prediction from expert advice a R H 0 if correct 1 for mistake N experts (different regularizations) Can we perform as good as the best expert? (non- stochastic, adversarial setting)

21 Weighted Majority [Littlestone- Warmuth 89] Binary classification: {0, 1} loss n experts x " h D x " h G.. x " h % Initially, all x " h D = 1 round t, predict by weighted majority Update weights: x "ƒd h = 1 η x " h if expert h errs x "ƒd h = x " h otherwise Thm: Total- errors η Best- Expert + G % ˆ

22 Weighted Majority: Analysis Total weight: Φ " = x " (h) Œ 1. Alg mistake à at least half weight on experts who erred 2. If h * is best expert, Thus: t+1 apple 1 2 t (1 )+ 1 2 t apple t (1 2 ) T x T (h )=(1 ) #(h errors) (1 ) #(best expert errors) apple T apple 0 (1 errors) 2 )#(alg #(alg errors) apple 2(1 + )#(best expert errors) + 2 log n

23 Randomized Weighted Majority [LW 89] general: expert h time t: loss = c " h [0,1] n experts x " h D x " h G.. x " h % Initially, all x " h D = 1 round t, predict h w.p.: Update weights: x "ƒd h = e <ˆM > x " 1 > 1 > ( ) h Thm: For η = Ž { Regret = O( T logn )

24 Reminder: Online Convex Optimization Adversary Convex cost function f t Online Player Point x t in convex set K in R n loss f t (x t ) Total loss Σ t f t (x t ) Access to f t? Benchmark? Regret = X t f t (x t ) min x 2K X f t (x ) t

25 Minimize regret: best- in- hindsight Most natural: Regret = X t Provably works: (even for non- convex sets [Kalai- Vempala 05]) Is x t close to x t+1? f t (x t ) Xt 1 x t = arg min{ f i (x)} i=1 min x 2K X f t (x ) t x t+1 = arg min x2k ( tx ) f i (x) i=1 Decision may be unstable! (teaser: this can be fixed w. regularization) x t = arg min{ tx f i (x)+ 1 R(x)} i=1

26 Offline: Steepest Descent Move in the direction of steepest descent, which is: [rf(x)] i f(x) p * p 3 p 2 p 1

27 Online gradient descent [Zinkevich 03] y t+1 = x t rf t (x t ) x t+1 = arg min x2k ky t+1 x t k Theorem: Regret = O T

28 Analysis Observation 1: ky t+1 x k 2 = kx t x k 2 2 r t (x x t )+ 2 kr t k 2 Observation 2: (Pythagoras) Thus: kx t+1 x kappleky t+1 x k kx t+1 x k 2 applekx t x k 2 2 r t (x x t )+ 2 kr t k 2 X Convexity: [f t (x t ) f t (x )] apple X r t (x t x ) t t " f " (x " ) apple 1 (kx t x k 2 kx t+1 x k 2 )+ X t kr t k 2 apple 1 kx 1 x k 2 + TG = O( p T )

29 Lower bound 2 experts, T iterations: First expert has random loss in {- 1,1} Second expert loss = first * - 1 Expected loss = 0 (any algorithm) Regret = (think of first expert only) Regret = ( p T ) E[ #1 0 s #( 1) 0 s ] = ( p T )

30 Algorithms randomized weighted majority follow- the- leader online gradient descent, regularization? log- regret, Online- Newton- Step Bandit algorithms (FKM, barriers, volumetric spanners) Projection- free methods (FW algorithm, online FW) Part 2 coming up

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Tutorial: PART 2. Optimization for Machine Learning. Elad Hazan Princeton University. + help from Sanjeev Arora & Yoram Singer

Tutorial: PART 2. Optimization for Machine Learning. Elad Hazan Princeton University. + help from Sanjeev Arora & Yoram Singer Tutorial: PART 2 Optimization for Machine Learning Elad Hazan Princeton University + help from Sanjeev Arora & Yoram Singer Agenda 1. Learning as mathematical optimization Stochastic optimization, ERM,

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016

Online Convex Optimization. Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 Online Convex Optimization Gautam Goel, Milan Cvitkovic, and Ellen Feldman CS 159 4/5/2016 The General Setting The General Setting (Cover) Given only the above, learning isn't always possible Some Natural

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Learnability, Stability, Regularization and Strong Convexity

Learnability, Stability, Regularization and Strong Convexity Learnability, Stability, Regularization and Strong Convexity Nati Srebro Shai Shalev-Shwartz HUJI Ohad Shamir Weizmann Karthik Sridharan Cornell Ambuj Tewari Michigan Toyota Technological Institute Chicago

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

A survey: The convex optimization approach to regret minimization

A survey: The convex optimization approach to regret minimization A survey: The convex optimization approach to regret minimization Elad Hazan September 10, 2009 WORKING DRAFT Abstract A well studied and general setting for prediction and decision making is regret minimization

More information

Littlestone s Dimension and Online Learnability

Littlestone s Dimension and Online Learnability Littlestone s Dimension and Online Learnability Shai Shalev-Shwartz Toyota Technological Institute at Chicago The Hebrew University Talk at UCSD workshop, February, 2009 Joint work with Shai Ben-David

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 3: Learning Theory

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 3: Learning Theory COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 3: Learning Theory Sanjeev Arora Elad Hazan Admin Exercise 1 due next Tue, in class Enrolment Recap We have seen: AI by introspection

More information

Online Submodular Minimization

Online Submodular Minimization Online Submodular Minimization Elad Hazan IBM Almaden Research Center 650 Harry Rd, San Jose, CA 95120 hazan@us.ibm.com Satyen Kale Yahoo! Research 4301 Great America Parkway, Santa Clara, CA 95054 skale@yahoo-inc.com

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

The Online Approach to Machine Learning

The Online Approach to Machine Learning The Online Approach to Machine Learning Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Approach to ML 1 / 53 Summary 1 My beautiful regret 2 A supposedly fun game I

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

The convex optimization approach to regret minimization

The convex optimization approach to regret minimization The convex optimization approach to regret minimization Elad Hazan Technion - Israel Institute of Technology ehazan@ie.technion.ac.il Abstract A well studied and general setting for prediction and decision

More information

Logarithmic Regret Algorithms for Online Convex Optimization

Logarithmic Regret Algorithms for Online Convex Optimization Logarithmic Regret Algorithms for Online Convex Optimization Elad Hazan 1, Adam Kalai 2, Satyen Kale 1, and Amit Agarwal 1 1 Princeton University {ehazan,satyen,aagarwal}@princeton.edu 2 TTI-Chicago kalai@tti-c.org

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Southern California Optimization Day UC San

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Regret bounded by gradual variation for online convex optimization

Regret bounded by gradual variation for online convex optimization Noname manuscript No. will be inserted by the editor Regret bounded by gradual variation for online convex optimization Tianbao Yang Mehrdad Mahdavi Rong Jin Shenghuo Zhu Received: date / Accepted: date

More information

Optimal and Adaptive Algorithms for Online Boosting

Optimal and Adaptive Algorithms for Online Boosting Optimal and Adaptive Algorithms for Online Boosting Alina Beygelzimer 1 Satyen Kale 1 Haipeng Luo 2 1 Yahoo! Labs, NYC 2 Computer Science Department, Princeton University Jul 8, 2015 Boosting: An Example

More information

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Elad Hazan IBM Almaden Research Center 650 Harry Rd San Jose, CA 95120 ehazan@cs.princeton.edu Satyen Kale Yahoo! Research 4301

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning Editors: Suvrit Sra suvrit@gmail.com Max Planck Insitute for Biological Cybernetics 72076 Tübingen, Germany Sebastian Nowozin Microsoft Research Cambridge, CB3 0FB, United

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo!

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo! Theory and Applications of A Repeated Game Playing Algorithm Rob Schapire Princeton University [currently visiting Yahoo! Research] Learning Is (Often) Just a Game some learning problems: learn from training

More information

Hybrid Machine Learning Algorithms

Hybrid Machine Learning Algorithms Hybrid Machine Learning Algorithms Umar Syed Princeton University Includes joint work with: Rob Schapire (Princeton) Nina Mishra, Alex Slivkins (Microsoft) Common Approaches to Machine Learning!! Supervised

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

Online Optimization with Gradual Variations

Online Optimization with Gradual Variations JMLR: Workshop and Conference Proceedings vol (0) 0 Online Optimization with Gradual Variations Chao-Kai Chiang, Tianbao Yang 3 Chia-Jung Lee Mehrdad Mahdavi 3 Chi-Jen Lu Rong Jin 3 Shenghuo Zhu 4 Institute

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Mathematical Theory of Networks and Systems

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machine Learning Theory (CS 6783) Tu-Th 1:25 to 2:40 PM Hollister, 306 Instructor : Karthik Sridharan ABOUT THE COURSE No exams! 5 assignments that count towards your grades (55%) One term project (40%)

More information

Online Advertising is Big Business

Online Advertising is Big Business Online Advertising Online Advertising is Big Business Multiple billion dollar industry $43B in 2013 in USA, 17% increase over 2012 [PWC, Internet Advertising Bureau, April 2013] Higher revenue in USA

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Online Convex Optimization MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Outline Online projected sub-gradient descent. Exponentiated Gradient (EG). Mirror descent.

More information

Bandit Online Convex Optimization

Bandit Online Convex Optimization March 31, 2015 Outline 1 OCO vs Bandit OCO 2 Gradient Estimates 3 Oblivious Adversary 4 Reshaping for Improved Rates 5 Adaptive Adversary 6 Concluding Remarks Review of (Online) Convex Optimization Set-up

More information

Online Learning. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 21. Slides adapted from Mohri

Online Learning. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 21. Slides adapted from Mohri Online Learning Jordan Boyd-Graber University of Colorado Boulder LECTURE 21 Slides adapted from Mohri Jordan Boyd-Graber Boulder Online Learning 1 of 31 Motivation PAC learning: distribution fixed over

More information

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017

Alireza Shafaei. Machine Learning Reading Group The University of British Columbia Summer 2017 s s Machine Learning Reading Group The University of British Columbia Summer 2017 (OCO) Convex 1/29 Outline (OCO) Convex Stochastic Bernoulli s (OCO) Convex 2/29 At each iteration t, the player chooses

More information

Imitation Learning by Coaching. Abstract

Imitation Learning by Coaching. Abstract Imitation Learning by Coaching He He Hal Daumé III Department of Computer Science University of Maryland College Park, MD 20740 {hhe,hal}@cs.umd.edu Abstract Jason Eisner Department of Computer Science

More information

From Batch to Transductive Online Learning

From Batch to Transductive Online Learning From Batch to Transductive Online Learning Sham Kakade Toyota Technological Institute Chicago, IL 60637 sham@tti-c.org Adam Tauman Kalai Toyota Technological Institute Chicago, IL 60637 kalai@tti-c.org

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

No-Regret Algorithms for Unconstrained Online Convex Optimization

No-Regret Algorithms for Unconstrained Online Convex Optimization No-Regret Algorithms for Unconstrained Online Convex Optimization Matthew Streeter Duolingo, Inc. Pittsburgh, PA 153 matt@duolingo.com H. Brendan McMahan Google, Inc. Seattle, WA 98103 mcmahan@google.com

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization JMLR: Workshop and Conference Proceedings vol (2010) 1 16 24th Annual Conference on Learning heory Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization

More information

Exponential Weights on the Hypercube in Polynomial Time

Exponential Weights on the Hypercube in Polynomial Time European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France. Exponential Weights on the Hypercube in Polynomial Time College of Information and Computer Sciences University of Massachusetts

More information

An Algorithms-based Intro to Machine Learning

An Algorithms-based Intro to Machine Learning CMU 15451 lecture 12/08/11 An Algorithmsbased Intro to Machine Learning Plan for today Machine Learning intro: models and basic issues An interesting algorithm for combining expert advice Avrim Blum [Based

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 17: Stochastic Optimization Part II: Realizable vs Agnostic Rates Part III: Nearest Neighbor Classification Stochastic

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Online Manifold Regularization: A New Learning Setting and Empirical Study

Online Manifold Regularization: A New Learning Setting and Empirical Study Online Manifold Regularization: A New Learning Setting and Empirical Study Andrew B. Goldberg 1, Ming Li 2, Xiaojin Zhu 1 1 Computer Sciences, University of Wisconsin Madison, USA. {goldberg,jerryzhu}@cs.wisc.edu

More information

Adaptive Online Learning in Dynamic Environments

Adaptive Online Learning in Dynamic Environments Adaptive Online Learning in Dynamic Environments Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China {zhanglj, lusy, zhouzh}@lamda.nju.edu.cn

More information

Online Convex Optimization

Online Convex Optimization Advanced Course in Machine Learning Spring 2010 Online Convex Optimization Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz A convex repeated game is a two players game that is performed

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Follow-he-Perturbed Leader MEHRYAR MOHRI MOHRI@ COURAN INSIUE & GOOGLE RESEARCH. General Ideas Linear loss: decomposition as a sum along substructures. sum of edge losses in a

More information

The Perceptron Algorithm, Margins

The Perceptron Algorithm, Margins The Perceptron Algorithm, Margins MariaFlorina Balcan 08/29/2018 The Perceptron Algorithm Simple learning algorithm for supervised classification analyzed via geometric margins in the 50 s [Rosenblatt

More information

arxiv: v1 [cs.lg] 8 Feb 2018

arxiv: v1 [cs.lg] 8 Feb 2018 Online Learning: A Comprehensive Survey Steven C.H. Hoi, Doyen Sahoo, Jing Lu, Peilin Zhao School of Information Systems, Singapore Management University, Singapore School of Software Engineering, South

More information

Classification. Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY. Slides adapted from Mohri. Jordan Boyd-Graber UMD Classification 1 / 13

Classification. Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY. Slides adapted from Mohri. Jordan Boyd-Graber UMD Classification 1 / 13 Classification Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY Slides adapted from Mohri Jordan Boyd-Graber UMD Classification 1 / 13 Beyond Binary Classification Before we ve talked about

More information

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs Elad Hazan IBM Almaden 650 Harry Rd, San Jose, CA 95120 hazan@us.ibm.com Satyen Kale Microsoft Research 1 Microsoft Way, Redmond,

More information

Learning with Exploration

Learning with Exploration Learning with Exploration John Langford (Yahoo!) { With help from many } Austin, March 24, 2011 Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

More information

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint Regret Bounds for Online Portfolio Selection with a Cardinality Constraint Shinji Ito NEC Corporation Daisuke Hatano RIKEN AIP Hanna Sumita okyo Metropolitan University Akihiro Yabe NEC Corporation akuro

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 25.1 Introduction Today we re going to talk about machine learning, but from an

More information

Empirical Risk Minimization Algorithms

Empirical Risk Minimization Algorithms Empirical Risk Minimization Algorithms Tirgul 2 Part I November 2016 Reminder Domain set, X : the set of objects that we wish to label. Label set, Y : the set of possible labels. A prediction rule, h:

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 Updated: March 23, 2010 Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 ICML 2009 Tutorial Survey of Boosting from an Optimization Perspective Part I: Entropy Regularized LPBoost Part II: Boosting from

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

Online Advertising is Big Business

Online Advertising is Big Business Online Advertising Online Advertising is Big Business Multiple billion dollar industry $43B in 2013 in USA, 17% increase over 2012 [PWC, Internet Advertising Bureau, April 2013] Higher revenue in USA

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Near-Optimal Algorithms for Online Matrix Prediction

Near-Optimal Algorithms for Online Matrix Prediction JMLR: Workshop and Conference Proceedings vol 23 (2012) 38.1 38.13 25th Annual Conference on Learning Theory Near-Optimal Algorithms for Online Matrix Prediction Elad Hazan Technion - Israel Inst. of Tech.

More information

Lecture 8. Instructor: Haipeng Luo

Lecture 8. Instructor: Haipeng Luo Lecture 8 Instructor: Haipeng Luo Boosting and AdaBoost In this lecture we discuss the connection between boosting and online learning. Boosting is not only one of the most fundamental theories in machine

More information

Lecture: Adaptive Filtering

Lecture: Adaptive Filtering ECE 830 Spring 2013 Statistical Signal Processing instructors: K. Jamieson and R. Nowak Lecture: Adaptive Filtering Adaptive filters are commonly used for online filtering of signals. The goal is to estimate

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x))

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by

More information

Introduction to Logistic Regression

Introduction to Logistic Regression Introduction to Logistic Regression Guy Lebanon Binary Classification Binary classification is the most basic task in machine learning, and yet the most frequent. Binary classifiers often serve as the

More information

Learning by constraints and SVMs (2)

Learning by constraints and SVMs (2) Statistical Techniques in Robotics (16-831, F12) Lecture#14 (Wednesday ctober 17) Learning by constraints and SVMs (2) Lecturer: Drew Bagnell Scribe: Albert Wu 1 1 Support Vector Ranking Machine pening

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machine Learning Theory (CS 6783) Tu-Th 1:25 to 2:40 PM Kimball, B-11 Instructor : Karthik Sridharan ABOUT THE COURSE No exams! 5 assignments that count towards your grades (55%) One term project (40%)

More information

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm

The Algorithmic Foundations of Adaptive Data Analysis November, Lecture The Multiplicative Weights Algorithm he Algorithmic Foundations of Adaptive Data Analysis November, 207 Lecture 5-6 Lecturer: Aaron Roth Scribe: Aaron Roth he Multiplicative Weights Algorithm In this lecture, we define and analyze a classic,

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

arxiv: v4 [cs.lg] 27 Jan 2016

arxiv: v4 [cs.lg] 27 Jan 2016 The Computational Power of Optimization in Online Learning Elad Hazan Princeton University ehazan@cs.princeton.edu Tomer Koren Technion tomerk@technion.ac.il arxiv:1504.02089v4 [cs.lg] 27 Jan 2016 Abstract

More information

Logarithmic regret algorithms for online convex optimization

Logarithmic regret algorithms for online convex optimization Mach Learn (2007) 69: 169 192 DOI 10.1007/s10994-007-5016-8 Logarithmic regret algorithms for online convex optimization Elad Hazan Amit Agarwal Satyen Kale Received: 3 October 2006 / Revised: 8 May 2007

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Jacob Steinhardt Percy Liang Stanford University {jsteinhardt,pliang}@cs.stanford.edu Jun 11, 2013 J. Steinhardt & P. Liang (Stanford)

More information

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent April 27, 2018 1 / 32 Outline 1) Moment and Nesterov s accelerated gradient descent 2) AdaGrad and RMSProp 4) Adam 5) Stochastic

More information

1 Review and Overview

1 Review and Overview DRAFT a final version will be posted shortly CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture # 16 Scribe: Chris Cundy, Ananya Kumar November 14, 2018 1 Review and Overview Last

More information

Multi-armed Bandits: Competing with Optimal Sequences

Multi-armed Bandits: Competing with Optimal Sequences Multi-armed Bandits: Competing with Optimal Sequences Oren Anava The Voleon Group Berkeley, CA oren@voleon.com Zohar Karnin Yahoo! Research New York, NY zkarnin@yahoo-inc.com Abstract We consider sequential

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

COMS 4771 Lecture Boosting 1 / 16

COMS 4771 Lecture Boosting 1 / 16 COMS 4771 Lecture 12 1. Boosting 1 / 16 Boosting What is boosting? Boosting: Using a learning algorithm that provides rough rules-of-thumb to construct a very accurate predictor. 3 / 16 What is boosting?

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

From Bandits to Experts: A Tale of Domination and Independence

From Bandits to Experts: A Tale of Domination and Independence From Bandits to Experts: A Tale of Domination and Independence Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Domination and Independence 1 / 1 From Bandits to Experts: A

More information

4.1 Online Convex Optimization

4.1 Online Convex Optimization CS/CNS/EE 53: Advanced Topics in Machine Learning Topic: Online Convex Optimization and Online SVM Lecturer: Daniel Golovin Scribe: Xiaodi Hou Date: Jan 3, 4. Online Convex Optimization Definition 4..

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

Logarithmic Regret Algorithms for Online Convex Optimization

Logarithmic Regret Algorithms for Online Convex Optimization Logarithmic Regret Algorithms for Online Convex Optimization Elad Hazan Amit Agarwal Satyen Kale November 20, 2008 Abstract In an online convex optimization problem a decision-maker makes a sequence of

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Uppsala University Department of Linguistics and Philology Slides borrowed from Ryan McDonald, Google Research Machine Learning for NLP 1(50) Introduction Linear Classifiers Classifiers

More information