Classification. Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY. Slides adapted from Mohri. Jordan Boyd-Graber UMD Classification 1 / 13

Size: px
Start display at page:

Download "Classification. Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY. Slides adapted from Mohri. Jordan Boyd-Graber UMD Classification 1 / 13"

Transcription

1 Classification Jordan Boyd-Graber University of Maryland WEIGHTED MAJORITY Slides adapted from Mohri Jordan Boyd-Graber UMD Classification 1 / 13

2 Beyond Binary Classification Before we ve talked about combining weak predictor (boosting) Jordan Boyd-Graber UMD Classification 2 / 13

3 Beyond Binary Classification Before we ve talked about combining weak predictor (boosting) What if you have strong predictors? Jordan Boyd-Graber UMD Classification 2 / 13

4 Beyond Binary Classification Before we ve talked about combining weak predictor (boosting) What if you have strong predictors? How do you make inherently binary algorithms multiclass? How do you answer questions like ranking? Jordan Boyd-Graber UMD Classification 2 / 13

5 General Online Setting For t = 1 to T : Get instance x t X Predict ŷ t Y Get true label y t Y Incur loss L(ŷ t, y t ) Classification: Y = {0,1}, L(y, y ) = y y Regression: Y, L(y, y ) = (y y ) 2 Jordan Boyd-Graber UMD Classification 3 / 13

6 General Online Setting For t = 1 to T : Get instance x t X Predict ŷ t Y Get true label y t Y Incur loss L(ŷ t, y t ) Classification: Y = {0,1}, L(y, y ) = y y Regression: Y, L(y, y ) = (y y ) 2 Objective: Minimize total loss t L(ŷ t, y t ) Jordan Boyd-Graber UMD Classification 3 / 13

7 Prediction with Expert Advice For t = 1 to T : Get instance x t X and advice a t,i Y,i [1,N ] Predict ŷ t Y Get true label y t Y Incur loss L(ŷ t, y t ) Jordan Boyd-Graber UMD Classification 4 / 13

8 Prediction with Expert Advice For t = 1 to T : Get instance x t X and advice a t,i Y,i [1,N ] Predict ŷ t Y Get true label y t Y Incur loss L(ŷ t, y t ) Objective: Minimize regret, i.e., difference of total loss vs. best expert Regret(T ) = L(ŷ t, y t ) min L(a t,i, y t ) (1) i t t Jordan Boyd-Graber UMD Classification 4 / 13

9 Mistake Bound Model Define the maximum number of mistakes a learning algorithm L makes to learn a concept c over any set of examples (until it s perfect). M L (c ) = max x 1,...,x T mistakes(l, c ) (2) For any concept class C, this is the max over concepts c. M L (C ) = max c C M L(c ) (3) Jordan Boyd-Graber UMD Classification 5 / 13

10 Mistake Bound Model Define the maximum number of mistakes a learning algorithm L makes to learn a concept c over any set of examples (until it s perfect). M L (c ) = max x 1,...,x T mistakes(l, c ) (2) For any concept class C, this is the max over concepts c. M L (C ) = max c C M L(c ) (3) In the expert advice case, assumes some expert matches the concept (realizable) Jordan Boyd-Graber UMD Classification 5 / 13

11 Halving Algorithm H 1 H ; for t 1...T do Receive x t ; ŷ t Majority(H t, a t, x t ); Receive y t ; if ŷ t y t then H t +1 {a H t : a (x t ) = y t }; return H T +1Algorithm 1: The Halving Algorithm (Mitchell, 1997) Jordan Boyd-Graber UMD Classification 6 / 13

12 Halving Algorithm Bound (Littlestone, 1998) For a finite hypothesis set M Halving(H ) lg H (4) After each mistake, the hypothesis set is reduced by at least by half Jordan Boyd-Graber UMD Classification 7 / 13

13 Halving Algorithm Bound (Littlestone, 1998) For a finite hypothesis set M Halving(H ) lg H (4) After each mistake, the hypothesis set is reduced by at least by half Consider the optimal mistake bound opt(h ). Then VC(H ) opt(h ) M Halving(H ) lg H (5) For a fully shattered set, form a binary tree of mistakes with height VC(H ) Jordan Boyd-Graber UMD Classification 7 / 13

14 Halving Algorithm Bound (Littlestone, 1998) For a finite hypothesis set M Halving(H ) lg H (4) After each mistake, the hypothesis set is reduced by at least by half Consider the optimal mistake bound opt(h ). Then VC(H ) opt(h ) M Halving(H ) lg H (5) For a fully shattered set, form a binary tree of mistakes with height VC(H ) What about non-realizable case? Jordan Boyd-Graber UMD Classification 7 / 13

15 Weighted Majority (Littlestone and Warmuth, 1998) for i 1...N do w 1,i 1; for t 1...T do Receive x t ; ŷ t 1 a t,i =1 w t a t,i =0 w t Receive y t ; if ŷ t y t then for i 1...N do if a t,i y t then w t +1,i β w t,i ; else wt +1,i w t,i ; Weights for every expert Classifications in favor of side with higher total weight (y {0,1}) that are wrong get their weights decreased (β [0,1]) If you re right, you stay unchanged return w T +1 Jordan Boyd-Graber UMD Classification 8 / 13

16 Weighted Majority (Littlestone and Warmuth, 1998) for i 1...N do w 1,i 1; for t 1...T do Receive x t ; ŷ t 1 a t,i =1 w t a t,i =0 w t Receive y t ; if ŷ t y t then for i 1...N do if a t,i y t then w t +1,i β w t,i ; else wt +1,i w t,i ; Weights for every expert Classifications in favor of side with higher total weight (y {0,1}) that are wrong get their weights decreased (β [0,1]) If you re right, you stay unchanged return w T +1 Jordan Boyd-Graber UMD Classification 8 / 13

17 Weighted Majority (Littlestone and Warmuth, 1998) for i 1...N do w 1,i 1; for t 1...T do Receive x t ; ŷ t 1 a t,i =1 w t a t,i =0 w t Receive y t ; if ŷ t y t then for i 1...N do if a t,i y t then w t +1,i β w t,i ; else wt +1,i w t,i ; Weights for every expert Classifications in favor of side with higher total weight (y {0,1}) that are wrong get their weights decreased (β [0,1]) If you re right, you stay unchanged return w T +1 Jordan Boyd-Graber UMD Classification 8 / 13

18 Weighted Majority (Littlestone and Warmuth, 1998) for i 1...N do w 1,i 1; for t 1...T do Receive x t ; ŷ t 1 a t,i =1 w t a t,i =0 w t Receive y t ; if ŷ t y t then for i 1...N do if a t,i y t then w t +1,i β w t,i ; else wt +1,i w t,i ; Weights for every expert Classifications in favor of side with higher total weight (y {0,1}) that are wrong get their weights decreased (β [0,1]) If you re right, you stay unchanged return w T +1 Jordan Boyd-Graber UMD Classification 8 / 13

19 Weighted Majority Let mt be the number of mistakes made by WM until time t Let m t be the best expert s mistakes until time t N is the number of experts m t logn + m t log 1 β log 2 1+β (6) Thus, mistake bound is O (logn ) plus the best expert Halving algorithm β = 0 Jordan Boyd-Graber UMD Classification 9 / 13

20 Proof: Potential Function Potential function is the sum of all weights Φ t w t,i (7) We ll create sandwich of upper and lower bounds i Jordan Boyd-Graber UMD Classification 10 / 13

21 Proof: Potential Function Potential function is the sum of all weights Φ t w t,i (7) We ll create sandwich of upper and lower bounds For any expert i, we have lower bound i Φ t w t,i = β m t,i (8) Jordan Boyd-Graber UMD Classification 10 / 13

22 Proof: Potential Function Potential function is the sum of all weights Φ t w t,i (7) We ll create sandwich of upper and lower bounds For any expert i, we have lower bound i Φ t w t,i = β m t,i (8) Weights are nonnegative, so i w t,i w t,i Jordan Boyd-Graber UMD Classification 10 / 13

23 Proof: Potential Function Potential function is the sum of all weights Φ t w t,i (7) We ll create sandwich of upper and lower bounds For any expert i, we have lower bound i Φ t w t,i = β m t,i (8) Each error multiplicatively reduces weight by β Jordan Boyd-Graber UMD Classification 10 / 13

24 Proof: Potential Function (Upper Bound) If an algorithm makes an error at round t Φ t +1 Φ t 2 + βφ t 2 (9) Jordan Boyd-Graber UMD Classification 11 / 13

25 Proof: Potential Function (Upper Bound) If an algorithm makes an error at round t Φ t +1 Φ t 2 + βφ t 2 (9) Half (at most) of the experts by weight were right Jordan Boyd-Graber UMD Classification 11 / 13

26 Proof: Potential Function (Upper Bound) If an algorithm makes an error at round t Φ t +1 Φ t 2 + βφ t 2 (9) Half (at least) of the experts by weight were wrong Jordan Boyd-Graber UMD Classification 11 / 13

27 Proof: Potential Function (Upper Bound) If an algorithm makes an error at round t Φ t +1 Φ t 2 + βφ t 2 = 1 + β 2 Φ t (9) Jordan Boyd-Graber UMD Classification 11 / 13

28 Proof: Potential Function (Upper Bound) If an algorithm makes an error at round t Φ t +1 Φ t 2 + βφ t 2 = 1 + β 2 Φ t (9) Initially potential function sums all weights, which start at 1 Φ 1 = N (10) Jordan Boyd-Graber UMD Classification 11 / 13

29 Proof: Potential Function (Upper Bound) If an algorithm makes an error at round t Φ t +1 Φ t 2 + βφ t 2 = 1 + β 2 Φ t (9) Initially potential function sums all weights, which start at 1 Φ 1 = N (10) After mt mistakes after T rounds 1 + β mt Φ T N (11) 2 Jordan Boyd-Graber UMD Classification 11 / 13

30 Weighted Majority Proof Put the two inequalities together, using the best expert β m T 1 + β mt ΦT N (12) 2 Jordan Boyd-Graber UMD Classification 12 / 13

31 Weighted Majority Proof Put the two inequalities together, using the best expert β m T 1 + β mt ΦT N (12) 2 Take the log of both sides 1 + β m T logβ logn + m T log 2 (13) Jordan Boyd-Graber UMD Classification 12 / 13

32 Weighted Majority Proof Put the two inequalities together, using the best expert β m T 1 + β mt ΦT N (12) 2 Take the log of both sides 1 + β m T logβ logn + m T log 2 (13) Solve for mt m T logn + m T log 1 β (14) log 2 1+β Jordan Boyd-Graber UMD Classification 12 / 13

33 Weighted Majority Recap Simple algorithm No harsh assumptions (non-realizable) Depends on best learner Downside: Takes a long time to do well in worst case (but okay in practice) Solution: Randomization Jordan Boyd-Graber UMD Classification 13 / 13

Online Learning. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 21. Slides adapted from Mohri

Online Learning. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 21. Slides adapted from Mohri Online Learning Jordan Boyd-Graber University of Colorado Boulder LECTURE 21 Slides adapted from Mohri Jordan Boyd-Graber Boulder Online Learning 1 of 31 Motivation PAC learning: distribution fixed over

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron

Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron Stat 928: Statistical Learning Theory Lecture: 18 Mistake Bound Model, Halving Algorithm, Linear Classifiers, & Perceptron Instructor: Sham Kakade 1 Introduction This course will be divided into 2 parts.

More information

Littlestone s Dimension and Online Learnability

Littlestone s Dimension and Online Learnability Littlestone s Dimension and Online Learnability Shai Shalev-Shwartz Toyota Technological Institute at Chicago The Hebrew University Talk at UCSD workshop, February, 2009 Joint work with Shai Ben-David

More information

Inexact Search is Good Enough

Inexact Search is Good Enough Inexact Search is Good Enough Advanced Machine Learning for NLP Jordan Boyd-Graber MATHEMATICAL TREATMENT Advanced Machine Learning for NLP Boyd-Graber Inexact Search is Good Enough 1 of 1 Preliminaries:

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland RADEMACHER COMPLEXITY Slides adapted from Rob Schapire Machine Learning: Jordan Boyd-Graber UMD Introduction

More information

Empirical Risk Minimization Algorithms

Empirical Risk Minimization Algorithms Empirical Risk Minimization Algorithms Tirgul 2 Part I November 2016 Reminder Domain set, X : the set of objects that we wish to label. Label set, Y : the set of possible labels. A prediction rule, h:

More information

Agnostic Online learnability

Agnostic Online learnability Technical Report TTIC-TR-2008-2 October 2008 Agnostic Online learnability Shai Shalev-Shwartz Toyota Technological Institute Chicago shai@tti-c.org ABSTRACT We study a fundamental question. What classes

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Data Science: Jordan Boyd-Graber University of Maryland JANUARY 18, 2018 Data Science: Jordan Boyd-Graber UMD Discrete Probability Distributions 1 / 1 Refresher: Random

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution:

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 October 31, 2016 Due: A. November 11, 2016; B. November 22, 2016 A. Boosting 1. Implement

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Slides adapted from Eli Upfal Machine Learning: Jordan Boyd-Graber University of Maryland FEATURE ENGINEERING Machine Learning: Jordan Boyd-Graber UMD Introduction to Machine

More information

Expectations and Entropy

Expectations and Entropy Expectations and Entropy Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH Data Science: Jordan Boyd-Graber UMD Expectations and Entropy 1 / 9 Expectation

More information

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning.

Tutorial: PART 1. Online Convex Optimization, A Game- Theoretic Approach to Learning. Tutorial: PART 1 Online Convex Optimization, A Game- Theoretic Approach to Learning http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm Elad Hazan Princeton University Satyen Kale Yahoo Research

More information

Logistic Regression. Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM HINRICH SCHÜTZE

Logistic Regression. Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM HINRICH SCHÜTZE Logistic Regression Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM HINRICH SCHÜTZE Introduction to Data Science Algorithms Boyd-Graber and Paul Logistic

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland SUPPORT VECTOR MACHINES Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Machine Learning: Jordan

More information

1 Review of the Perceptron Algorithm

1 Review of the Perceptron Algorithm COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #15 Scribe: (James) Zhen XIANG April, 008 1 Review of the Perceptron Algorithm In the last few lectures, we talked about various kinds

More information

Online Convex Optimization

Online Convex Optimization Advanced Course in Machine Learning Spring 2010 Online Convex Optimization Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz A convex repeated game is a two players game that is performed

More information

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Decision Trees Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, 2018 Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Roadmap Classification: machines labeling data for us Last

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

THE WEIGHTED MAJORITY ALGORITHM

THE WEIGHTED MAJORITY ALGORITHM THE WEIGHTED MAJORITY ALGORITHM Csaba Szepesvári University of Alberta CMPUT 654 E-mail: szepesva@ualberta.ca UofA, October 3, 2006 OUTLINE 1 PREDICTION WITH EXPERT ADVICE 2 HALVING: FIND THE PERFECT EXPERT!

More information

Hypothesis Testing and Computational Learning Theory. EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell

Hypothesis Testing and Computational Learning Theory. EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell Hypothesis Testing and Computational Learning Theory EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell Overview Hypothesis Testing: How do we know our learners are good? What does performance

More information

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das

Online Learning Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das Online Learning 9.520 Class 12, 20 March 2006 Andrea Caponnetto, Sanmay Das About this class Goal To introduce the general setting of online learning. To describe an online version of the RLS algorithm

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

Algorithms, Games, and Networks January 17, Lecture 2

Algorithms, Games, and Networks January 17, Lecture 2 Algorithms, Games, and Networks January 17, 2013 Lecturer: Avrim Blum Lecture 2 Scribe: Aleksandr Kazachkov 1 Readings for today s lecture Today s topic is online learning, regret minimization, and minimax

More information

Optimal and Adaptive Online Learning

Optimal and Adaptive Online Learning Optimal and Adaptive Online Learning Haipeng Luo Advisor: Robert Schapire Computer Science Department Princeton University Examples of Online Learning (a) Spam detection 2 / 34 Examples of Online Learning

More information

Solving Regression. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 12. Slides adapted from Matt Nedrich and Trevor Hastie

Solving Regression. Jordan Boyd-Graber. University of Colorado Boulder LECTURE 12. Slides adapted from Matt Nedrich and Trevor Hastie Solving Regression Jordan Boyd-Graber University of Colorado Boulder LECTURE 12 Slides adapted from Matt Nedrich and Trevor Hastie Jordan Boyd-Graber Boulder Solving Regression 1 of 17 Roadmap We talked

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Intro to Learning Theory Date: 12/8/16 25.1 Introduction Today we re going to talk about machine learning, but from an

More information

On-Line Learning with Path Experts and Non-Additive Losses

On-Line Learning with Path Experts and Non-Additive Losses On-Line Learning with Path Experts and Non-Additive Losses Joint work with Corinna Cortes (Google Research) Vitaly Kuznetsov (Courant Institute) Manfred Warmuth (UC Santa Cruz) MEHRYAR MOHRI MOHRI@ COURANT

More information

Is our computers learning?

Is our computers learning? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2012 by Grant Schoenebeck Large parts of these slides were copied

More information

Online Learning Summer School Copenhagen 2015 Lecture 1

Online Learning Summer School Copenhagen 2015 Lecture 1 Online Learning Summer School Copenhagen 2015 Lecture 1 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Online Learning Shai Shalev-Shwartz (Hebrew U) OLSS Lecture

More information

Lecture 2: Weighted Majority Algorithm

Lecture 2: Weighted Majority Algorithm EECS 598-6: Prediction, Learning and Games Fall 3 Lecture : Weighted Majority Algorithm Lecturer: Jacob Abernethy Scribe: Petter Nilsson Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Clustering. Introduction to Data Science. Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM LAUREN HANNAH

Clustering. Introduction to Data Science. Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM LAUREN HANNAH Clustering Introduction to Data Science Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM LAUREN HANNAH Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Introduction to Data Science

More information

Classification: The PAC Learning Framework

Classification: The PAC Learning Framework Classification: The PAC Learning Framework Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 5 Slides adapted from Eli Upfal Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Follow-he-Perturbed Leader MEHRYAR MOHRI MOHRI@ COURAN INSIUE & GOOGLE RESEARCH. General Ideas Linear loss: decomposition as a sum along substructures. sum of edge losses in a

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning PAC Learning and VC Dimension Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE

More information

CS 395T Computational Learning Theory. Scribe: Rahul Suri

CS 395T Computational Learning Theory. Scribe: Rahul Suri CS 395T Computational Learning Theory Lecture 6: September 19, 007 Lecturer: Adam Klivans Scribe: Rahul Suri 6.1 Overview In Lecture 5, we showed that for any DNF formula f with n variables and s terms

More information

Leaving The Span Manfred K. Warmuth and Vishy Vishwanathan

Leaving The Span Manfred K. Warmuth and Vishy Vishwanathan Leaving The Span Manfred K. Warmuth and Vishy Vishwanathan UCSC and NICTA Talk at NYAS Conference, 10-27-06 Thanks to Dima and Jun 1 Let s keep it simple Linear Regression 10 8 6 4 2 0 2 4 6 8 8 6 4 2

More information

Multiclass Learnability and the ERM principle

Multiclass Learnability and the ERM principle Multiclass Learnability and the ERM principle Amit Daniely Sivan Sabato Shai Ben-David Shai Shalev-Shwartz November 5, 04 arxiv:308.893v [cs.lg] 4 Nov 04 Abstract We study the sample complexity of multiclass

More information

Classification II: Decision Trees and SVMs

Classification II: Decision Trees and SVMs Classification II: Decision Trees and SVMs Digging into Data: Jordan Boyd-Graber February 25, 2013 Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Digging into Data: Jordan Boyd-Graber ()

More information

Game Theory, On-line prediction and Boosting (Freund, Schapire)

Game Theory, On-line prediction and Boosting (Freund, Schapire) Game heory, On-line prediction and Boosting (Freund, Schapire) Idan Attias /4/208 INRODUCION he purpose of this paper is to bring out the close connection between game theory, on-line prediction and boosting,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Jordan Boyd-Graber University of Colorado Boulder LECTURE 7 Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Jordan Boyd-Graber Boulder Support Vector Machines 1 of

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

Random Variables and Events

Random Variables and Events Random Variables and Events Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH Data Science: Jordan Boyd-Graber UMD Random Variables and Events 1 /

More information

Learning Theory: Basic Guarantees

Learning Theory: Basic Guarantees Learning Theory: Basic Guarantees Daniel Khashabi Fall 2014 Last Update: April 28, 2016 1 Introduction The Learning Theory 1, is somewhat least practical part of Machine Learning, which is most about the

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland LOGISTIC REGRESSION FROM TEXT Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber UMD Introduction

More information

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms

Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Worst-Case Analysis of the Perceptron and Exponentiated Update Algorithms Tom Bylander Division of Computer Science The University of Texas at San Antonio San Antonio, Texas 7849 bylander@cs.utsa.edu April

More information

Online Passive-Aggressive Algorithms

Online Passive-Aggressive Algorithms Online Passive-Aggressive Algorithms Koby Crammer Ofer Dekel Shai Shalev-Shwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel {kobics,oferd,shais,singer}@cs.huji.ac.il

More information

Linear Classifiers. Michael Collins. January 18, 2012

Linear Classifiers. Michael Collins. January 18, 2012 Linear Classifiers Michael Collins January 18, 2012 Today s Lecture Binary classification problems Linear classifiers The perceptron algorithm Classification Problems: An Example Goal: build a system that

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Multiclass Learnability and the ERM Principle

Multiclass Learnability and the ERM Principle Journal of Machine Learning Research 6 205 2377-2404 Submitted 8/3; Revised /5; Published 2/5 Multiclass Learnability and the ERM Principle Amit Daniely amitdaniely@mailhujiacil Dept of Mathematics, The

More information

The Perceptron algorithm

The Perceptron algorithm The Perceptron algorithm Tirgul 3 November 2016 Agnostic PAC Learnability A hypothesis class H is agnostic PAC learnable if there exists a function m H : 0,1 2 N and a learning algorithm with the following

More information

A simple algorithmic explanation for the concentration of measure phenomenon

A simple algorithmic explanation for the concentration of measure phenomenon A simple algorithmic explanation for the concentration of measure phenomenon Igor C. Oliveira October 10, 014 Abstract We give an elementary algorithmic argument that sheds light on the concentration of

More information

Linear and Logistic Regression. Dr. Xiaowei Huang

Linear and Logistic Regression. Dr. Xiaowei Huang Linear and Logistic Regression Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Two Classical Machine Learning Algorithms Decision tree learning K-nearest neighbor Model Evaluation Metrics

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

CS 446: Machine Learning Lecture 4, Part 2: On-Line Learning

CS 446: Machine Learning Lecture 4, Part 2: On-Line Learning CS 446: Machine Learning Lecture 4, Part 2: On-Line Learning 0.1 Linear Functions So far, we have been looking at Linear Functions { as a class of functions which can 1 if W1 X separate some data and not

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Online Learning

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 203 Review of Zero-Sum Games At the end of last lecture, we discussed a model for two player games (call

More information

GANs. Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG

GANs. Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG GANs Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG Machine Learning: Jordan Boyd-Graber UMD GANs 1 / 7 Problems with Generation Generative Models Ain t Perfect

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 2018

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 2018 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jad Bechara May 2, 208 Review of Game heory he games we will discuss are two-player games that can be modeled by a game matrix

More information

Computational Learning Theory

Computational Learning Theory 0. Computational Learning Theory Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 7 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell 1. Main Questions

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information

New Algorithms for Contextual Bandits

New Algorithms for Contextual Bandits New Algorithms for Contextual Bandits Lev Reyzin Georgia Institute of Technology Work done at Yahoo! 1 S A. Beygelzimer, J. Langford, L. Li, L. Reyzin, R.E. Schapire Contextual Bandit Algorithms with Supervised

More information

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds Lecture 25 of 42 PAC Learning, VC Dimension, and Mistake Bounds Thursday, 15 March 2007 William H. Hsu, KSU http://www.kddresearch.org/courses/spring2007/cis732 Readings: Sections 7.4.17.4.3, 7.5.17.5.3,

More information

Classification objectives COMS 4771

Classification objectives COMS 4771 Classification objectives COMS 4771 1. Recap: binary classification Scoring functions Consider binary classification problems with Y = { 1, +1}. 1 / 22 Scoring functions Consider binary classification

More information

Evaluation. Andrea Passerini Machine Learning. Evaluation

Evaluation. Andrea Passerini Machine Learning. Evaluation Andrea Passerini passerini@disi.unitn.it Machine Learning Basic concepts requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Using Additive Expert Ensembles to Cope with Concept Drift

Using Additive Expert Ensembles to Cope with Concept Drift Jeremy Z. Kolter and Marcus A. Maloof {jzk, maloof}@cs.georgetown.edu Department of Computer Science, Georgetown University, Washington, DC 20057-1232, USA Abstract We consider online learning where the

More information

Agnostic Online Learning

Agnostic Online Learning Agnostic Online Learning Shai Ben-David and Dávid Pál David R. Cheriton School of Computer Science University of Waterloo Waterloo, ON, Canada {shai,dpal}@cs.uwaterloo.ca Shai Shalev-Shwartz Toyota Technological

More information

Online Learning versus Offline Learning*

Online Learning versus Offline Learning* Machine Learning, 29, 45 63 (1997) c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Online Learning versus Offline Learning* SHAI BEN-DAVID Computer Science Dept., Technion, Israel.

More information

Computational Learning Theory

Computational Learning Theory 09s1: COMP9417 Machine Learning and Data Mining Computational Learning Theory May 20, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM

DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM DS-GA 1003: Machine Learning and Computational Statistics Homework 6: Generalized Hinge Loss and Multiclass SVM Due: Monday, April 11, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo!

Theory and Applications of A Repeated Game Playing Algorithm. Rob Schapire Princeton University [currently visiting Yahoo! Theory and Applications of A Repeated Game Playing Algorithm Rob Schapire Princeton University [currently visiting Yahoo! Research] Learning Is (Often) Just a Game some learning problems: learn from training

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

Language Models. Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN

Language Models. Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN Language Models Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN Data Science: Jordan Boyd-Graber UMD Language Models 1 / 8 Language models Language models answer

More information

Evaluation requires to define performance measures to be optimized

Evaluation requires to define performance measures to be optimized Evaluation Basic concepts Evaluation requires to define performance measures to be optimized Performance of learning algorithms cannot be evaluated on entire domain (generalization error) approximation

More information

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell CS340 Machine learning Lecture 4 Learning theory Some slides are borrowed from Sebastian Thrun and Stuart Russell Announcement What: Workshop on applying for NSERC scholarships and for entry to graduate

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

Time Series Prediction & Online Learning

Time Series Prediction & Online Learning Time Series Prediction & Online Learning Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values. earthquakes.

More information

Learning Ensembles. 293S T. Yang. UCSB, 2017.

Learning Ensembles. 293S T. Yang. UCSB, 2017. Learning Ensembles 293S T. Yang. UCSB, 2017. Outlines Learning Assembles Random Forest Adaboost Training data: Restaurant example Examples described by attribute values (Boolean, discrete, continuous)

More information

Convex Repeated Games and Fenchel Duality

Convex Repeated Games and Fenchel Duality Convex Repeated Games and Fenchel Duality Shai Shalev-Shwartz 1 and Yoram Singer 1,2 1 School of Computer Sci. & Eng., he Hebrew University, Jerusalem 91904, Israel 2 Google Inc. 1600 Amphitheater Parkway,

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual

Outline: Ensemble Learning. Ensemble Learning. The Wisdom of Crowds. The Wisdom of Crowds - Really? Crowd wiser than any individual Outline: Ensemble Learning We will describe and investigate algorithms to Ensemble Learning Lecture 10, DD2431 Machine Learning A. Maki, J. Sullivan October 2014 train weak classifiers/regressors and how

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification MariaFlorina (Nina) Balcan 10/05/2016 Reminders Midterm Exam Mon, Oct. 10th Midterm Review Session

More information

Learning, Games, and Networks

Learning, Games, and Networks Learning, Games, and Networks Abhishek Sinha Laboratory for Information and Decision Systems MIT ML Talk Series @CNRG December 12, 2016 1 / 44 Outline 1 Prediction With Experts Advice 2 Application to

More information

Boosting. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL , 10.7, 10.13

Boosting. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL , 10.7, 10.13 Boosting Ryan Tibshirani Data Mining: 36-462/36-662 April 25 2013 Optional reading: ISL 8.2, ESL 10.1 10.4, 10.7, 10.13 1 Reminder: classification trees Suppose that we are given training data (x i, y

More information

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science

More information

Distributed Machine Learning. Maria-Florina Balcan, Georgia Tech

Distributed Machine Learning. Maria-Florina Balcan, Georgia Tech Distributed Machine Learning Maria-Florina Balcan, Georgia Tech Model for reasoning about key issues in supervised learning [Balcan-Blum-Fine-Mansour, COLT 12] Supervised Learning Example: which emails

More information

Name (NetID): (1 Point)

Name (NetID): (1 Point) CS446: Machine Learning (D) Spring 2017 March 16 th, 2017 This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam. This exam booklet contains

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

Online Bounds for Bayesian Algorithms

Online Bounds for Bayesian Algorithms Online Bounds for Bayesian Algorithms Sham M. Kakade Computer and Information Science Department University of Pennsylvania Andrew Y. Ng Computer Science Department Stanford University Abstract We present

More information

CS 446 Machine Learning Fall 2016 Nov 01, Bayesian Learning

CS 446 Machine Learning Fall 2016 Nov 01, Bayesian Learning CS 446 Machine Learning Fall 206 Nov 0, 206 Bayesian Learning Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes Overview Bayesian Learning Naive Bayes Logistic Regression Bayesian Learning So far, we

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information